Фізіологія рослин і генетика 2025, том 57, № 6, 497-509, doi:

Оцінка можливості та доцільності застосування гербіциду толпіралату у суміші із гербіцидом бентазоном для захисту посівів пшениці озимої

Стороженко В.О., Юхимук В.В., Тарасюк М.В., Мордерер Є.Ю.

Ключові слова: Triticum aestivum L., herbicides, tolpiralate, bentazon, interaction

Фізіологія рослин і генетика
2025, том 57, № 6, 497-509

Повний текст та додаткові матеріали

Цитована література

 1. Kraehmer, H., Almsick, A., Beffa, R., Dietrich, H., Eckes, P., Hacker, E., Hain, R., Strek, H.J., Stuebler, H. & Willms, L. (2014). Herbicides as weed control agents: State of the art: II. Recent achievements. Plant Physiol., 166(3), pp. 1132-1148. https://doi.org/10.1104/pp.114.241992

 2. Gaines, T.A., Duke, S.O., Morran, S., Rigon, C.A.G., Tranel, P.J., Kтpper, A. & Dayan, F.E. (2020). Mechanisms of evolved herbicide resistance. J. Biol. Chem., 295(30), рр. 10307-10330. https://doi.org/10.1074/jbc.REV120.013572

 3. Perotti, V.E., Larran, A.S., Palmieri, V.E., Martinatto, A.K. & Permingeat, H.R. (2020). Herbicide resistant weeds: A call to integrate conventional agricultural practices, molecular biology knowledge and new technologies. Plant Sci., 290, 110255. https://doi.org/10.1016/j.plantsci.2019.110255

 4. Norsworthy, J.K., Ward, S.M., Shaw, D.R., Llewellyn, R.S., Nichols, R.L., Webster, T.M., Bradley, K.W., Frisvold, G., Powles, S.T., Burgos, N.R., Witt, W.W. & Barrett, M. (2012). Reducing the risk of herbicide resistance: best management practices and recommendation. Weed Sci., 60(SP1), pp. 31-62. https://doi.org/10.1614/WS-D-11-00155.1

 5. Yadav, R., Jha, P., Hartzler, R. & Liebman, M. (2023). Multi-tactic strategies to manage herbicide-resistant waterhemp (Amaranthus tuberculatus) in corn—soybean rotations of the U.S. Midwest. Weed Sci., 71(2), pp. 141-149. https://doi.org/10.1017/wsc.2023.10

 6. Xu, H., Sun, L., Su, W., Yang, M., Jiang, M., Xue, F., Lu, C. & Wu, R. (2023). Confirmation and chemical control of acetyl-CoA carboxylase-and acetolactate synthase-resistant Japanese foxtail in China. Crop Prot., 169, 106257. https://doi.org/ 10.1016/j.cropro.2023.106257

 7. Heap, I. (2025, September). The international survey of herbicide resistant weeds. International herbicide-resistant weed database. Retrieved from: www.weedscience.com

 8. Schwartau, V.V. & Mykhalska, L.M. (2022). Herbicide-resistant weed biotypes in Ukraine. Dopov. Nac. akad. nauk Ukr., No. 6, pp. 85-94 [in Ukrainian]. https://doi.org/10.15407/dopovidi2022.06.085

 9. Ma, T., Gao, S., Zhao, L.X., Ye, F. & Fu, Y. (2024). 4-Hydroxyphenylpyruvate dioxygenase inhibitors: from molecular design to synthesis. J. Agric. Food Chem., 72(31), pp. 17125-17137. https://doi.org/10.1021/acs.jafc.4c01171

10. Reddy, S.S., Gonzalez, I., Degenhardt, R., Ouse, D., Satchivi, N. & Creemer, L. (2025). Weed control and crop safety with premixed tolpyralate and bromoxynil on cereals. Weed Technol., 39, e55. https://doi.org/10.1017/wet.2025.22

11. Armel, G.R., Wilson, H.P., Richardson, R.J., Whaley, C.M. & Hines, T.E. (2008). Mesotrione co mbinations with atrazine and bentazon for yellow and purple nutsedge (Cyperus esculentus and C. rotundus) control in corn. Weed Technol., 22(3), рр. 391-396. https://doi.org/10.1614/WT-07-178.1

12. Walsh, M.J., Stratford, K., Stone, K. & Powles, S.B. (2012). Synergistic effects of atrazine and mesotrione on susceptible and resistant wild radish (Raphanus raphanistrum) populations and the potential for overcoming resistance to triazine herbicides. Weed Technol., 26(2), рр. 341-347. https://doi.org/10.1614/WT-D-11-00132.1

13. Yukhymuk, V.V., Radchenko, M.P., Sytnik, S.K. & Morderer, Y.Y. (2022). Effects of interaction and effectiveness of weed control when using tank mixtures of herbicides in maize fields. Regul. Mech. Biosyst., 13(2), pp. 114-120. https://doi.org/10.15421/022216

14. O’Brien, S.R., Davis, A.S. & Riechers, D.E. (2018). Quantifying resistance to isoxaflutole and mesotrione and investigating their interactions with metribuzin POST in waterhemp (Amaranthus tuberculatus). Weed Sci., 66(5), рр. 586-594. https://doi.org/ 10.1017/wsc.2018.36

15. Colby, S.R. (1967). Calculating synergistic and antagonistic responses of herbicide combinations. Weeds, 15(1), pp. 20-22. https://doi.org/10.2307/4041058

16. Ivashenko, О.О. & Меreshckyu, Yu.G. (2001). Herbicide application effectiveness. Pesticide testing and application methods. (pp. 381-383). Trybel, S.O. (Ed.). Kyiv: Svit [in Ukrainian].

17. Dayan, F.E. & Zaccaro, M.L. (2012). Chlorophyll fuorescence as a marker for herbicide mechanisms of action. Pestic. Biochem. Physiol., 102(3), pp. 189-197. https://doi.org/ 10.1016/j.pestbp.2012.01.005

18. Silva, F.B., Costa, A.C., Alves, R.R.P., & Megguer, C.A. (2014). Chlorophyll fluorescence as an indicator of cellular damage by glyphosate herbicide in Raphanus sativus L. plants. Am. J. Plant Sci., 5(16), pp. 2509-2519. https://doi.org/10.4236/ajps.2014.516265

19. Weber, J.F., Kunz, C., Peteinatos, G.G., Santel, H.J. & Gerhards, R. (2017). Utilization of chlorophyll fluorescence imaging technology to detect plant injury by herbicides in sugar beet and soybean. Weed Technol., 31(4), pp. 523-535. https://doi.org/10.1017/ wet.2017.22

20. Welburn, A.R. (1994). The spectral determination of chlorophylls a and b as well as total carotenoids using various solvents with spectrophotometry of different resolution. J. Plant Physiol., 144(3), pp. 248-254. https://doi.org/10.1016/S0176-1617(11)81192-2

21. Maxwell, K. & Johnson, G.N. (2000). Chlorophyll fluorescence: a practical guide. J. Exp. Bot., 51(345), pp. 659-668. https://doi.org/10.1093/jexbot/51.345.659