The spread of herbicide-resistant weed biotypes threatens crop losses and intensifies the negative impact on agrocenoses due to additional herbicide applications on cultivated areas. The greatest threat is posed by weed biotypes resistant to acetolactate synthase (ALS) — inhibiting herbicides. The problem of controlling these weeds is primarily addressed by rotating ALS-inhibiting herbicides with combinations of herbicides that possess different modes of action. To develop alternative ALS-inhibiting herbicide formulations for protecting winter wheat crops, field and greenhouse experiments were conducted. These experiments evaluated the interaction between the 4-hydroxyphenylpyruvate dioxygenase (HPPD) inhibitor tolpyralate and the photosystem II (PSII) electron transport inhibitor bentazon when applied in combination. The selectivity of this herbicide mixture toward winter wheat was also assessed. It was established that at a tolpyralate application rate of 20 g/ha, the maximum recommended rate for cereal crops, and bentazon application rates of 480, 720, and 960 g/ha, the mixture was selective to the crop. It was shown that at a tolpyralate application rate of 20 g/ha, its interaction with bentazon was additive. In terms of controlling annual dicotyledonous weeds, the tolpyralate-bentazon mixture was not inferior to ALS-inhibitor herbicides. Based on the obtained data, it was concluded that the use of a topramezone-bentazon mixture in winter wheat crops is both feasible and advisable.
Keywords: Triticum aestivum L., herbicides, tolpiralate, bentazon, interaction
Full text and supplemented materials
References
1. Kraehmer, H., Almsick, A., Beffa, R., Dietrich, H., Eckes, P., Hacker, E., Hain, R., Strek, H.J., Stuebler, H. & Willms, L. (2014). Herbicides as weed control agents: State of the art: II. Recent achievements. Plant Physiol., 166(3), pp. 1132-1148. https://doi.org/10.1104/pp.114.241992
2. Gaines, T.A., Duke, S.O., Morran, S., Rigon, C.A.G., Tranel, P.J., Kтpper, A. & Dayan, F.E. (2020). Mechanisms of evolved herbicide resistance. J. Biol. Chem., 295(30), рр. 10307-10330. https://doi.org/10.1074/jbc.REV120.013572
3. Perotti, V.E., Larran, A.S., Palmieri, V.E., Martinatto, A.K. & Permingeat, H.R. (2020). Herbicide resistant weeds: A call to integrate conventional agricultural practices, molecular biology knowledge and new technologies. Plant Sci., 290, 110255. https://doi.org/10.1016/j.plantsci.2019.110255
4. Norsworthy, J.K., Ward, S.M., Shaw, D.R., Llewellyn, R.S., Nichols, R.L., Webster, T.M., Bradley, K.W., Frisvold, G., Powles, S.T., Burgos, N.R., Witt, W.W. & Barrett, M. (2012). Reducing the risk of herbicide resistance: best management practices and recommendation. Weed Sci., 60(SP1), pp. 31-62. https://doi.org/10.1614/WS-D-11-00155.1
5. Yadav, R., Jha, P., Hartzler, R. & Liebman, M. (2023). Multi-tactic strategies to manage herbicide-resistant waterhemp (Amaranthus tuberculatus) in corn—soybean rotations of the U.S. Midwest. Weed Sci., 71(2), pp. 141-149. https://doi.org/10.1017/wsc.2023.10
6. Xu, H., Sun, L., Su, W., Yang, M., Jiang, M., Xue, F., Lu, C. & Wu, R. (2023). Confirmation and chemical control of acetyl-CoA carboxylase-and acetolactate synthase-resistant Japanese foxtail in China. Crop Prot., 169, 106257. https://doi.org/ 10.1016/j.cropro.2023.106257
7. Heap, I. (2025, September). The international survey of herbicide resistant weeds. International herbicide-resistant weed database. Retrieved from: www.weedscience.com
8. Schwartau, V.V. & Mykhalska, L.M. (2022). Herbicide-resistant weed biotypes in Ukraine. Dopov. Nac. akad. nauk Ukr., No. 6, pp. 85-94 [in Ukrainian]. https://doi.org/10.15407/dopovidi2022.06.085
9. Ma, T., Gao, S., Zhao, L.X., Ye, F. & Fu, Y. (2024). 4-Hydroxyphenylpyruvate dioxygenase inhibitors: from molecular design to synthesis. J. Agric. Food Chem., 72(31), pp. 17125-17137. https://doi.org/10.1021/acs.jafc.4c01171
10. Reddy, S.S., Gonzalez, I., Degenhardt, R., Ouse, D., Satchivi, N. & Creemer, L. (2025). Weed control and crop safety with premixed tolpyralate and bromoxynil on cereals. Weed Technol., 39, e55. https://doi.org/10.1017/wet.2025.22
11. Armel, G.R., Wilson, H.P., Richardson, R.J., Whaley, C.M. & Hines, T.E. (2008). Mesotrione co mbinations with atrazine and bentazon for yellow and purple nutsedge (Cyperus esculentus and C. rotundus) control in corn. Weed Technol., 22(3), рр. 391-396. https://doi.org/10.1614/WT-07-178.1
12. Walsh, M.J., Stratford, K., Stone, K. & Powles, S.B. (2012). Synergistic effects of atrazine and mesotrione on susceptible and resistant wild radish (Raphanus raphanistrum) populations and the potential for overcoming resistance to triazine herbicides. Weed Technol., 26(2), рр. 341-347. https://doi.org/10.1614/WT-D-11-00132.1
13. Yukhymuk, V.V., Radchenko, M.P., Sytnik, S.K. & Morderer, Y.Y. (2022). Effects of interaction and effectiveness of weed control when using tank mixtures of herbicides in maize fields. Regul. Mech. Biosyst., 13(2), pp. 114-120. https://doi.org/10.15421/022216
14. O’Brien, S.R., Davis, A.S. & Riechers, D.E. (2018). Quantifying resistance to isoxaflutole and mesotrione and investigating their interactions with metribuzin POST in waterhemp (Amaranthus tuberculatus). Weed Sci., 66(5), рр. 586-594. https://doi.org/ 10.1017/wsc.2018.36
15. Colby, S.R. (1967). Calculating synergistic and antagonistic responses of herbicide combinations. Weeds, 15(1), pp. 20-22. https://doi.org/10.2307/4041058
16. Ivashenko, О.О. & Меreshckyu, Yu.G. (2001). Herbicide application effectiveness. Pesticide testing and application methods. (pp. 381-383). Trybel, S.O. (Ed.). Kyiv: Svit [in Ukrainian].
17. Dayan, F.E. & Zaccaro, M.L. (2012). Chlorophyll fuorescence as a marker for herbicide mechanisms of action. Pestic. Biochem. Physiol., 102(3), pp. 189-197. https://doi.org/ 10.1016/j.pestbp.2012.01.005
18. Silva, F.B., Costa, A.C., Alves, R.R.P., & Megguer, C.A. (2014). Chlorophyll fluorescence as an indicator of cellular damage by glyphosate herbicide in Raphanus sativus L. plants. Am. J. Plant Sci., 5(16), pp. 2509-2519. https://doi.org/10.4236/ajps.2014.516265
19. Weber, J.F., Kunz, C., Peteinatos, G.G., Santel, H.J. & Gerhards, R. (2017). Utilization of chlorophyll fluorescence imaging technology to detect plant injury by herbicides in sugar beet and soybean. Weed Technol., 31(4), pp. 523-535. https://doi.org/10.1017/ wet.2017.22
20. Welburn, A.R. (1994). The spectral determination of chlorophylls a and b as well as total carotenoids using various solvents with spectrophotometry of different resolution. J. Plant Physiol., 144(3), pp. 248-254. https://doi.org/10.1016/S0176-1617(11)81192-2
21. Maxwell, K. & Johnson, G.N. (2000). Chlorophyll fluorescence: a practical guide. J. Exp. Bot., 51(345), pp. 659-668. https://doi.org/10.1093/jexbot/51.345.659