Повний текст та додаткові матеріали
Цитована література
1. Tobinaga, S., Sharma, M.K., Aalbersberg, W.G., Watanabe, K., Iguchi, K., Narui, K., Sasatsu, M. & Waki, S. (2009). Isolation and identification of a potent antimalarial and antibacterial polyacetylene from Bidens pilosa. Planta Med., 75, No. 6, pp. 624-628. https://doi.org/10.1055/s-0029-1185377
2. Silva, J.J., Cerdeira, C.D., Chavasco, J.M., Cintra, A.D.P., Silva, C.B.P., Mendonёa, A.N., Ishikawa, T., Boriollo, M.F.G. & Chavasco, J.K. (2014). In vitro screening antibacterial activity of Bidens pilosa Linnѕ and Annona crassiflora Mart. against oxacillin resistant Staphylococcus aureus (ORSA) from the aerial environment at the dental clinic. Rev. Ins. Med. Trop. Sao Paulo, 56, No. 4, pp. 333-340. https://doi.org/10.1590/S0036-46652014000400011
3. Ashafa, A.T.O. & Afolayan, A.J. (2009). Screening the root extracts from Biden pilosa L. var. radiata (Asteraceae) for antimicrobial potentials. J. Med. Plants Res., 3, No. 8, pp. 568-572.
4. Namuga, C., Muwonge, H., Lubwama, M., Nakyejwe, J., Sekulima, T. & Kirabira, J.B. (2022). Antibacterial activities of Bidens pilosa L, Hoslundia opposita Vahl, and Ageratum conyzoides L against some common wound pathogens. African J. Pharm. Pharmacol., 16, No. 5, pp. 64-78. https://doi.org/10.5897/AJPP2022.5296
5. Angelini, P., Matei, F., Angeles, G., Roberto, F., Pellegrino, M., Vuguziga, L., Venanzoni, R., Tirillini, B., Emiliani, C., Orlando, G., Menghini, L. & Ferrante, C. (2021). Metabolomic profiling, antioxidant and antimicrobial activity of Bidens pilosa. Processes, 9, No. 6, 903. https://doi.org/10.3390/pr9060903
6. Khan, M.R., Kihara, M. & Omoloso, A.D. (2001). Anti-microbial activity of Bidens pilosa, Bischofia javanica, Elmerillia papuana and Sigesbekia orientalis. Fitoterapia. 72, No. 6, pp. 662-665. https://doi.org/10.1016/S0367-326X(01)00261-1
7. Deba, F., Xuan, T.D., Yasuda, M. & Tawata, S. (2008). Chemical composition and antioxidant, antibacterial and antifungal activities of the essential oils from Bidens pilosa Linn. var. radiata. Food Control, 19, pp. 346-352. https://doi.org/10.1016/j.foodcont.2007.04.011
8. Shandukani, P.D., Tshidino, S.C., Masoko, P. & Moganedi, K.M. (2018). Antibacterial activity and in situ efficacy of Bidens pilosa Linn and Dichrostachys cinerea Wight et Arn extracts against common diarrhoea-causing waterborne bacteria. BMC Com. Alternat. Med., 18, No. 1, p. 171. https://doi.org/10.1186/s12906-018-2230-9
9. Mohamed, S.A. & Mathew, C. (2021). Antimicrobial activity of Bidens pilosa leaves extracts against Staphylococcus aureus and Escherichia coli. Tanz. Veter. J., 38, pp. 20-24. https://doi.org/10.4314/tvj.v38i1.4s
10. Piccinin, I.N., Zielinski, A.A.F. & Kuhnen, S. (2023). Invasive plant Bidens pilosa as an ecofriendly antibiofilm-antimicrobial against Staphylococcus aureus for bovine mastitis control. Organic Agrocult., 13, No. 1, pp. 73-82. https://doi.org/10.1007/s13165-022-00415-0
11. Nakama, S., Tamaki, K., Ishikawa, C., Tadano, M. & Mori, N. (2012). Efficacy of Bidens pilosa extract against herpes simplex virus infection in vitro and in vivo. Evid-Based Compl. Alt. Med. https://doi.org/10.1155/2012/413453
12. Gertrude, M.T., Ponѕ, J.W., Claire, K.M., Jeannette, Y. Alidou, M.N. & Mbida, M. (2014). In vitro anthelmintic activity of Bidens pilosa Linn. (Asteraceae) leaf extracts against Haemonchus contortus eggs and larvae. Europ. J. Med. Plants, 4, No. 11, pp. 1282-1292. https://doi.org/10.9734/EJMP/2014/10421
13. Hsu, Y.J., Lee, T.H., Chang, C.L.T., Huang, Y.T. & Yang, W.C. (2009). Anti-hyperglycemic effects and mechanism of Bidens pilosa water extract. J. Ethnopharmacol., 122, No. 2, pp. 379-383. https://doi.org/10.1016/j.jep.2008.12.027
14. Yang, W.C. (2014). Botanical, pharmacological, phytochemical, and toxicological aspects of the antidiabetic plant Bidens pilosa L. Evid-Based Compl. Alt. Med., pp. 1-14. https://doi.org/10.1155/2014/698617
15. Chang, S.L., Chang, C.L.T., Chiang, Y.M. Hsieh, R.H., Tzeng, C.R., Wu, T.K., Sytwu, H.K., Shyur, L.F. & Yang, W.C. (2004). Polyacetylenic compounds and butanol fraction from Bidens pilosa can modulate the differentiation of helper T cells and prevent autoimmunediabetes in non-obese diabetic mice. Planta Med., 70, No. 11, pp. 1045-1051. https://doi.org/10.1055/s-2004-832645
16. Chien, S.C., Young, P.H., Hsu, Y.J., Chen, C.H., Tien, Y.J., Shiu, S.Y., Li, T.H., Yang, C.W., Marimuthu, P., Tsai, L.F.L. & Yang, W.C. (2009). Anti-diabetic properties of three common Bidens pilosa variants in Taiwan. Phytochem., 70, No. 10, pp. 1246-1254. https://doi.org/10.1016/j.phytochem.2009.07.011
17. Sundararajan, P., Dey, A., Smith, A., Doss, A.G., Rajappan, M. & Natarajan, S. (2005). Studies of anticancer and antipyretic activity of Bidens pilosa whole plant. African Health Sci., 6, No. 1, pp. 27-30. https://doi.org/10.5555/afhs.2006.6.1.27
18. Kviecinski, M.R., Benelli, P., Felipe, K.B., Correia, J.F.G., Pich, C.T., Ferreira, S.R.S., Ferreira & Pedrosa, R.C. (2011). SFE from Bidens pilosa Linnѕ to obtain extracts rich in cytotoxic polyacetylenes with antitumor activity. J. Supercrit. Fluids, 56, No. 3, pp. 243-248. https://doi.org/10.1016/j.supflu.2010.12.011
19. Chang, J.S., Chiang, L.C., Chen, C.C., Liu, L.T., Wang, K.C. & Lin, C.C. (2001). Antileukemic activity of Bidens pilosa L. var. minor (Blume) Sherff. and Houttuynia cordata Thunb. American J. Chinese Med., 29, No. 2, pp. 303-312. https://doi.org/10.1142/S0192415X01000320
20. Fotso, A.F., Longo, F., Djomeni, P.D.., Kouam, S.F., Spiteller, M., Dongmo, A.B. & Savineau, J.P. (2014). Analgesic and antiinflammatory activities of the ethyl acetate fraction of Bidens pilosa (Asteraceae). Inflammopharmacol., 22, No. 2, pp. 105-114. https://doi.org/10.1007/s10787-013-0196-2
21. Nthulane, N.P., Mosebi, S., Tshikalange, T.E., Nyila, M.A. & Mankga, L.T. (2020). Antimicrobial and anti-inflammatory activities of selected medicinal plants against pathogens causing sexually transmitted infections. J. Herbmed. Pharmacol., 9, pp. 130-137. https://doi.org/10.34172/jhp.2020.17
22. Horiuchi, M. & Seyama, Y. (2006). Antiinflammatory and antiallergic activity of Bidens pilosa L. var. radiata SCHERFF. J. Health Sci., 52, No. 6, pp. 711-717. https://doi.org/10.1248/jhs.52.711
23. Yang, H.L., Chen, S.C., Chang, N.W. Chang, J.M., Lee, M.L., Tsai, P.C., Fu, H.H., Kao, W.W., Chiang, H.C., Wang, H.H. & Hseu, Y.C. (2006). Protection from oxidative damage using Bidens pilosa extracts in normal human erythrocytes. Food Chem. Toxicol., 44, No. 9, pp. 1513-1521. https://doi.org/10.1016/j.fct.2006.04.006
24. Abajo, C., Boffill, M.A., Campo, J.D., Mendez, M.A., Gonzalez, Y., Mitjans, M. & Vinardell, M.P. (2004). In vitro study of the antioxidant and immunomodulatory activity of aqueous infusion of Bidens pilosa. J. Ethnopharmacol., 93, No. 2-3, pp. 319-323. https://doi.org/10.1016/j.jep.2004.03.050
25. Muchuweti, M., Mupure, C., Ndhlala, A., Murenje, T. & Benhura, M.A.N. (2007). Screening of antioxidant and radical scavenging activity of Vigna ungiculata. Bidens pilosa and Cleome gynandra. Amer. J. Food Technol., 2, No. 3, pp. 161-168. https://doi.org/10.3923/ajft.2007.161.168
26. Chang, S.L., Chiang, Y.M., Chang, C.L.T., Yeh, H.H., Shyur, L.F., Kuo, Y.H., Wu, T.K. & Yang, W.C. (2007). Flavonoids, centaurein and centaureidin, from Bidens pilosa, stimulate IFN-gamma expression. J. Ethnopharmacol., 112, No. 2, pp. 232-236. https://doi.org/10.1016/j.jep.2007.03.001
27. RodrHguez-Mesa, X.M., BolaФos, L.A.C., MejHa, A., Pombo, L.M., Costa, G.M. & Gonz«lez, S.P.S. (2023). Immunomodulatory properties of natural extracts and compounds derived from Bidens pilosa L. Pharmaceutics, 15, No. 5, 1491. https://doi.org/10.3390/pharmaceutics15051491
28. Brand¬o, M.G., Krettli, A.U., Soares, L.S., Nery, C.G. & Marinuzzi, H.C. (1997). Antimalarial activity of extracts and fractions from Bidens pilosa and other Bidens species (Asteraceae) correlated with the presence of acetylene and flavonoid compounds. J. Ethnopharmacol., 57, No. 2, pp. 131-138. https://doi.org/10.1016/S0378-8741(97)00060-3
29. Kumari, P., Misra, K., Sisodia, B.S., Faridi, U., Srivastava, S., Luqman, S., Darokar, M.P., Negi, A.S., Gupta, M.M., Singh, S.C. & Kumar, J.K. (2009). A promising anticancer and antimalarial component from the leaves of Bidens pilosa. Planta Medica, 75, No. 1, pp. 59-61. https://doi.org/10.1055/s-0028-1088362
30. Kviecinski, M.R., Felipe, K.B., Correia, J.F., Ferreira, E.A., Rossi, M.H. de Moura Gatti, F., Filho, D.W. & Pedrosa, R.C. (2011). Brazilian Bidens pilosa Linnѕ yields fraction containing quercetin-derived flavonoid with free radical scavenger activity and hepatoprotective effects. Lib. J. Med., 6, 5651. https://doi.org/10.3402/ljm.v6i0.5651
31. Silva, F.L., Fischer, D.C., Tavares, J.F., Silva, M.S., de Athayde-Filho, P.F. & Barbosa-Filho, J.M. (2011). Compilation of secondary metabolites from Bidens pilosa L. Molecules, 16, No. 2, pp. 1070-1102. https://doi.org/10.3390/molecules16021070
32. Xuan, T.D. & Khanh, T.D. (2016). Chemistry and pharmacology of Bidens pilosa: an overview. J. Pharmaceut. Inv., 46, No, 2, pp. 91-132. https://doi.org/10.1007/s40005-016-0231-6
33. Fahim, M., Shahzaib, A., Nishat, N., Jahan, A., Bhat, T.A. & Inam, A. (2024). Green synthesis of silver nanoparticles: a comprehensive review of methods, influencing factors, and applications. JCIS Open, 16, 100125. https://doi.org/10.1016/j.jciso.2024.100125
34. Pryshchepa, O., Pomastowski, P. & Buszewski, B. (2020). Silver nanoparticles: synthesis, investigation techniques, and properties. Adv. Coll. Int. Sci., 284, 102246. https://doi.org/10.1016/j.cis.2020.102246
35. Khare, S., Singh, R.K. & Prakash, O. (2022). Green synthesis, characterization and biocompatibility evaluation of silver nanoparticles using radish seeds. Res. Chem., 4, 100447. https://doi.org/10.1016/j.rechem.2022.100447
36. Alfosea-SimЩn, F.J., Burgos, L. & Alburquerque, N. (2025). Silver nanoparticles help plants grow, alleviate stresses, and fight against pathogens. Plants, 14, No. 3, 428. https://doi.org/10.3390/plants14030428
37. Bohdanovych, T., Kuzema, P., Anishchenko, V., Duplij, V., Kharchuk, M., Lyzhniuk, V., Shakhovsky, A. & Matvieieva, N. (2025). Comparison of silver and gold nanoparticles green synthesis by Artemisia annua hairy root extracts. Biology Open, 14, No. 3. https://doi.org/10.1242/bio.061739
38. Pekal, A. & Pyrzynska, K. (2014). Evaluation of aluminium complexation reaction for flavonoid content assay. Food Anal. Meth., 7, pp. 1776-1782. https://doi.org/10.1007/s12161-014-9814-x
39. Brand-Williams, W., Cuvelier, M.E. & Berset, C. (1995). Use of a free radical method to evaluate antioxidant activity. LWT - Food Sci. Technol., 28, No. 1, pp. 25-30. https://doi.org/10.1016/S0023-6438(95)80008-5
40. Mirzajani, F., Askari, H., Hamzelou, S., Farzaneh, M. & Ghassempour, A. (2013). Effect of silver nanoparticles on Oryza sativa L. and its rhizosphere bacteria. Ecotoxicol. Env. Safet., 88, pp. 48-54. https://doi.org/10.1016/j.ecoenv.2012.10.018
41. Tripathi, D.K., Gaur, S., Singh, S., Singh, S., Pandey, R., Singh, V.P., Sharma, N.C., Prasad, S.M., Dubey, N.K. & Chauhan, D.K. (2017). An overview on manufactured nanoparticles in plants: uptake, translocation, accumulation and phytotoxicity. Plant Physiol. Biochem., 110, pp. 2-12. https://doi.org/10.1016/j.plaphy.2016.07.030
42. Krishnaraj, C., Ganeshan, J.E., Rajan, R. & Kalaichelvan, P.T. (2012). Effect of biologically synthesized silver nanoparticles on Bacopa monnieri (Linn.) Wettst. plant growth metabolism. Process Biochem., 47, No. 4, pp. 651-658. https://doi.org/10.1016/j.procbio.2012.01.006
43. Sharma, P., Bhatt, D., Zaidi, M.G.H., Saradhi, P.P., Khanna, P.K. & Arora, S. (2012). Silver nanoparticle-mediated enhancement in growth and antioxidant status of Brassica juncea. Appl. Biochem. Biotechnol., 167, No. 8, pp. 2225-2233. https://doi.org/10.1007/s12010-012-9759-8
44. Salama, H.M.H. (2012). Effects of silver nanoparticles in some crop plants, common bean (Phaseolus vulgaris L.) and corn (Zea mays L.). Int. Res. J. Biotechnol., 3, No. 10, pp. 190-197.
45. Jasim, B., Thomas, R., Mathew, J. & Radhakrishnan, E.K. (2016). Plant growth and diosgenin enhancement effect of silver nanoparticles in Fenugreek (Trigonella foenumgraecum L.). Saud. Pharmaceut. J., 25, No. 3, pp. 443-447. https://doi.org/10.1016/j.jsps.2016.09.012
46. Tripathi, D.K., Singh, S., Singh, S., Srivastava, P.K., Singh, V.P., Singh, S., Prasad, S.M., Singh, P.K., Dubey, N.K., Pandey, A.C. & Chauhan, D.K. (2017). Nitric oxide alleviates silver nanoparticles (AgNps)-induced phytotoxicity in Pisum sativum seedlings. Plant Physiol. Biochem., 110, pp. 167-177. https://doi.org/10.1016/j.plaphy.2016.06.015
47. Gruyer, N., Dorais, M., Bastien, C., Dassylva, N. & Triffault-Bouchet, G. (2014). Interaction between sliver nanoparticles and plant growth. Acta Horticult., 1037, pp. 795-800. https://doi.org/10.17660/ActaHortic.2014.1037.105
48. Pallavi, Menta, M.C.M., Srivastava, R., Arora, S. & Sharma, A.K. (2016). Impact assessment of silver nanoparticles on plant growth and soil bacterial diversity. 3 Biotech, 6. https://doi.org/10.1007/s13205-016-0567-7
49. Dimkpa, C.O., McLean, J.E., Martineau, N., Britt, D.W., Haverkamp, R. & Anderson, A.J. (2013). Silver nanoparticles disrupt wheat (Triticum aestivum L.) growth in a sand matrix. Env. Sci. Technol., 47, No. 2, pp. 1082-1090. https://doi.org/10.1021/es302973y
50. Vinkovic, T., Nov«k, O., Strnad, M., Goessler, W., Juraлin, D.D., Paradikoviє, N. & Vr№ek, I.V. (2017). Cytokinin response in pepper plants (Capsicum annuum L.) exposed to silver nanoparticles. Env. Res., 156, pp. 10-18. https://doi.org/10.1016/j.envres.2017.03.015
51. Al-Huqail, A.A., Hatata, M.M., AL-Huqail, A.A. & Ibrahim, M.M. (2018). Preparation, characterization of silver phyto nanoparticles and their impact on growth potential of Lupinus termis L. seedlings. Saud. J. Biol. Sci., 25, Vol. 2, pp. 313-319. https://doi.org/10.1016/j.sjbs.2017.08.013
52. Ashraf, H., Anjum, T., Ahmad, I.S., Ahmed, R., Aftab, Z.E. & Rizwana, H. (2025). Phytofabricated silver nanoparticles unlock new potential in tomato plants by combating wilt infection and enhancing plant growth. Sci. Rep., 15, No. 1. https://doi.org/10.1038/s41598-025-89724-4