Fìzìol. rosl. genet. 2025, vol. 57, no. 4, 348-358, doi: https://doi.org/10.15407/frg2025.04.348

Features of the effect of silver nanoparticles on the growth and bioactivity of Bidens pilosa L. plants

Matvieieva N.A., Duplij V.P., Ratushniak Ya.I.

  • Institute of Cell Biology and Genetic Engineering, National Academy of Sciences of Ukraine 148 Akademika Zabolotnoho St., Kyiv, 03143, Ukraine

Significant progress in nanotechnology in recent years has been driven by the growing need for new methods of synthesizing nanomaterials and expanding their applications. One such approach is the «green» synthesis of metal nanoparticles (NPs) using plant extracts, which possess both reducing and stabilizing properties. In agriculture, silver nanoparticles (AgNPs) are attracting attention due to their antimicrobial effect and ability to stimulate plant growth. The aim of the study was to evaluate the effects of green-synthesized AgNPs on the growth of Bidens pilosa L., flavonoid accumulation, and antiradical activity of plant extracts. Plants were subcultured in sterile containers in a medium supplemented with either 5 mL/L or 10 mL/L AgNPs for four weeks. The 5 mL/L concentration had no significant effect on growth, whereas 10 mL/L caused partial inhibition of growth and a reduction in shoot weight compared to the control group. This indicates the potential toxicity of AgNPs to plants, particularly in terms of shoot development, while root growth remained unaffected. AgNPs influenced plant metabolism by increasing flavonoid content and antiradical activity. Their presence likely induces abiotic stress, stimulating flavonoid synthesis as a defense response. Since moderate concentration did not hinder plant growth, AgNP supplementation may be considered a promising strategy to enhance the accumulation of valuable compounds in B. pilosa.

Keywords: Bidens pilosa L., silver nanoparticles, flavonoid content, antiradical activity

Fìzìol. rosl. genet.
2025, vol. 57, no. 4, 348-358

Full text and supplemented materials

References

1. Tobinaga, S., Sharma, M.K., Aalbersberg, W.G., Watanabe, K., Iguchi, K., Narui, K., Sasatsu, M. & Waki, S. (2009). Isolation and identification of a potent antimalarial and antibacterial polyacetylene from Bidens pilosa. Planta Med., 75, No. 6, pp. 624-628. https://doi.org/10.1055/s-0029-1185377

2. Silva, J.J., Cerdeira, C.D., Chavasco, J.M., Cintra, A.D.P., Silva, C.B.P., Mendonёa, A.N., Ishikawa, T., Boriollo, M.F.G. & Chavasco, J.K. (2014). In vitro screening antibacterial activity of Bidens pilosa Linnѕ and Annona crassiflora Mart. against oxacillin resistant Staphylococcus aureus (ORSA) from the aerial environment at the dental clinic. Rev. Ins. Med. Trop. Sao Paulo, 56, No. 4, pp. 333-340. https://doi.org/10.1590/S0036-46652014000400011

3. Ashafa, A.T.O. & Afolayan, A.J. (2009). Screening the root extracts from Biden pilosa L. var. radiata (Asteraceae) for antimicrobial potentials. J. Med. Plants Res., 3, No. 8, pp. 568-572.

4. Namuga, C., Muwonge, H., Lubwama, M., Nakyejwe, J., Sekulima, T. & Kirabira, J.B. (2022). Antibacterial activities of Bidens pilosa L, Hoslundia opposita Vahl, and Ageratum conyzoides L against some common wound pathogens. African J. Pharm. Pharmacol., 16, No. 5, pp. 64-78. https://doi.org/10.5897/AJPP2022.5296

5. Angelini, P., Matei, F., Angeles, G., Roberto, F., Pellegrino, M., Vuguziga, L., Venanzoni, R., Tirillini, B., Emiliani, C., Orlando, G., Menghini, L. & Ferrante, C. (2021). Metabolomic profiling, antioxidant and antimicrobial activity of Bidens pilosa. Processes, 9, No. 6, 903. https://doi.org/10.3390/pr9060903

6. Khan, M.R., Kihara, M. & Omoloso, A.D. (2001). Anti-microbial activity of Bidens pilosa, Bischofia javanica, Elmerillia papuana and Sigesbekia orientalis. Fitoterapia. 72, No. 6, pp. 662-665. https://doi.org/10.1016/S0367-326X(01)00261-1

7. Deba, F., Xuan, T.D., Yasuda, M. & Tawata, S. (2008). Chemical composition and antioxidant, antibacterial and antifungal activities of the essential oils from Bidens pilosa Linn. var. radiata. Food Control, 19, pp. 346-352. https://doi.org/10.1016/j.foodcont.2007.04.011

8. Shandukani, P.D., Tshidino, S.C., Masoko, P. & Moganedi, K.M. (2018). Antibacterial activity and in situ efficacy of Bidens pilosa Linn and Dichrostachys cinerea Wight et Arn extracts against common diarrhoea-causing waterborne bacteria. BMC Com. Alternat. Med., 18, No. 1, p. 171. https://doi.org/10.1186/s12906-018-2230-9

9. Mohamed, S.A. & Mathew, C. (2021). Antimicrobial activity of Bidens pilosa leaves extracts against Staphylococcus aureus and Escherichia coli. Tanz. Veter. J., 38, pp. 20-24. https://doi.org/10.4314/tvj.v38i1.4s

10. Piccinin, I.N., Zielinski, A.A.F. & Kuhnen, S. (2023). Invasive plant Bidens pilosa as an ecofriendly antibiofilm-antimicrobial against Staphylococcus aureus for bovine mastitis control. Organic Agrocult., 13, No. 1, pp. 73-82. https://doi.org/10.1007/s13165-022-00415-0

11. Nakama, S., Tamaki, K., Ishikawa, C., Tadano, M. & Mori, N. (2012). Efficacy of Bidens pilosa extract against herpes simplex virus infection in vitro and in vivo. Evid-Based Compl. Alt. Med. https://doi.org/10.1155/2012/413453

12. Gertrude, M.T., Ponѕ, J.W., Claire, K.M., Jeannette, Y. Alidou, M.N. & Mbida, M. (2014). In vitro anthelmintic activity of Bidens pilosa Linn. (Asteraceae) leaf extracts against Haemonchus contortus eggs and larvae. Europ. J. Med. Plants, 4, No. 11, pp. 1282-1292. https://doi.org/10.9734/EJMP/2014/10421

13. Hsu, Y.J., Lee, T.H., Chang, C.L.T., Huang, Y.T. & Yang, W.C. (2009). Anti-hyperglycemic effects and mechanism of Bidens pilosa water extract. J. Ethnopharmacol., 122, No. 2, pp. 379-383. https://doi.org/10.1016/j.jep.2008.12.027

14. Yang, W.C. (2014). Botanical, pharmacological, phytochemical, and toxicological aspects of the antidiabetic plant Bidens pilosa L. Evid-Based Compl. Alt. Med., pp. 1-14. https://doi.org/10.1155/2014/698617

15. Chang, S.L., Chang, C.L.T., Chiang, Y.M. Hsieh, R.H., Tzeng, C.R., Wu, T.K., Sytwu, H.K., Shyur, L.F. & Yang, W.C. (2004). Polyacetylenic compounds and butanol fraction from Bidens pilosa can modulate the differentiation of helper T cells and prevent autoimmunediabetes in non-obese diabetic mice. Planta Med., 70, No. 11, pp. 1045-1051. https://doi.org/10.1055/s-2004-832645

16. Chien, S.C., Young, P.H., Hsu, Y.J., Chen, C.H., Tien, Y.J., Shiu, S.Y., Li, T.H., Yang, C.W., Marimuthu, P., Tsai, L.F.L. & Yang, W.C. (2009). Anti-diabetic properties of three common Bidens pilosa variants in Taiwan. Phytochem., 70, No. 10, pp. 1246-1254. https://doi.org/10.1016/j.phytochem.2009.07.011

17. Sundararajan, P., Dey, A., Smith, A., Doss, A.G., Rajappan, M. & Natarajan, S. (2005). Studies of anticancer and antipyretic activity of Bidens pilosa whole plant. African Health Sci., 6, No. 1, pp. 27-30. https://doi.org/10.5555/afhs.2006.6.1.27

18. Kviecinski, M.R., Benelli, P., Felipe, K.B., Correia, J.F.G., Pich, C.T., Ferreira, S.R.S., Ferreira & Pedrosa, R.C. (2011). SFE from Bidens pilosa Linnѕ to obtain extracts rich in cytotoxic polyacetylenes with antitumor activity. J. Supercrit. Fluids, 56, No. 3, pp. 243-248. https://doi.org/10.1016/j.supflu.2010.12.011

19. Chang, J.S., Chiang, L.C., Chen, C.C., Liu, L.T., Wang, K.C. & Lin, C.C. (2001). Antileukemic activity of Bidens pilosa L. var. minor (Blume) Sherff. and Houttuynia cordata Thunb. American J. Chinese Med., 29, No. 2, pp. 303-312. https://doi.org/10.1142/S0192415X01000320

20. Fotso, A.F., Longo, F., Djomeni, P.D.., Kouam, S.F., Spiteller, M., Dongmo, A.B. & Savineau, J.P. (2014). Analgesic and antiinflammatory activities of the ethyl acetate fraction of Bidens pilosa (Asteraceae). Inflammopharmacol., 22, No. 2, pp. 105-114. https://doi.org/10.1007/s10787-013-0196-2

21. Nthulane, N.P., Mosebi, S., Tshikalange, T.E., Nyila, M.A. & Mankga, L.T. (2020). Antimicrobial and anti-inflammatory activities of selected medicinal plants against pathogens causing sexually transmitted infections. J. Herbmed. Pharmacol., 9, pp. 130-137. https://doi.org/10.34172/jhp.2020.17

22. Horiuchi, M. & Seyama, Y. (2006). Antiinflammatory and antiallergic activity of Bidens pilosa L. var. radiata SCHERFF. J. Health Sci., 52, No. 6, pp. 711-717. https://doi.org/10.1248/jhs.52.711

23. Yang, H.L., Chen, S.C., Chang, N.W. Chang, J.M., Lee, M.L., Tsai, P.C., Fu, H.H., Kao, W.W., Chiang, H.C., Wang, H.H. & Hseu, Y.C. (2006). Protection from oxidative damage using Bidens pilosa extracts in normal human erythrocytes. Food Chem. Toxicol., 44, No. 9, pp. 1513-1521. https://doi.org/10.1016/j.fct.2006.04.006

24. Abajo, C., Boffill, M.A., Campo, J.D., Mendez, M.A., Gonzalez, Y., Mitjans, M. & Vinardell, M.P. (2004). In vitro study of the antioxidant and immunomodulatory activity of aqueous infusion of Bidens pilosa. J. Ethnopharmacol., 93, No. 2-3, pp. 319-323. https://doi.org/10.1016/j.jep.2004.03.050

25. Muchuweti, M., Mupure, C., Ndhlala, A., Murenje, T. & Benhura, M.A.N. (2007). Screening of antioxidant and radical scavenging activity of Vigna ungiculata. Bidens pilosa and Cleome gynandra. Amer. J. Food Technol., 2, No. 3, pp. 161-168. https://doi.org/10.3923/ajft.2007.161.168

26. Chang, S.L., Chiang, Y.M., Chang, C.L.T., Yeh, H.H., Shyur, L.F., Kuo, Y.H., Wu, T.K. & Yang, W.C. (2007). Flavonoids, centaurein and centaureidin, from Bidens pilosa, stimulate IFN-gamma expression. J. Ethnopharmacol., 112, No. 2, pp. 232-236. https://doi.org/10.1016/j.jep.2007.03.001

27. RodrHguez-Mesa, X.M., BolaФos, L.A.C., MejHa, A., Pombo, L.M., Costa, G.M. & Gonz«lez, S.P.S. (2023). Immunomodulatory properties of natural extracts and compounds derived from Bidens pilosa L. Pharmaceutics, 15, No. 5, 1491. https://doi.org/10.3390/pharmaceutics15051491

28. Brand¬o, M.G., Krettli, A.U., Soares, L.S., Nery, C.G. & Marinuzzi, H.C. (1997). Antimalarial activity of extracts and fractions from Bidens pilosa and other Bidens species (Asteraceae) correlated with the presence of acetylene and flavonoid compounds. J. Ethnopharmacol., 57, No. 2, pp. 131-138. https://doi.org/10.1016/S0378-8741(97)00060-3

29. Kumari, P., Misra, K., Sisodia, B.S., Faridi, U., Srivastava, S., Luqman, S., Darokar, M.P., Negi, A.S., Gupta, M.M., Singh, S.C. & Kumar, J.K. (2009). A promising anticancer and antimalarial component from the leaves of Bidens pilosa. Planta Medica, 75, No. 1, pp. 59-61. https://doi.org/10.1055/s-0028-1088362

30. Kviecinski, M.R., Felipe, K.B., Correia, J.F., Ferreira, E.A., Rossi, M.H. de Moura Gatti, F., Filho, D.W. & Pedrosa, R.C. (2011). Brazilian Bidens pilosa Linnѕ yields fraction containing quercetin-derived flavonoid with free radical scavenger activity and hepatoprotective effects. Lib. J. Med., 6, 5651. https://doi.org/10.3402/ljm.v6i0.5651

31. Silva, F.L., Fischer, D.C., Tavares, J.F., Silva, M.S., de Athayde-Filho, P.F. & Barbosa-Filho, J.M. (2011). Compilation of secondary metabolites from Bidens pilosa L. Molecules, 16, No. 2, pp. 1070-1102. https://doi.org/10.3390/molecules16021070

32. Xuan, T.D. & Khanh, T.D. (2016). Chemistry and pharmacology of Bidens pilosa: an overview. J. Pharmaceut. Inv., 46, No, 2, pp. 91-132. https://doi.org/10.1007/s40005-016-0231-6

33. Fahim, M., Shahzaib, A., Nishat, N., Jahan, A., Bhat, T.A. & Inam, A. (2024). Green synthesis of silver nanoparticles: a comprehensive review of methods, influencing factors, and applications. JCIS Open, 16, 100125. https://doi.org/10.1016/j.jciso.2024.100125

34. Pryshchepa, O., Pomastowski, P. & Buszewski, B. (2020). Silver nanoparticles: synthesis, investigation techniques, and properties. Adv. Coll. Int. Sci., 284, 102246. https://doi.org/10.1016/j.cis.2020.102246

35. Khare, S., Singh, R.K. & Prakash, O. (2022). Green synthesis, characterization and biocompatibility evaluation of silver nanoparticles using radish seeds. Res. Chem., 4, 100447. https://doi.org/10.1016/j.rechem.2022.100447

36. Alfosea-SimЩn, F.J., Burgos, L. & Alburquerque, N. (2025). Silver nanoparticles help plants grow, alleviate stresses, and fight against pathogens. Plants, 14, No. 3, 428. https://doi.org/10.3390/plants14030428

37. Bohdanovych, T., Kuzema, P., Anishchenko, V., Duplij, V., Kharchuk, M., Lyzhniuk, V., Shakhovsky, A. & Matvieieva, N. (2025). Comparison of silver and gold nanoparticles green synthesis by Artemisia annua hairy root extracts. Biology Open, 14, No. 3. https://doi.org/10.1242/bio.061739

38. Pekal, A. & Pyrzynska, K. (2014). Evaluation of aluminium complexation reaction for flavonoid content assay. Food Anal. Meth., 7, pp. 1776-1782. https://doi.org/10.1007/s12161-014-9814-x

39. Brand-Williams, W., Cuvelier, M.E. & Berset, C. (1995). Use of a free radical method to evaluate antioxidant activity. LWT - Food Sci. Technol., 28, No. 1, pp. 25-30. https://doi.org/10.1016/S0023-6438(95)80008-5

40. Mirzajani, F., Askari, H., Hamzelou, S., Farzaneh, M. & Ghassempour, A. (2013). Effect of silver nanoparticles on Oryza sativa L. and its rhizosphere bacteria. Ecotoxicol. Env. Safet., 88, pp. 48-54. https://doi.org/10.1016/j.ecoenv.2012.10.018

41. Tripathi, D.K., Gaur, S., Singh, S., Singh, S., Pandey, R., Singh, V.P., Sharma, N.C., Prasad, S.M., Dubey, N.K. & Chauhan, D.K. (2017). An overview on manufactured nanoparticles in plants: uptake, translocation, accumulation and phytotoxicity. Plant Physiol. Biochem., 110, pp. 2-12. https://doi.org/10.1016/j.plaphy.2016.07.030

42. Krishnaraj, C., Ganeshan, J.E., Rajan, R. & Kalaichelvan, P.T. (2012). Effect of biologically synthesized silver nanoparticles on Bacopa monnieri (Linn.) Wettst. plant growth metabolism. Process Biochem., 47, No. 4, pp. 651-658. https://doi.org/10.1016/j.procbio.2012.01.006

43. Sharma, P., Bhatt, D., Zaidi, M.G.H., Saradhi, P.P., Khanna, P.K. & Arora, S. (2012). Silver nanoparticle-mediated enhancement in growth and antioxidant status of Brassica juncea. Appl. Biochem. Biotechnol., 167, No. 8, pp. 2225-2233. https://doi.org/10.1007/s12010-012-9759-8

44. Salama, H.M.H. (2012). Effects of silver nanoparticles in some crop plants, common bean (Phaseolus vulgaris L.) and corn (Zea mays L.). Int. Res. J. Biotechnol., 3, No. 10, pp. 190-197.

45. Jasim, B., Thomas, R., Mathew, J. & Radhakrishnan, E.K. (2016). Plant growth and diosgenin enhancement effect of silver nanoparticles in Fenugreek (Trigonella foenumgraecum L.). Saud. Pharmaceut. J., 25, No. 3, pp. 443-447. https://doi.org/10.1016/j.jsps.2016.09.012

46. Tripathi, D.K., Singh, S., Singh, S., Srivastava, P.K., Singh, V.P., Singh, S., Prasad, S.M., Singh, P.K., Dubey, N.K., Pandey, A.C. & Chauhan, D.K. (2017). Nitric oxide alleviates silver nanoparticles (AgNps)-induced phytotoxicity in Pisum sativum seedlings. Plant Physiol. Biochem., 110, pp. 167-177. https://doi.org/10.1016/j.plaphy.2016.06.015

47. Gruyer, N., Dorais, M., Bastien, C., Dassylva, N. & Triffault-Bouchet, G. (2014). Interaction between sliver nanoparticles and plant growth. Acta Horticult., 1037, pp. 795-800. https://doi.org/10.17660/ActaHortic.2014.1037.105

48. Pallavi, Menta, M.C.M., Srivastava, R., Arora, S. & Sharma, A.K. (2016). Impact assessment of silver nanoparticles on plant growth and soil bacterial diversity. 3 Biotech, 6. https://doi.org/10.1007/s13205-016-0567-7

49. Dimkpa, C.O., McLean, J.E., Martineau, N., Britt, D.W., Haverkamp, R. & Anderson, A.J. (2013). Silver nanoparticles disrupt wheat (Triticum aestivum L.) growth in a sand matrix. Env. Sci. Technol., 47, No. 2, pp. 1082-1090. https://doi.org/10.1021/es302973y

50. Vinkovic, T., Nov«k, O., Strnad, M., Goessler, W., Juraлin, D.D., Paradikoviє, N. & Vr№ek, I.V. (2017). Cytokinin response in pepper plants (Capsicum annuum L.) exposed to silver nanoparticles. Env. Res., 156, pp. 10-18. https://doi.org/10.1016/j.envres.2017.03.015

51. Al-Huqail, A.A., Hatata, M.M., AL-Huqail, A.A. & Ibrahim, M.M. (2018). Preparation, characterization of silver phyto nanoparticles and their impact on growth potential of Lupinus termis L. seedlings. Saud. J. Biol. Sci., 25, Vol. 2, pp. 313-319. https://doi.org/10.1016/j.sjbs.2017.08.013

52. Ashraf, H., Anjum, T., Ahmad, I.S., Ahmed, R., Aftab, Z.E. & Rizwana, H. (2025). Phytofabricated silver nanoparticles unlock new potential in tomato plants by combating wilt infection and enhancing plant growth. Sci. Rep., 15, No. 1. https://doi.org/10.1038/s41598-025-89724-4