Фізіологія рослин і генетика 2024, том 56, № 4, 279-310, doi: https://doi.org/10.15407/frg2024.04.279

Клітинні, фізіолого-біохімічні і молекулярно-генетичні механізми взаємодії рослин і збудників хвороб різних таксономічних груп

Гуляєва Г.Б.

  • Iнститут мікробіології і вірусології ім. Д.К. Заболотного Національної академії наук України 03143 Київ, вул. Академіка Заболотного, 154

В огляді висвітлено сучасний стан і перспективи досліджень взаємодії у патосистемі між рослинами і збудниками хвороб різних таксономічних груп (бактерій, фітоплазм і вірусів) на клітинному, фізіолого-біохімічному, молекулярно-генетичному рівнях. Приділено увагу особливостям і механізмам дії найпоширеніших факторів вірулентності цих збудників, а саме: систем секреції та ефекторних білків, що ними секретуються (у фітопатогенних бактерій і фіто­плазм), фітотоксинів (у фітопатогенних бактерій). Показано, що на відміну від бактерій і фітоплазм, для транспортування у хлоропласт нуклеїнових кислот та ефекторних протеїнів різні віруси не мають однієї стратегії. Загалом вважається, що націленість на хлоропласт і його пошкодження є одним із ключових кроків успішного як бактеріального, так і вірусного зараження. Доказом цього є знайдені у бактерій, вірусів та інших патогенів ефекторні протеїни з N-термінальними доменами локалізації хлоропласта, завдяки яким ці протеїни транспортуються всередину органели, спричинюючи структурні й функціональні зміни. Невирішеним питанням в цьому напрямі залишається: чи є хлоропласти мішенями для ефекторних протеїнів фітоплазм, або вони пошкоджуються внаслідок перепрограмування рослинного метаболізму спричиненого транслокацією їх ефекторів у ядро. Розглянуто порушення метаболізму рослин на різних рівнях організації через інфекційний вплив зазначених патогенів. Коротко розглянуто особливості рослинних захисних механізмів індукованої імунної відповіді, які активуються у разі проникнення патогенів. У зв’язку із цим обговорюється регуляторна функція фітогормонів та інших сигнальних молекул (H2O2, NO, іонів Са2+) в ініціації захисних механізмів. Приділена увага стратегіям фітопатогенів для втручання у метаболізм рослини-хазяїна й інгібування імунітету, однією із яких є молекулярна мімікрія (наприклад, функціональні аналоги сигнальних молекул). Такі дослідження актуальні для розробки нових підходів захисту рослин проти широкого спектра фітопатогенів, зокрема з метою створення стратегій захисту хлоропластів від проникнення та подальшого інгібуван­ня імунної відповіді ефекторними протеїнами. З огляду на це описано дослідження регуляторних механізмів найпоширенішої у бактерій системи секреції III (T3SS) і відкриття групи сполук різної природи, які інгібують цю систему. Розглянуто модель, яка передбачає використання системи T3SS як мішені для інгібування бактеріального патогенезу. Важливим у цьому сенсі також є поглиблене дослідження регуляторних систем, локалізації, транспортних механізмів і молекулярних мішеней факторів вірулентності фітопатогенів різних таксономічних груп. Проте питання створення захисних моделей нового покоління на основі результатів лабораторних досліджень залишається відкритим, оскільки для оцінки їх ефективності необхідна перевірка та апробація у польових умовах. Такі дослідження стають дедалі актуальнішими у зв’язку з відсутністю ефективних засобів боротьби з фітопатогенами різних таксономічних груп, а також на противагу хімічним засобам захисту, які можуть спричинювати мутаційну мінливість фітопатогенних мікроорганізмів.

Ключові слова: бактерії, фітоплазми, віруси, рослина-хазяїн, хлоропласт, фітоімунітет, фітогормони, системи секреції, вірулентність

Фізіологія рослин і генетика
2024, том 56, № 4, 279-310

Повний текст та додаткові матеріали

У вільному доступі: PDF  

Цитована література

1. Hvozdiak, R.I., Pasichnyk, L.A., Yakovleva, L.M., Moroz, S.M., Lytvynchuk, O.A., Zhytkevych, N.V., Khodos, S.F., Butsenko, L.M., Dankevych, L.A., Hrynyk, I.V. & Patyka, V.P. (2011). Fitopatohenni bakterii. Bakterialni khvoroby roslyn: monohrafiia. T. 1. Patyka, V.P. (Ed.). Kyiv: TOV NVP Interservis [in Ukrainian].

2. Carezzano, M.E., Paletti Rovey, M.F., Cappellari, Ld.R., Gallarato, L.A., Bogino, P., Oliva, Mdl.M. & Giordano, W. (2023). Biofilm-forming ability of phytopathogenic bacteria: a review of its involvement in plant stress. Plants. 12 (11), 2207. https://doi.org/10.3390/plants12112207

3. Zhang, Y., Zhang, A., Li, X. & Lu, C. (2020). The role of chloroplast gene expression in plant responses to environmental stress. Int. J. Mol. Sci., 21(17), 6082. https://doi.org/10.3390/ijms21176082

4. Singh, K., Wegulo, S.N., Skoracka, A. & Kundu, J.K. (2018). Wheat streak mosaic virus: a century old virus with rising importance worldwide. Mol. Plant Pathol., 19 (9), pp. 2193-2206. https://doi.org/10.1111/mpp.12683

5. Namba, S. (2019). Molecular and biological properties of phytoplasmas. Proc. Jpn. Acad. Ser. B Phys. Biol. Sci., 95 (7), pp. 401-418. https://doi.org/10.2183/pjab.95.028

6. Meena, K.K., Sorty, A.M., Bitla, U.M., Choudhary, K., Gupta, P., Pareek, A., Singh, D.P., Prabha, R., Sahu, P.K., Gupta, V.K., Singh, H.B. & Krishanani, K.K. (2017). Abiotic stress responses and microbe-mediated mitigation in plants: the omics strategies. Front. Plant Sci., 8, 172. https://doi.org/10.3389/fpls.2017.00172

7. Park, E., Nedo, A., Caplan, J.L. & Dinesh-Kumar, S.P. (2018). Plant-microbe interactions: organelles and the cytoskeleton in action. New Phytol., 217, pp. 1012-1028. https://doi.org/10.1111/nph.14959

8. Janik, K., Mittelberger, C. & Moser, M. (2020). Lights out: the chloroplast under attack during Phytoplasma infection? In: Ann. Plant Rev. Roberts, J. (Ed.). pp. 399-426. https://doi.org/10.1002/9781119312994.apr0747

9. Bhattacharyya, D. & Chakraborty, S. (2018). Chloroplast: the Trojan horse in plant-virus interaction. Mol. Plant Pathol., 19 (2), pp.504-518. https://doi.org/10.1111/mpp.12533

10. Lu, Y. & Yao, J. (2018). Chloroplasts at the crossroad of photosynthesis, pathogen infection and plant defense. Int. J. Mol. Sci., 19 (12), 3900. https://doi.org/10.3390/ijms19123900

11. Medina-Puche, L., Tan, H., Dogra, V., Wu, M., Rosas-Diaz, T., Wang, L., Ding, X., Zhang, D., Fu, X., Kim, C. & Lozano-Duran, R.A. (2020). Defense pathway linking plasma membrane and chloroplasts and Co-opted by pathogens. Cell, 182 (5), pp. 1109-1124. e25. https://doi.org/10.1016/j.cell.2020.07.020

12. Littlejohn, G.R., Breen, S., Smirnoff, N. & Grant, M. (2020). Chloroplast immunity illuminated. New Phytol., 229 (6), pp. 3088-3107. https://doi.org/10.1111/nph.17076

13. Xu, Q., Tang, C., Wang, X., Sun, S., Zhao, J., Kang, Z. & Wang, X. (2019). An effector protein of the wheat stripe rust fungus targets chloroplasts and suppresses chloroplast function Nat. Commun., 10, 5571. https://doi.org/10.1038/s41467-019-13487-6

14. Rosas-Diaz, T., Zhang, D., Fan, P., Wang, L., Ding, X., Jiang, Y., Jimenez-Gongora, T., Medina-Puche, L., Zhao, X., Feng, Z., Zhang, G., Liu, X., Bejarano, E.R., Tan, L., Zhang, H., Zhu, J.-K., Xing, W., Faulkner, C., Nagawa, S. & Lozano-Duranet, R. (2018). A virus-targeted plant receptor-like kinase promotes cell-to-cell spread of RNAi Proc. Natl. Acad. Sci. USA, 115, pp. 1388-1393. https://doi.org/10.1073/pnas.1715556115

15. Gao, C., Xu, H., Huang, J., Sun, B., Zhang, F., Savage, Z., Duggan, C., Yan, T., Wu, C.H., Wang, Y., Vleeshouwers, V.G.A.A., Kamoun, S., Bozkurt, T.O. & Dong, S. (2020). Pathogen manipulation of chloroplast function triggers a light-dependent immune recognition. Proc. Natl. Acad. Sci. USA, 117. https://doi.org/10.1073/pnas.2002759117

16. Lee, D.W., Lee, S., Oh, Y.J. & Hwang, I. (2009). Multiple sequence motifs in the rubisco small subunit transit peptide independently contribute to Toc 159-dependent import of proteins into chloroplasts. Plant Physiol., 151 (1), pp. 129-141. https://doi.org/10.1104/pp.109.140673

17. Nellaepalli, S., Lau, A.S. & Jarvis, R.P. (2023). Chloroplast protein translocation pathways and ubiquitin-dependent regulation at a glance. J. Cell Sci. 136, jcs241125. https://doi.org/10.1242/jcs.241125

18. Chen, K., Khatabi, B. & Fondong, V.N. (2019). The AC4 protein of a cassava geminivirus is required for virus infection. Mol. Plant Microb. Int. 32 (7), pp. 865-875. https://doi.org/10.1094/MPMI-12-18-0354-R

19. Fondong, V.N., Reddy, R.V., Lu, C., Hankoua, B., Felton, C., Czymmek, K. & Achenjang, F. (2007). The consensus N-myristoylation motif of a geminivirus AC4 protein is required for membrane binding and pathogenicity. Mol. Plant Microb. Int. 20 (4), pp. 380-391. https://doi.org/10.1094/MPMI-20-4-0380

20. Traverso, J.A., Meinnel, T. & Giglione, C. (2008). Expanded impact of protein N-myristoylation in plants. Plant Signal Behav. 3 (7), pp. 501-502. https://doi.org/10.4161/psb.3.7.6039

21. Adriotis, V.M.E. & Rathjen, J.P. (2006). The Pto kinase of tomato, which regulates plant immunity, is repressed by its myristoylated N terminus. J. Biol. Chem. 281, pp. 26578-26586. https://doi.org/10.1074/jbc.M603197200

22. Gohre, V. (2015). Photosynthetic defence. Nature Plants, 1, 15079. https://doi.org/10.1038/nplants.2015.79

23. Kangasj¬rvi, S., Neukermans, J., Li, S., Aro, E.M. & Noctor, G. (2012). Photosynthesis, photorespiration, and light signalling in defence responses. J. Exp. Bot. 63 (4), pp. 1619-1636. https://doi.org/10.1093/jxb/err402

24. Li, P., Lu, Y.J., Chen, H. & Day, B. (2020). The lifecycle of the plant immune system. CRC Crit. Rev. Plant Sci., 39, pp. 72-100. https://doi.org/10.1080/07352689.2020.1757829

25. Henry, E., ToruФo, T.Y., Jauneau, A., Deslandes, L. & Coaker, G. (2017). Direct and indirect visualization of bacterial effector delivery into diverse plant cell types during infection. The Plant Cell, 29 (7), pp. 1555-1570. https://doi.org/10.1105/tpc.17.00027

26. Xin, X.F. & He, S.Y. (2013). Pseudomonas syringae pv. tomato DC3000: A model pathogen for probing disease susceptibility and hormone signaling in plants. Annu. Rev. Phytop., 51, pp. 473-498. https://doi.org/10.1146/annurev-phyto-082712-102321

27. ToruФo, T.Y., Stergiopoulos, I. & Coaker, G. (2016). Plant-pathogen effectors: Cellular probes interfering with plant defenses in spatial and temporal manners. Annu. Rev. Phytopathol., 54, pp. 419-441. https://doi.org/10.1146/annurev-phyto-080615-100204

28. Galan, J.E. & Wolf-Watz, H. (2006). Protein delivery into eukaryotic cells by type III secretion machines. Nature, 444, pp. 567-573. https://doi.org/10.1038/nature05272

29. Wagner, S., Grin, I., Malmsheimer, S., Singh, N., Torres-Vargas, C.E. & Westerhausen, S. (2018). Bacterial type III secretion systems: a complex device for the delivery of bacterial effector proteins into eukaryotic host cells, FEMS Microbiol. Lett., 365 (19), fny201. https://doi.org/10.1093/femsle/fny201

30. Xiaochen, Y., Yu, M. & Yang, C.-H. (2020). Innovation and application of the type III secretion system inhibitors in plant pathogenic bacteria. Microorgan., 8 (12), 1956. https://doi.org/10.3390/microorganisms8121956

31. Green, E.R. & Mecsas, J. (2016). Bacterial secretion systems: an overview. Microbiol. Spectr., 4, pp. 213-239. https://doi.org/10.1128/microbiolspec.VMBF-0012-2015

32. Durbin, R.D. (1991). Bacterial phytotoxins: mechanisms of action. Experientia, 47, pp. 776-783. https://doi.org/10.1007/BF01922457

33. Strange, R.N. (2007). Phytotoxins produced by microbial plant pathogens. Nat. Prod. Rep., 24, pp. 127-144. https://doi.org/10.1039/B513232K

34. Duke, S.O. & Dayan, F.E. (2011). Modes of action of microbially-produced phytotoxins. Toxins (Basel), 3 (8), pp. 1038-1064. https://doi.org/10.3390/toxins3081038

35. Uppalapati, S.R., Ayoubi, P., Weng, H., Palmer, D.A., Mitchell, R.E., Jones, W. & Bender, C.L. (2005). The phytotoxin coronatine and methyl jasmonate impact multiple phytohormone pathways in tomato. Plant J., 42, pp. 201-217. https://doi.org/10.1111/j.1365-313X.2005.02366.x

36. Kang, Y., Jelenska, J., Cecchini, N.M., Li, Y., Lee, M.W., Kovar, D.R. & Greenberg, J.T. (2014). HopW1 from Pseudomonas syringae disrupts the actin cytoskeleton to promote virulence in Arabidopsis. PLoS Pathog., 10, e1004232. https://doi.org/10.1371/journal.ppat.1004232

37. Shimono, M., Lu, Y.J., Porter, K., Kvitko, B.H., Henty-Ridilla, J., Creason, A., He, S.Y., Chang, J.H., Staiger, C.J. & Day, B. (2016). The Pseudomonas syringae type III effector HopG1 induces actin remodeling to promote symptom development and susceptibility during infection. Plant Physiol., 171 (3), pp. 2239-2255. https://doi.org/10.1104/pp.16.01593

38. Katsir, L., Schilmiller, A.L., Staswick, P.E., He, S.Y. & Howe, G.A. (2008). COI1 is a critical component of a receptor for jasmonate and the bacterial virulence factor coronatine. Proc. Nat. Acad. Sci. USA, 105, pp. 7100-7105. https://doi.org/10.1073/pnas.0802332105

39. Geng, X., Jin, L., Shimada, M., Kim, M.G. & Mackey, D. (2014). The phytotoxin coronatine is a multifunctional component of the virulence armament of Pseudomonas syringae. Planta, 240, pp. 1149-1165. https://doi.org/10.1007/s00425-014-2151-x

40. de Torres Zabala, M., Littlejohn, G., Jayaraman, S., Studholme, D., Bailey, T., Lawson, T., Tillich, M., Licht, D., Bolter, B., Delfino, L., Truman, W., Mansfield, J., Smirnoff, N. & Grant, M. (2015). Chloroplasts play a central role in plant defence and are targeted by pathogen effectors. Nature Plants, 1, 15074. https://doi.org/10.1038/nplants.2015.74

41. Li, G., Froehlich, J.E., Elowsky, C., Msanne, J., Ostosh, A.C., Zhang, C., Awada, T. & Alfano, J.R. (2014). Distinct pseudomonas type-III effectors use a cleavable transit peptide to target chloroplasts. Plant J., 77, pp. 310-321. https://doi.org/10.1111/tpj.12396

42. Petre, B., Lorrain, C., Saunders, D.G.O., Win, J., Sklenar, J., Duplessis, S. & Kamoun, S. (2016). Rust fungal effectors mimic host transit peptides to translocate into chloroplasts. Cell. Microbiol., 18, pp. 453-465. https://doi.org/10.1111/cmi.12530

43. Sohn, K.H., Zhang, Y. & Jones, J.D. (2009). The Pseudomonas syringae effector protein, AvrRPS4, requires in planta processing and the KRVY domain to function. Plant J., 57, pp. 1079-1091. https://doi.org/10.1111/j.1365-313X.2008.03751.x

44. Soto, S.M. (2013). Role of efflux pumps in the antibiotic resistance of bacteria embedded in a biofilm. Virulence., 4, pp. 223-229. https://doi.org/10.4161/viru.23724

45. Singh, S., Singh, S.K., Chowdhury, I. & Singh, R. (2017). Understanding the mechanism of bacterial biofilms resistance to antimicrobial agents. Open Microbiol. J., 11, pp. 53-62. https://doi.org/10.2174/1874285801711010053

46. Hardham, A.R., Jones, D.A. & Takemoto, D. (2007). Cytoskeleton and cell wall function in penetration resistance. Curr. Opin. Plant Biol., 10, pp. 342-348. https://doi.org/10.1016/j.pbi.2007.05.001

47. Boevink, P.C., Birch, P.R., Turnbull, D. & Whisson, S.C. (2020). Devastating intimacy: the cell biology of plant-Phytophthora interactions. New Phytologist., 228, pp. 445-458. https://doi.org/10.1111/nph.16650

48. Rojas, C.M., Senthil-Kumar, M., Tzin, V. & Mysore, K.S. (2014). Regulation of primary plant metabolism during plant-pathogen interactions and its contribution to plant defense. Front. Plant Sci., 5, 17. https://doi.org/10.3389/fpls.2014.00017

49. Gohre, V., Jones, A.M., Sklenar, J., Robatzek, S. & Weber, A.P. (2012). Molecular crosstalk between PAMP-triggered immunity and photosynthesis. Mol. Plant Microbe Interact., 25, pp. 1083-1092. https://doi.org/10.1094/MPMI-11-11-0301

50. Jones, J.D. & Dangl, J.L.(2006). The plant immune system. Nature., 444, pp. 323-329. https://doi.org/10.1038/nature05286

51. van der Burgh, A.M. & Joosten, M. (2019). Plant immunity: thinking outside and insidethe box. Trends Plant Sci., 24, pp. 587-601. https://doi.org/10.1016/j.tplants.2019.04.009

52. Havaux, M. (2014). Carotenoid oxidation products as stress signals in plants. Plant J., 79, pp. 597-606. https://doi.org/10.1111/tpj.12386

53. Zoeller, M., Stingl, N., Krischke, M., Fekete, A., Waller, F., Berger, S. & Mueller, M.J. (2012). Lipid profiling of the Arabidopsis hypersensitive response reveals specific lipid peroxidation and fragmentation processes: biogenesis of pimelic and azelaic acid. Plant Physiol., 160, pp. 365-378. https://doi.org/10.1104/pp.112.202846

54. Durrant, W.E. & Dong, X. (2004). Systemic acquired resistance. Annu. Rev. Phytopathol., 42, pp. 185-209. https://doi.org/10.1146/annurev.phyto.42.040803.140421

55. Zehra, A., Raytekar, N.A., Meena, M. & Swapnil, P. (2021). Efficiency of microbial bio-agents as elicitors in plant defense mechanism under biotic stress: A review. Curr. Res. Microb. Sci., 2, 100054. https://doi.org/10.1016/j.crmicr.2021.100054

56. Moustafa-Farag, M., Almoneafy, A., Mahmoud, A., Elkelish, A., Arnao, M.B., Li, L. & Ai, S. (2020). Melatonin and its protective role against biotic stress impacts on plants. Biomol., 10, 54. https://doi.org/10.3390/biom10010054

57. Orozco-Mosqueda, M.C., Fadiji, A.E., Babalola, O.O. & Santoyo, G. (2023). Bacterial elicitors of the plant immune system: an overview and the way forward. Plant Stress, 7, 100138. https://doi.org/10.1016/j.stress.2023.100138

58. Chiang, Yi-H. & Coaker, G. (2015). Effector triggered immunity: NLR immune perception and downstream defense responses. Arabidopsis Book, 13. https://doi.org/10.1199/tab.0183

59. Coll, N.S., Epple, P. & Dangl, J.L. (2011). Programmed cell death in the plant immune system. Cell. Death Differ., 18, pp. 1247-1256. https://doi.org/10.1038/cdd.2011.37

60. Van Loon, L.C., Rep, M. & Pieterse, C.M. (2006). Significance of inducible defense-related proteins in infected plants. Annu. Rev. Phytopathol., 44, pp. 135-162. https://doi.org/10.1146/annurev.phyto.44.070505.143425

61. Lim, C.W., Baek, W., Jung, J., Kim, J.-H. & Lee, S.C. (2015). Function of ABA in stomatal defense against biotic and drought stresses. Int. J. Mol. Sci., 16, pp. 15251-15270. https://doi.org/10.3390/ijms160715251

62. Hsu, P.K., Dubeaux, G., Takahashi, Y. & Schroeder, J.I. (2021). Signaling mechanisms in abscisic acid-mediated stomatal closure. Plant J., 105 (2), pp. 307-321. https://doi.org/10.1111/tpj.15067

63. Webb, A.A., Larman, M.G., Montgomery, L.T., Taylor, J.E. & Hetherington, A.M. (2001). The role of calcium in ABA-induced gene expression and stomatal movements. Plant J., 26, pp. 351-362. https://doi.org/10.1046/j.1365-313X.2001.01032.x

64. de Torres Zabala, M., Bennett, M.H., Truman, W.H. & Grant, M.R. (2009). Antagonism between salicylic and abscisic acid reflects early host-pathogen conflict and moulds plant defence responses. Plant J., 59, pp. 375-386. https://doi.org/10.1111/j.1365-313X.2009.03875.x

65. de Torres-Zabala, M., Truman, W., Bennett, M.H., Lafforgue, G., Mansfield, J.W., Rodriguez Egea, P., Bogre, L. & Grant, M. (2007). Pseudomonas syringae pv. tomato hijacks the Arabidopsis abscisic acid signalling pathway to cause disease. EMBO J., 26, pp. 1434-1443. https://doi.org/10.1038/sj.emboj.7601575

66. Adie, B.A.T., Pѕrez-Pѕrez, J., Pѕrez-Pѕrez, M.M., Godoy, M., S«nchez-Serrano, J.-J., Schmelz, E.A. & Solano, R. (2007). ABA is an essential signal for plant resistance to pathogens affecting JA biosynthesis and the activation of defenses in Arabidopsis. Plant Cell, 19, pp. 1665-1681. https://doi.org/10.1105/tpc.106.048041

67. Wang, K.L.-C., Li, H. & Ecker, J.R. (2002). Ethylene biosynthesis and signaling networks. Plant Cell, 14, 1311. https://doi.org/10.1105/tpc.001768

68. Ceusters, J. & Van de Poel, B. (2018). Ethylene exerts species-specific and age-dependent control of photosynthesis. Plant Physiol., 176 (4), pp. 2601-2612. https://doi.org/10.1104/pp.17.01706

69. ZieliXska, M. & Michniewicz, M. (2001). The effect of calcium on the production of ethylene and abscisic acid by fungus Fusarium culmorum and by wheat seedlings infected with that pathogen. Acta Physiol. Plant., 23, pp. 79-85. https://doi.org/10.1007/s11738-001-0026-9

70. Cao, F.Y., Yoshioka, K. & Desveaux, D. (2011). The roles of ABA in plant-pathogen interactions. J. Plant Res., 124, pp. 489-499. https://doi.org/10.1007/s10265-011-0409-y

71. Melotto, M., Underwood, W. & He, S.Y. (2008). Role of stomata in plant innate immunity and foliar bacterial diseases. Annu. Rev. Phytopathol., 46, pp. 101-122. https://doi.org/10.1146/annurev.phyto.121107.104959

72. Goritschnig, S., Weihmann, T., Zhang, Y., Fobert, P., McCourt, P. & Li, X. (2008). A novel role for protein farnesylation in plant innate immunity. Plant Physiol., 148, pp. 348-357. https://doi.org/10.1104/pp.108.117663

73. Hoffman, T., Schmidt, J.S., Zheng, X. & Bent, A.F. (1999). Isolation of ethylene-insensitive soybean mutants that are altered in pathogen susceptibility and gene-for-gene disease resistance. Plant Physiol., 119, pp. 935-950. https://doi.org/10.1104/pp.119.3.935

74. Wasternack, C. & Hause, B. (2013). Jasmonates: biosynthesis, perception, signal transduction and action in plant stress response, growth and development. An update to the 2007 review in Annals of Botany. Ann. Bot., 111, pp. 1021-1058. https://doi.org/10.1093/aob/mct067

75. Andersson, M.X., Hamberg, M., Kourtchenko, O., Brunnstrom, A., McPhail, K.L., Gerwick, W.H, Gobel, C., Feussner, I. & Ellerstrom, M. (2006). Oxylipin profiling of the hypersensitive response in Arabidopsis thaliana: Formation of a novel oxo-phytodienoic acid-containing galactolipid, arabidopside. J. Biol. Chem., 281, pp. 31528-31537. https://doi.org/10.1074/jbc.M604820200

76. Truman, W., Bennett, M.H., Kubigsteltig, I., Turnbull, C. & Grant, M. (2007). Arabidopsis systemic immunity uses conserved defense signaling pathways and is mediated by jasmonates. Proceed. Nat. Acad. Sci. USA., 104, pp. 1075-1080. https://doi.org/10.1073/pnas.0605423104

77. Matsuura, H., Takeishi, S., Kiatoka, N., Sato, C., Sueda, K., Masuta, C. & Nabeta, K. (2012). Transportation of de novo synthesized jasmonoyl isoleucine in tomato, Phytochem., 83, pp. 25-33. https://doi.org/10.1016/j.phytochem.2012.06.009

78. Zoeller, M., Stingl, N., Krischke, M., Fekete, A., Waller, F., Berger, S. & Mueller M.J. (2012). Lipid profiling of the Arabidopsis hypersensitive response reveals specific lipid peroxidation and fragmentation processes: biogenesis of pimelic and azelaic acid. Plant Physiol., 2, 160, pp. 365-378. https://doi.org/10.1104/pp.112.202846

79. Ding, Y., Sun, T., Ao, K., Peng, Y., Zhang, Y., Li, X. & Zhang, Y. (2018). Opposite roles of salicylic acid receptors NPR1 and NPR3/NPR4 in transcriptional regulation of plant immunity. Cell, 173, pp. 1454-1467. https://doi.org/10.1016/j.cell.2018.03.044

80. Zhang, Z.S., Xu, Y.Y., Xie, Z.W., Li, X.Y., He, Z.H. & Peng, X.X. (2016). Association-dissociation of glycolate oxidase with catalase in rice: a potential switch to modulate intracellular H2O2 levels. Mol. Plant, 9, pp. 737-748. https://doi.org/10.1016/j.molp.2016.02.002

81. Petroutsos, D., Busch, A., Janssen, I., Trompelt, K., Bergner, S.V., Weinl, S., Holtkamp, M., Karst, U., Kudla, J. & Hippler, M. (2011). The chloroplast calcium sensor CAS is required for photoacclimation in Chlamydomonas reinhardtii. Plant Cell, 23, pp. 2950-2963. https://doi.org/10.1105/tpc.111.087973

82. Nomura, H., Komori, T., Uemura, S., Kanda, Y., Shimotani, K., Nakai, K., Furuichi, T., Takebayashi, K., Sugimoto, T., Sano, S., Suwastika, I.N., Fukusaki, E., Yoshioka, H., Nakahira, Y. & Shiina, T. (2012). Chloroplast-mediated activation of plant immune signalling in Arabidopsis. Nat. Comm., 3, 926. https://doi.org/10.1038/ncomms1926

83. Shapiguzov, A., Vainonen, J.P., Wrzaczek, M. & Kangasj¬rvi, J. (2012). ROS-talk-how the apoplast, the chloroplast, and the nucleus get the message through. Front. Plant Sci., 3, 292. https://doi.org/10.3389/fpls.2012.00292

84. Delledonne, M., Xia, Y., Dixon, R.A. & Lamb, C. (1998). Nitric oxide functions as a signal in plant disease resistance. Nature, 394, pp. 585-588. https://doi.org/10.1038/29087

85. Yang, J., Liao, Y.J., Ning, J. ., Wang, J.Z., Wang, H. & Ren, Z.G. (2020). Identification of a phytoplasma associated with Syringa reticulata witches' broom disease in China. Forest Pathol., 50, e12592. https://doi.org/10.1111/efp.12592

86. Xiao-Yan, W., Rong-Yue, Z., Jie, L., Yin-Hu, L., Hong-Li, S., Wen-Feng, L. & Ying-Kun, H. (2022). The diversity, distribution and status of phytoplasma diseases in China. Front. Sust. Food Syst., 6. https://doi.org/10.3389/fsufs.2022.943080

87. Wang, N., Li, Y., Chen, W., Yang, H.Z., Zhang, P.H. & Wu, Y.F. (2018). Identification of wheat blue dwarf phytoplasma effectors targeting plant proliferation and defence responses. Plant Pathol., 67, 3. https://doi.org/10.1111/ppa.12786

88. Jurga, M. & ZwoliXska, A. (2020). Phytoplasmas in Poaceae species: a threat to the most important cereal crops in Europe. J. Plant Pathol., 102 (2), pp. 287-297. https://www.jstor.org/stable/48741408 https://doi.org/10.1007/s42161-019-00481-6

89. Hogenhout, S.A., Oshima, K., Ammar, El-D., Kakizawa, S., Kingdom, H.N. & Namba, S. (2008). Phytoplasmas: bacteria that manipulate plants and insects. Mol. Plant Pathol., 9, pp. 403-423. https://doi.org/10.1111/j.1364-3703.2008.00472.x

90. Perilla-Henao, L.M. & Casteel, C.L. (2016). Vector-borne bacterial plant pathogens: interactions with hemipteran insects and plants. Front. Plant Sci., 7, 1163. https://doi.org/10.3389/fpls.2016.01163

91. Kube, M., Mitrovic, J., Duduk, B., Rabus, R. & Seemuller, E. (2012). Current view on phytoplasma genomes and encoded metabolism. Sci. World J., 185942. https://doi.org/10.1100/2012/185942

92. Bai, X., Zhang, J., Ewing, A., Miller, S.A., Jancso Radek, A., Shevchenko, D.V., Tsukerman, K., Walunas, T., Lapidus, A., Campbell, J.W. & Hogenhout, S.A. (2006). Living with genome instability: the adaptation of phytoplasmas to diverse environments of their insect and plant hosts. J. Bacteriol., 188, pp. 3682-3696. https://doi.org/10.1128/JB.188.10.3682-3696.2006

93. Minato, N., Himeno, M., Hoshi, A., Maejima, K., Komatsu, K., Takebayashi, Y., Kasahara, H., Yusa, A., Yamaji, Y., Oshima, K., Kamiya, Y. & Namba, S. (2014). The phytoplasma virulence factor TENGU causes plant sterility by downregulating of the jasmonic acid and auxin pathways. Sci. Rep., 4, 7399. https://doi.org/10.1038/srep07399

94. Kakizawa, S., Oshima, K., Ishii, Y., Hoshi, A., Maejima, K., Jung, H.-Y., Yamaji, Y. & Namba, S. (2009). Cloning of immunodominant membrane protein genes of phytoplasmas and their in planta expression. FEMS Microbiol. Lett., 293, pp. 92-101. https://doi.org/10.1111/j.1574-6968.2009.01509.x

95. Bertaccini, A. (2022). Plants and phytoplasmas: when bacteria modify plants. Plants., 11 (11), 1425. https://doi.org/10.3390/plants11111425

96. Dermastia, M., Tomaz, S., Strah, R., Lukan, T., Coll, A., Dusak, B., Anzic, B., Cepin, T., Wienkoop, S., Kladnik, A., Zagorscak, M., Riedle-Bauer, M., Schonhuber, C., Weckwerth, W., Gruden, K., Roitsch, T., Pompe Novak, M. & Brader, G. (2023). Candidate pathogenicity factor/effector proteins of 'Candidatus Phytoplasma solani' modulate plant carbohydrate metabolism, accelerate the ascorbate-glutathione cycle, and induce autophagosomes. Front. Plant Sci., 14. https://doi.org/10.3389/fpls.2023.1232367

97. Huang, W., MacLean, A.M., Sugio, A., Maqbool, A., Busscher, M., Cho, S.T., Kamoun, S., Kuo, C.H., Immink, R.G.H. & Hogenhout, S.A. (2021). Parasitic modulation of host development by ubiquitin-independent protein degradation. Cell., 184 (20), pp. 5201-5214. e12. https://doi.org/10.1016/j.cell.2021.08.029

98. Kenro, O., Kensaku, M. & Shigetou, N. (2013). Genomic and evolutionary aspects of phytoplasmas. Front. Microbiol., 4. https://doi.org/10.3389/fmicb.2013.00230

99. Buoso, S., Pagliari, L., Musetti, R., Martini, M., Marroni, F., Schmidt, W. & Santi, S. (2019). 'Candidatus phytoplasma solani' interferes with the distribution and uptake of iron in tomato. BMC Genom., 20, 703. https://doi.org/10.1186/s12864-019-6062-x

100. Xue, C., Liu, Z., Dai, L., Bu, J., Liu, M., Zhao, Z., Jiang, Z., Gao, W. & Zhao, J. (2018). Changing host photosynthetic, carbohydrate, and energy metabolisms play important roles in phytoplasma infection. Phytopathology, 108. https://doi.org/10.1094/PHYTO-02-18-0058-R

101. Dermastia, M., Kube, M. & Seruga Music, M. (2019). Transcriptomic and proteomic studies of phytoplasma-infected plants. In: Phytoplasmas: Plant Pathogenic Bacteria - III: Genomics, Host Pathogen Interactions and Diagnosis. Bertaccini, A., Oshima, K., Kube, M. & Rao, G.-P. (Eds.). Singapore: Springer Nature. https://doi.org/10.1007/978-981-13-9632-8_3

102. Zhao, Y., Liu, Q.Z. & Davis, R.E. (2004). Transgene expression in strawberries driven by a heterologous phloem-specific promoter. Plant Cell Rep., 23, pp. 224-230. https://doi.org/10.1007/s00299-004-0812-0

103. Lemoine, R., La Camera, S., Atanassova, R., Dѕdaldѕchamp, F., Allario, T., Pourtau, N., Bonnemain, J.L., Laloi, M., Coutos-Thѕvenot, P., Maurousset, L., Faucher, M., Girousse, C., Lemonnier, P., Parrilla, J. & Durand, M. (2013). Source-to-sink transport of sugar and regulation by environmental factors. Front. Plant Sci., 4, 272. https://doi.org/10.3389/fpls.2013.00272

104. Reveles-Torres, L.R., Vel«squez-Valle, R., Salas-MuФoz, S., Mauricio-Castillo, J.A., Esqueda-D«vila, K.C.J. & Herrera, M.D. (2018). Candidatus Phytoplasma trifolii (16SrVI) infection modifies the polyphenols concentration in pepper (Capsicum annuum) plant tissues. J. Phytopathol., 166(7/8), pp. 555-564. Retrieved from: https://onlinelibrary.wiley.com/journal/14390434 https://doi.org/10.1111/jph.12717

105. Vel«squez-Valle, R., Villa-Ruanob, N., Hidalgo-MartHnez, D., Zepeda-Vallejod, L.G., Pѕrez-Hern«ndez, N., Reyes-LЩpez, C.A., Reyes-Cervantes, E., Medina-Melchor, D.L. & Becerra-MartHnez, E. (2020). Revealing the 1H NMR metabolome of mirasol chili peppers (Capsicum annuum) infected by Candidatus Phytoplasma trifolii. Food Res. Int., 131108863. https://doi.org/10.1016/j.foodres.2019.108863

106. Ding, Y., Wu, W., Wei, W., Davis, R. E., Lee, I. M., Hammond, R. W., Sheng, J. P., Shen, L., Jiang, Y. & Zhao, Y. (2013). Potato purple top phytoplasma-induced disruption of gibberellin homeostasis in tomato plants. Ann. Appl. Biol., 162 (1), pp. 131-139. https://doi.org/10.1111/aab.12008

107. Ding, Y., Wei, W., Wu, W., Davis, R.E., Jiang, Y., Lee, I.M., Hammond, R.W., Shen, L., Sheng, J.P. & Zhao, Y. (2013). Role of gibberellic acid in tomato defence against potato purple top phytoplasma infection. Ann. Appl. Biol., 162 (2), pp. 191-199. https://doi.org/10.1111/aab.12011

108. Wei, W., Inaba, J., Zhao, Y., Mowery, J.D. & Hammond, R. (2022). Phytoplasma infection blocks starch breakdown and triggers chloroplast degradation, leading to premature leaf senescence, sucrose reallocation, and spatiotemporal redistribution of phytohormones. Int. J. Mol. Sci., 23 (3), 1810. https://doi.org/10.3390/ijms23031810

109. Wang, Q., Guo, Y., Wang, N., Li, Y., Chen, W., Chen, W. & Wu, Y. (2014). Identification of a conserved core genome with group-specific genes from comparative genomics of ten different Candidatus Phytoplasma strains. J. Phytopathol., 162, pp. 650-659. https://doi.org/10.1111/jph.12239

110. Bai, X., Correa, V.R., Toruno, T.Y., Ammar, El-D., Kamoun, S. & Hogenhout, S.A. (2009). AY-WB phytoplasma secretes a protein that targets plant cell nuclei. Mol. Plant Microb. Interact., 22, pp. 18-30. https://doi.org/10.1104/pp.111.181586

111. Mittelberger, C., Stellmach, H., Hause, B., Kerschbamer, C., Schlink, K., Letschka, T. & Janik, K. (2019). A novel effector protein of apple proliferation phytoplasma disrupts cell integrity of Nicotiana spp. protoplasts. Int. J. Mol. Sci., 18, 20 (18), 4613. https://doi.org/10.3390/ijms20184613

112. Wang, R., Bai, B., Li, D., Wang, J., Huang, W., Wu, Y. & Zhao, L. (2024). Phytoplasma: a plant pathogen that cannot be ignored in agricultural production - research progress and outlook. Mol. Plant Pathol., 25 (2), e13437. https://doi.org/10.1111/mpp.13437

113. Strohmayer, A., Moser, M., Si-Ammour, A., Krczal, G. & Boonrod, K. (2019).'Candidatus Phytoplasma mali' genome encodes a protein that functions as a E3 Ubiquitin Ligase and could inhibit plant basal defense. Mol. Plant-Microbe Interac., 32, pp. 1487-1495. https://doi.org/10.1094/MPMI-04-19-0107-R

114. Bai, B., Zhang, G., Li, Y., Wang, Y., Sujata, S., Zhang, X., Wang, L., Zhao, L. & Wu, Y. (2022). The 'Candidatus Phytoplasma tritici' effector SWP12 degrades the transcription factor TaWRKY74 to suppress wheat resistance. Plant J., 112 (6), pp. 1473-1488. https://doi.org/10.1111/tpj.16029

115. Yadav, S. & Chhibbar, A.K. (2018). Plant-virus interactions. In: Singh, A., Singh, I. (Eds.). Mol. Aspect. Plant-Pathogen Int. Springer, Singapore. https://doi.org/10.1007/978-981-10-7371-7_3

116. Paudel, D.B. & Sanfaзon, H. (2018). Exploring the diversity of mechanisms associated with plant tolerance to virus infection. Front. Plant Sci., 9, 1575. https://doi.org/10.3389/fpls.2018.01575

117. Gnanasekaran, P., Ponnusamy, K. & Chakraborty, S. (2019). A geminivirus betasatellite encoded bC1 protein interacts with PsbP and subverts PsbP-mediated antiviral defence in plants. Mol. Plant Pathol. 20, pp. 943-960. https://doi.org/10.1111/mpp.12804

118. Bhattacharyya, D., Gnanasekaran, P., Kumar, R.K., Kushwaha, N.K., Sharma, V.K., Yusuf, M.A. & Chakraborty, S.A. (2015). Geminivirus betasatellite damages the structural and functional integrity of chloroplasts leading to sympto m formation and inhibition of photosynthesis. J. Exp. Bot., 66 (19), pp. 5881-5895. https://doi.org/10.1093/jxb/erv299

119. Seo, E.Y., Nam, J., Kim, H.S., Park, Y.H., Hong, S.M., Lakshman, D., Bae, H., Hammond, J. & Lim, H.S. (2014) Selective interaction between chloroplast b-ATPase and TGB1L88 retards Server symptoms caused by Alternanthera mosaic virus infection. Plant Pathol. J., 30, pp. 58-67. https://doi.org/10.5423/PPJ.OA.09.2013.0097

120. Karjee, S., Islam, M.N. & Mukherjee, S.K. (2008). Screening and identification of virus-encoded RNA silencing suppressors. Method. Mol. Biol., 442, pp. 187-203. https://doi.org/10.1007/978-1-59745-191-8_14