Сірководень (H2S) — сигнальна молекула-газотрансмітер, що бере участь у регуляції багатьох функцій рослинного організму, в тому числі у процесах адаптації до дії стресових чинників різної природи. Останніми роками інтенсивно накопичуються експериментальні дані стосовно молекулярних механізмів дії сірководню, зокрема посттрансляційної модифікації білків та функціональних зв’язків H2S з іншими клітинними посередниками — іонами кальцію, активними формами кисню (АФК), оксидом азоту. В огляді узагальнено новітні дані щодо механізмів дії сірководню в контексті його участі в адаптації рослин до дії стресорів. Наведено відомості про шляхи синтезу H2S у рослинах, стрес-протекторний вплив донорів H2S на рослини за дії гіпо- і гіпертермії, зневоднення, засолення, важких металів. Розглянуто експериментальні дані про зміни вмісту ендогенного сірководню в рослинах за дії стресових чинників. Описано роль сірководню в регуляції антиоксидантної системи, процесів накопичення осмолітів, активації синтезу стресових білків. Проаналізовано дані про функціональну взаємодію сірководню з АФК та оксидом азоту, зокрема, конкуренцію за тіолові групи білків, а також про вплив зазначених посередників на синтез один одного. Узагальнено відомості стосовно дії сірководню на синтез ключових стресових фітогормонів — абсцизової, жасмонової і саліцилової кислот, та його участь у трансдукції гормональних сигналів у генетичний апарат рослинних клітин. Окреслено можливості практичного використання донорів сірководню як індукторів стійкості рослин.
Ключові слова: сірководень, посттрансляційна модифікація білків, оксид азоту, кальцій, активні форми кисню, фітогормони, клітинний сигналінг, адаптивні реакції рослин
Повний текст та додаткові матеріали
У вільному доступі: PDFЦитована література
1. Tkachuk, V.A., Tyurin-Kuzmin, P.A., Belousov, V.V. & Vorotnikov, A.V. (2012). Hydrogen peroxide as a new second messenger. Biol. Membrany, 29 (1-2), pp. 21-37 [in Russian].
2. Scott, J.D. & Pawson, T. (2009). Cell signaling in space and time: where proteins come together and when they're apart. Science, 326, pp. 1220-1224. https://doi.org/10.1126/science.1175668
3. Belousov, V.V., Mishina, N.M., & Enikolopov, G.N. (2013). Compartmentalization of ROS-mediated signal transduction. Russ. J. Bioorganic Chem., 39 (4), pp. 341-355. https://doi.org/10.1134/S1068162013040043
4. Zhu, J.K. (2016). Abiotic stress signaling and responses in plants. Cell, 167, pp. 313-324. https://doi.org/10.1016/j.cell.2016.08.029
5. Carmi-Levy, I., Yannay-Cohen, N., Kay, G., Razin, E. & Nechushtan, H. (2008). Diadenosine tetraphosphate hydrolase is part of the transcriptional regulation network in immunologically activated mast cells. Mol. Cell. Biol., 28, pp. 5777-5784. https://doi.org/10.1128/MCB.00106-08
6. Kolupaev, Yu.E., Karpets, Yu.V. & Dmitriev, A.P. (2015). Signal mediators in plants in response to abiotic stress: Calcium, reactive oxygen and nitrogen species. Cytol. Genet., 49 (5), pp. 338-348. https://doi.org/10.3103/S0095452715050047
7. He, H. & He, L. (2014). The role of carbon monoxide signaling in the responses of plants to abiotic stresses. Nitric Oxide, 42, pp. 40-43. https://doi.org/10.1016/j.niox.2014.08.011
8. Wang, M. & Liao, W. (2016). Carbon monoxide as a signaling molecule in plants. Front Plant Sci., 7, p. 572. https://doi.org/10.3389/fpls.2016.00572
9. Kolupaev, Yu.E., Karpets, Yu.V., Beschasniy, S.P. & Dmitriev, A.P. (2019). Gasotransmitters and their role in adaptive reactions of plant cells. Cytol. Genet., 53 (5), pp. 392-406. https://doi.org/10.3103/S0095452719050098
10. Yao, Y., Yang Y., Li, C., Huang, D., Zhang, J., Wang, C., Li, W., Wang, N., Deng, Y. & Liao, W. (2019). Research progress on the functions of gasotransmitters in plant responses to abiotic stresses. Plants (Basel), 8 (12), p. 605. https://doi.org/10.3390/plants8120605
11. Karle, S.B., Guru, A., Dwivedi, P. &·Kumar, K. (2021). Insights into the role of gasotransmitters mediating salt stress responses in plants. J. Plant Growth Regul., 40 (6), pp. 1-17. https://doi.org/10.1007/s00344-020-10293-z
12. Zhang, H., Hu, S.L., Zhang, Z.J., Hu, L.Y., Jiang, C.X., Wei, Z.J., Liu, J., Wang, H.L. & Jiang, S.T. (2011). Hydrogen sulfide acts as a regulator of flower senescence in plants. Postharv. Biol Technol., 60 (3), pp. 251-257. https://doi.org/10.1016/j.postharvbio.2011.01.006
13. Li, Z.G., Min, X. & Zhou, Z.H. (2016). Hydrogen sulfide: A signal molecule in plant cross-adaptation. Front. Plant Sci., 7, p. 1621. https://doi.org/10.3389/fpls.2016.01621
14. Li, H., Li, M., Wei, X., Zhang, X., Xue, R., Zhao, Y. & Zhao, H. (2017). Transcriptome analysis of drought-responsive genes regulated by hydrogen sulfide in wheat (Triticum aestivum L.) leaves. Mol. Genet. Genom., 292 (5), pp. 1091-1110. https://doi.org/10.1007/s00438-017-1330-4
15. Singh, R., Parihar, P. & Prasad, S.M. (2020). Interplay of calcium and nitric oxide in improvement of growth and arsenic-induced toxicity in mustard seedlings. Sci. Rep., 10, p. 6900. https://doi.org/10.1038/s41598-020-62831-0
16. Shi, H., Ye, T., Han, N., Bian, H., Liu, X. & Chan, Z. (2015). Hydrogen sulfide regulates abiotic stress tolerance and biotic stress resistance in Arabidopsis. J. Integr. Plant Biol., 57 (7), pp. 628-640. https://doi.org/10.1111/jipb.12302
17. Pandey, A.K. & Gautam, A. (2020). Stress responsive gene regulation in relation to hydrogen sulfide in plants under abiotic stress. Physiol. Plant., 168, pp. 511-525. https://doi.org/10.1111/ppl.13064
18. Sukmansky, O.I. & Reutov, V.P. (2016). Gasotransmitters: Physiological role and involvement in the pathogenesis of the diseases. Uspekhi Fiziol. Nauk, 47 (3), pp. 30-58 [in Russian].
19. Karpets, Yu.V., Kolupaev, Yu.E. & Shkliarevskyi, M.A. (2021). Functional interaction of hydrogen sulfide with nitric oxide, calcium, and reactive oxygen species under abiotic stress in plants. In Khan, M.N. et al. (eds.). Hydrogen Sulfide and Plant Acclimation to Abiotic Stresses (pp. 31-58). Switzerland: Springer Nature. https://doi.org/10.1007/978-3-030-73678-1_3
20. Romero, L.C., Garcнa, I. & Gotor, C. (2013). L-cysteine desulfhydrase 1 modulates the generation of the signaling molecule sulfide in plant cytosol. Plant Signal Behav., 8 (5), pp. 4621-4634. https://doi.org/10.4161/psb.24007
21. Li, Z.G. (2013). Hydrogen sulfide: a multifunctional gaseous molecule in plants. Russ. J. Plant Physiol., 60 (6), pp. 733-740. https://doi.org/10.1134/S1021443713060058
22. Riemenschneider, A., Wegele, R., Schmidt, A. & Papenbrock, J. (2005). Isolation and characterization of a D-cysteine desulfhydrase protein from Arabidopsis thaliana. FEBS J., 272 (5), pp. 1291-1304. https://doi.org/10.1111/j.1742-4658.2005.04567.x
23. Guo, H., Xiao, T., Zhou, H., Xie, Y. & Shen, W. (2016). Hydrogen sulfide: a versatile regulator of environmental stress in plants. Acta Physiol. Plant., 38, p. 16. https://doi.org/10.1007/s11738-015-2038-x
24. Li, Z.G., Yang, S.Z., Long, W.B., Yang, G.X. & Shen, Z.Z. (2013). Hydrogen sulfide may be a novel downstream signal molecule in nitric oxide-induced heat tolerance of maize (Zea mays L.) seedlings. Plant Cell Environ., 36 (8), pp. 1564-1572. https://doi.org/10.1111/pce.12092
25. Li, Z.G. (2015). Analysis of some enzymes activities of hydrogen sulfide metabolism in plants. Methods Enzymol., 555, pp. 253-269. https://doi.org/10.1016/bs.mie.2014.11.035
26. Zhang, H. (2016). Hydrogen sulfide in plant biology. In Lamattina, L., Garcia-Mata, C. (eds.). Signaling and Communication in Plants. Vol. Gasotransmitters in Plants. The Rise of a New Paradigm in Cell Signaling. Switzerland: Springer (pp. 23-51). https://doi.org/10.1007/978-3-319-40713-5_2
27. Lisjak, M., Teklic, T., Wilson, I.D., Whiteman, M. & Hancock, J.T. (2013). Hydrogen sulfide: environmental factor or signalling molecule? Plant Cell Environ., 36 (9), pp. 1607-1616. https://doi.org/10.1111/pce.12073
28. Ali, S., Anjum, M.A., Nawaz, A., Naz, S., Sardar, H. & Hasan, M.U. (2021). Hydrogen sulfide regulates temperature stress in plants. In Hydrogen Sulfide in Plant Biology. Elsevier Inc. (pp. 1-24). https://doi.org/10.1016/B978-0-323-85862-5.00003-8
29. Oz, M.T. & Eyidogan, F. (2021). Hydrogen sulfide: a road ahead for abiotic stress tolerance in plants. In Khan, M.N. et al. (eds.). Hydrogen Sulfide and Plant Acclimation to Abiotic Stresses (pp. 13-28). https://doi.org/10.1007/978-3-030-73678-1_2
30. Li, H., Li, X., Liu, S., Zhu, X., Song, F. & Liu, F. (2020). Induction of cross tolerance by cold priming and acclimation in plants. Physiological, biochemical and molecular mechanisms. In Hossain, M.A. et al. (eds.). Priming-Mediated Stress and Cross-Stress Tolerance in Crop Plants, Academic Press (pp. 183-202). https://doi.org/10.1016/B978-0-12-817892-8.00012-X
31. Singh, A. & Roychoudhury, A. (2021). Hydrogen sulfide and redox homeostasis for alleviation of heavy metal stress. In Khan, M.N. et al. (eds.). Hydrogen Sulfide and Plant Acclimation to Abiotic Stresses, Switzerland: Springer Nature (pp. 59-72). https://doi.org/10.1007/978-3-030-73678-1_4
32. Roychoudhury, A. & Chakraborty, S. (2021). Effect of hydrogen sulfide on osmotic adjustment of plants under different abiotic stresses. In Khan, M.N. et al. (eds.), Hydrogen Sulfide and Plant Acclimation to Abiotic Stresses. Switzerland: Springer Nature (pp. 73-84). https://doi.org/10.1007/978-3-030-73678-1_5
33. Liu, Z., Li, Y., Cao, C.,·Liang, S., Ma, Y.,·Liu, X. & Pei, Y. (2019). The role of H2S in low temperature-induced cucurbitacin C increases in cucumber. Plant Mol. Biol., 99 (6), pp. 535-544. https://doi.org/10.1007/s11103-019-00834-w
34. Fu, P.N., Wang, W.J., Hou, L.X. & Liu, X. (2013). Hydrogen sulfide is involved in the chilling stress response in Vitis vinifera L. Acta Societatis Botanicorum Poloniae, 82 (4), pp. 295-302. https://doi.org/10.5586/asbp.2013.031
35. Du, X., Jin, Z., Liu, D., Yang, G. & Pei, Y. (2017). Hydrogen sulfide alleviates the cold stress through MPK4 in Arabidopsis thaliana. Plant Physiol. Biochem., 120, pp. 112-119. https://doi.org/10.1016/j.plaphy.2017.09.028
36. Shi, H., Ye, T. & Chan, Z. (2013). Exogenous application of hydrogen sulfide donor sodium hydrosulfide enhanced multiple abiotic stress tolerance in bermudagrass (Cynodon dactylon L.). Pers.). Plant Physiol. Biochem., 71, pp. 226-234. https://doi.org/10.1016/j.plaphy.2013.07.021
37. Shi, H., Ye, T. & Chan, Z. (2014). Nitric oxide-activated hydrogen sulfide is essential for cadmium stress response in bermudagrass (Cynodon dactylon L). Pers.). Plant Physiol. Biochem., 74, pp. 99-107. https://doi.org/10.1016/j.plaphy.2013.11.001
38. Kolupaev, Yu.E., Horielova, E.I., Yastreb, T.O., Popov, Yu.V. & Ryabchun, N.I. (2018). Phenylalanine ammonia-lyase activity and content of flavonoid compounds in wheat seedlings at the action of hypothermia and hydrogen sulfide donor. Ukr. Biochem. J., 90 (6), pp. 12-20. https://doi.org/10.15407/ubj90.06.012
39. Kolupaev, Yu.E., Horielova, E.I., Yastreb, T.O., Ryabchun, N.I. & Kirichenko, V.V. (2019). Stress-protective responses of wheat and rye seedlings whose chilling resistance was induced with a donor of hydrogen sulfide. Russ. J. Plant Physiol., 66 (4), pp. 540-547. https://doi.org/10.1134/S1021443719040058
40. Janicka, M., Reda, M., Czyzewska, K. & Kabala, K. (2018). Involvement of signalling molecules NO, H2O2 and H2S in modification of plasma membrane proton pump in cucumber roots subjected to salt or low temperature stress. Funct. Plant Biol., 45, pp. 428-439. https://doi.org/10.1071/FP17095
41. Christou, A., Filippou, P., Manganaris, G. & Fotopoulos, V. (2014). Sodium hydrosulfide induces systemic thermotolerance to strawberry plants through transcriptional regulation of heat shock proteins and aquaporin. BMC Plant Biol., 14, p. 42. https://doi.org/10.1186/1471-2229-14-42
42. Chen, X., Chen, Q., Zhang, X., Li, R., Jia, Y., Ef, A.A., Jia, A., Hu, L. & Hu, X. (2016). Hydrogen sulfide mediates nicotine biosynthesis in tobacco (Nicotiana tabacum) under high temperature conditions. Plant Physiol. Biochem., 104, pp. 174-219. https://doi.org/10.1016/j.plaphy.2016.02.033
43. Havva, E.N., Kolupaev, Yu.E., Shkliarevskyi, M.A., Kokorev, A.I. & Dmitriev, A.P. (2022). Participation of hydrogen sulfide in formation of heat resistance of wheat seedlings under the action of hardening temperature. Cytol. Genet., 56 (3) (in press).
44. Li, Z.G., Gong, M., Xie, H., Yang, L. & Li, J. (2012). Hydrogen sulfide donor sodium hydrosulfide induced heat tolerance in tobacco (Nicotiana tabacum L) suspension cultured cells and involvement of Ca2+ and calmodulin. Plant Sci., 185-186, pp. 185-189. https://doi.org/10.1016/j.plantsci.2011.10.006
45. Cheng, T., Shi, J., Dong, Y., Ma, Y., Peng, Y., Hu, X. & Chen, J. (2018). Hydrogen sulfide enhances poplar tolerance to high-temperature stress by increasing S-nitrosoglutathione reductase (GSNOR) activity and reducing reactive oxygen/nitrogen damage. Plant Growth Regul., 84, pp. 11-23. https://doi.org/10.1007/s10725-017-0316-x
46. Kolupaev, Yu.E., Firsova, E.N, Yastreb, T.O. & Lugovaya, A.A. (2017). The participation of calcium ions and reactive oxygen species in the induction of antioxidant enzymes and heat resistance in plant cells by hydrogen sulfide donor. Appl. Biochem. Microbiol., 53 (5), pp. 573-579. https://doi.org/10.1134/S0003683817050088
47. Aroca, A., Gotor, C., Bassham, D.C. & Romero, L.C. (2020). Hydrogen sulfide: from a toxic molecule to a key molecule of cell life. Antioxidants (Basel), 9 (7), p. 621. https://doi.org/10.3390/antiox9070621
48. Liu, H., Wang, J., Liu J, Liu, T. & Xue, S. (2021). Hydrogen sulfide (H2S) signaling in plant development and stress responses. aBIOTECH, 2, pp. 32-63. https://doi.org/10.1007/s42994-021-00035-4
49. Jin, Z.P., Shen, J.J., Qiao, Z.J., Yang, G.D., Wang, R. & Pei, Y.X. (2011). Hydrogen sulfide improves drought resistance in Arabidopsis thaliana. Biochem. Biophys. Res. Commun., 414 (3), pp. 481-486. https://doi.org/10.1016/j.bbrc.2011.09.090
50. Shan, C.J., Zhang, S.L., Li, D.F., Zhao, Y.Z., Tian, X.L., Zhao, X.L., Wu, Y.X., Wei, X.Y. & Liu, R.Q. (2011). Effects of exogenous hydrogen sulfide on the ascorbate and glutathione metabolism in wheat seedlings leaves under water stress. Acta Physiol. Plant., 33, pp. 2533-2540. https://doi.org/10.1007/s11738-011-0746-4
51. Shan, C., Zhang, S. & Ou, X. (2018). The roles of H2S and H2O2 in regulating AsA-GSH cycle in the leaves of wheat seedlings under drought stress. Protoplasma, 255 (4), pp. 1257-1262. https://doi.org/10.1007/s00709-018-1213-5
52. Kolupaev, Yu. E., Firsova, K.M., Shvidenko, M.V. & Yastreb, T.O. (2018). Hydrogen sulfide donor influence on state of antioxidant system of wheat seedlings under osmotic stress. Fiziol. rast. genet., 50 (1), pp. 29-38 [in Ukrainian]. https://doi.org/10.15407/frg2018.01.029
53. Kolupaev, Yu.E., Firsova, E.N., Yastreb, T.O., Ryabchun, N.I. & Kirichenko, V.V. (2019). Effect of hydrogen sulfide donor on antioxidant state of wheat plants and their resistance to soil drought. Russ. J. Plant Physiol., 66 (1), pp. 59-66. https://doi.org/10.1134/S1021443719010084
54. Lai, DW., Mao, Y., Zhou, H., Li, F., Wu, M., Zhang, J., He, Z., Cui,W. & Xie, Y. (2014). Endogenous hydrogen sulfide enhances salt tolerance by coupling the reestablishment of redox homeostasis and preventing salt-induced K+ loss in seedlings of Medicago sativa. Plant Sci., 225, pp. 117-129. https://doi.org/10.1016/j.plantsci.2014.06.006
55. da-Silva, C.J. & Modolo, L.V. (2018). Hydrogen sulfide: a new endogenous player in an old mechanism of plant tolerance to high salinity. Acta Botanica Brasilica, 32, pp. 150-160. https://doi.org/10.1590/0102-33062017abb0229
56. Yastreb, T.O., Kolupaev, Y.E., Havva, E.N., Horielova, E.I. & Dmitriev, A.P. (2020). Involvement of the JIN1/MYC2 transcription factor in inducing salt resistance in Arabidopsis plants by exogenous hydrogen sulfide. Cytol. Genet., 54 (2), pp. 96-102. https://doi.org/10.3103/S0095452720020127
57. Wang, Y., Li, L., Cui, W., Xu, S., Shen, W. & Wang, R. (2012). Hydrogen sulfide enhances alfalfa (Medicago sativa) tolerance against salinity during seed germination by nitric oxide pathway. Plant Soil, 351 (1-2), pp. 107-119. https://doi.org/10.1007/s11104-011-0936-2
58. Jiang, J.L., Tian, Y., Li, L., Yu, M., Hou, R.P. & Ren, X.M. (2019). H2S alleviates salinity stress in cucumber by maintaining the Na+/K+ balance and regulating H2S metabolism and oxidative stress response. Front. Plant Sci., 10, p. 678. https://doi.org/10.3389/fpls.2019.00678
59. Fang, H., Jing, T., Liu, Z., Zhang, L., Jin, Z. & Pei, Y. (2014). Hydrogen sulfide interacts with calcium signaling to enhance the chromium tolerance in Setaria italica. Cell Calcium, 56 (6), pp. 472-481. https://doi.org/10.1016/j.ceca.2014.10.004
60. Kabala, K., Zboinska, M., Glowiak, D., Reda, M., Jakubowska, D. & Janicka, M. (2019). Interaction between the signaling molecules hydrogen sulfide and hydrogen peroxide and their role in vacuolar H+-ATPase regulation in cadmiumstressed cucumber roots. Physiol. Plant., 166, pp. 688-704. https://doi.org/10.1111/ppl.12819
61. Wang, H., Ji, F., Zhang, Y., Hou, J., Liu, W., Huang, J. & Liang, W. (2019). Interactions between hydrogen sulphide and nitric oxide regulate two soybean citrate transporters during the alleviation of aluminium toxicity. Plant Cell Environ., 42 (8), pp. 2340-2356. https://doi.org/10.1111/pce.13555
62. Amist, N. & Singh, N.B. (2021). Regulation of metal stress toxicity in plants by the hydrogen sulfide. In Singh, S. et al. (eds.). Hydrogen Sulfide in Plant Biology, Elsevier Inc. (pp. 87-102). https://doi.org/10.1016/B978-0-323-85862-5.00013-0
63. Bhardwaj, S. & Kapoor, D. (2021). General view on H2S and abiotic stress tolerance in plants. In Singh, S. et al. (eds.). Hydrogen Sulfide in Plant Biology. Elsevier Inc. (pp. 113-132). https://doi.org/10.1016/B978-0-323-85862-5.00010-5
64. Huang, Z.Q., Shao-Can, Y.L., Hu, L.Y. & Hu, D. (2016). Hydrogen sulfide promotes wheat grain germination under cadmium stress. Proc. Natl Acad. Sci., India Section B: Biological Sci., 86 (4), pp. 887-895. https://doi.org/10.1007/s40011-015-0554-5
65. Kharbech, O., Houmani, H., Chaoui, A. & Corpas, F.J. (2017). Alleviation of Cr(VI)-induced oxidative stress in maize (Zea mays L.) seedlings by NO and H2S donors through differential organ-dependent regulation of ROS and NADPH-recycling metabolisms. J. Plant Physiol., 219, pp. 71-80. https://doi.org/10.1016/j.jplph.2017.09.010
66. Kour, J., Khanna, K., Sharma, P., Singh, A.D., Sharma, I., Arora, P., Kumar, P., Devi, K., Ibrahim, M., Ohri, P., Mir, B.A., Sharma, A. & Bhardwaj, R. (2021). Hydrogen sulfide and phytohormones crosstalk in plant defense against abiotic stress. In Singh, S. et al. (eds.). Hydrogen Sulfide in Plant Biology. Elsevier Inc. (pp. 267-301). https://doi.org/10.1016/B978-0-323-85862-5.00009-9
67. Yuan, S., Shen, X. & Kevil, C.G. (2017). Beyond a gasotransmitter: hydrogen sulfide and polysulfide in cardiovascular health and immune response. Antioxidants Redox Signaling, 27, pp. 634-653. https://doi.org/10.1089/ars.2017.7096
68. Filipovic, M.R., Zivanovic, J., Alvarez, B. & Banerjee, R. (2018). Chemical biology of h2s signaling through persulfidation. Chem Rev., 118 (3), pp. 1253-1337. https://doi.org/10.1021/acs.chemrev.7b00205
69. Paul, B.D. & Snyder, S.H. (2018). Gasotransmitter hydrogen sulfide signaling in neuronal health and disease. Biochem. Pharmacol., 149, pp. 101-109. https://doi.org/10.1016/j.bcp.2017.11.019
70. Aroca, A., Zhang, J., Xie, Y., Romero, L.C. & Gotor, C. (2021). Hydrogen sulfide signaling in plant adaptations to adverse conditions: molecular mechanisms. J. Exp. Bot., 72 (16), pp. 5893-5904. https://doi.org/10.1093/jxb/erab239
71. Filipovic, M.R., Miljkovic, J.Lj., Nauser, T., Royzen, M., Klos, K., Shubina, T., Koppenol, W.H., Lippard, S.J. & Ivanovic-Burmazovic, I. (2012). Chemical characterization of the smallest S-nitrosothiol, HSNO; cellular cross-talk of H2S and S-nitrosothiols. J. Amer. Chem. Soc., 134, pp. 12016-12027. https://doi.org/10.1021/ja3009693
72. Cuevasanta, E., Lange, M., Bonanata, J., Coitico, E.L., Ferrer-Sueta, G., Filipovic, M.R. & Alvarez, B. (2015). Reaction of hydrogen sulfide with disulfide and sulfenic acid to form the strongly nucleophilic persulfide. J. Biol. Chem. 290, pp. 26866-26880. https://doi.org/10.1074/jbc.M115.672816
73. Zivanovic, J., Kouroussis, E., Kohl, J.B., Adhikari, B., Bursac, B., Schott-Roux, S., Petrovic, D., Miljkovic, J.L., Thomas-Lopez, D., Jung, Y., Miler, M. Mitchell, S., Milosevic, V. Gomes, J.E., Benhar, M., Gonzalez-Zorn, B., Ivanovic-Burmazovic, I., Torregrossa, R., Mitchell, J.R., Whiteman, M., Schwarz, G., Snyder, S.H., Paul, B.D., Carroll, K.S. & Filipovic, M.R. (2019). Selective persulfide detection reveals evolutionarily conserved antiaging effects of S-sulfhydration. Cell Metab., 30 (6), pp. 1152-1170. https://doi.org/10.1016/j.cmet.2019.10.007
74. Aroca, A., Gotor, C. & Romero, L.C. (2018). Hydrogen sulfide signaling in plants: emerging roles of protein persulfidation. Front. Plant Sci., 9, p. 1369. https://doi.org/10.3389/fpls.2018.01369
75. Gruhlke, M.C. (2019). Reactive sulfur species a new player in plant physiology? In Hasanuzzaman, M. (eds.). Reactive Oxygen, Nitrogen and Sulfur Species in Plants: Production, Metabolism, Signaling and Defense Mechanisms, vol 2. John Wiley & Sons Ltd, pp. 715-728. https://doi.org/10.1002/9781119468677.ch31
76. Kolupaev, Yu.E., Karpets, Yu.V. & Kabashnikova, L.F. (2019). Antioxidative system of plants: Cellular compartmentalization, protective and signaling functions, mechanisms of regulation (Review). Appl. Biochem. Microbiol., 55 (5), pp. 441-459. https://doi.org/10.1134/S0003683819050089
77. Khan, N.M., Siddiqui, Z.H., Naeem, M., Abbas, Z.K. & Ansari, M.W. (2022). Nitric oxide and hydrogen sulfide interactions in plants under adverse environmental conditions. In Aftab, T. et al. (eds.). Emerging Plant Growth Regulators in Agriculture: Roles in Stress Tolerance, Academic Press (pp. 215-244). https://doi.org/10.1016/B978-0-323-91005-7.00015-1
78. Shivaraj, S.M., Vats, S., Bhat, J.A., Dhakte, P., Goyal, V., Khatri, P., Kumawat, S., Singh, A., Prasad, M., Sonah, H., Sharma, T.R. & Deshmukh, R. (2020). Nitric oxide and hydrogen sulfide crosstalk during heavy metal stress in plants. Physiol. Plant., 168 (2), pp. 437-455. https://doi.org/10.1111/ppl.13028
79. Corpas, F.J., Barroso, J.B., Gonzбlez-Gordo, S., Mucoz-Vargas, M.A. & Palma, J.M. (2019). Hydrogen sulfide: A novel component in Arabidopsis peroxisomes which triggers catalase inhibition. J. Integr. Plant Biol., 61 (7), pp. 871-883. https://doi.org/10.1111/jipb.12779
80. Li, J., Shi, C., Wang, X., Liu, C., Ding, X., Ma, P., Wang, X. & Jia, H. (2020). Hydrogen sulfide regulates the activity of antioxidant enzymes through persulfidation and improves the resistance of tomato seedling to copper oxide nanoparticles (CuO NPs)-induced oxidative stress. Plant Physiol. Biochem., 156, pp. 257-266. https://doi.org/10.1016/j.plaphy.2020.09.020
81. Shen, J., Zhang, J., Zhou, M., Zhou, H., Cui, B., Gotor, C., Romero, L.C., Fu, L., Yang, J., Foyer, C.H., Pan, Q., Shen, W. & Xie, Y. (2020). Persulfidation-based modification of cysteine desulfhydrase and the NADPH oxidase RBOHD controls guard cell abscisic acid signaling. Plant Cell, 32 (4), pp. 1000-1017. https://doi.org/10.1105/tpc.19.00826
82. Sen, N., Paul, B.D., Gadalla, M.M., Mustafa, A.K., Sen, T., Xu, R., Kim, S. & Snyder, S.H. (2012). Hydrogen sulfide-linked sulfhydration of NF-kB mediates its antiapoptotic actions. Mol. Cell, 45 (1), pp. 13-24. https://doi.org/10.1016/j.molcel.2011.10.021
83. Aroca, A., Benito, J.M., Gotor, C. & Romero, L.C. (2017). Persulfidation proteome reveals the regulation of protein function by hydrogen sulfide in diverse biological processes in Arabidopsis. J. Exp. Bot., 68 (17), pp. 4915-4927. https://doi.org/10.1093/jxb/erx294
84. Guo, Z., Liang, Y., Yan, J., Yang, E., Li, K. & Xu, H. (2018). Physiological response and transcription profiling analysis reveals the role of H2S in alleviating excess nitrate stress tolerance in tomato roots. Plant Physiol. Biochem., 124, pp. 59-69. https://doi.org/10.1016/j.plaphy.2018.01.006
85. Kim, M.C., Chung, W.S., Yun, D.J. & Cho, M.J. (2009). Calcium and calmodulin-mediated regulation of gene expression in plants. Mol. Plant., 2 (1), pp. 13-21. https://doi.org/10.1093/mp/ssn091
86. Michal Johnson, J. Reichelt, M., Vadassery, J., Gershenzon, J. & Oelmьller, R. (2014). An Arabidopsis mutant impaired in intracellular calcium elevation is sensitive to biotic and abiotic stress. BMC Plant Biol., 14, p. 162. https://doi.org/10.1186/1471-2229-14-162
87. Li, Z.G., Long, W.B., Yang, S.Z., Wang, Y.C., Tang, J.H., Wen, L., Zhu, B. & Min, X. (2015). Endogenous hydrogen sulfide regulated by calcium is involved in thermotolerance in tobacco Nicotiana tabacum L. suspension cell cultures. Acta Physiol. Plant., 37, p. 219. https://doi.org/10.1007/s11738-015-1971-z
88. Valivand, M., Amooaghaie, R. & Ahadi, A. (2019). Interplay between hydrogen sulfide and calcium/calmodulin enhances systemic acquired acclimation and antioxidative defense against nickel toxicity in zucchini. Environ. Exp. Bot., 158, pp. 40-50. https://doi.org/10.1016/j.envexpbot.2018.11.006
89. Yastreb, T.O., Kolupaev, Yu.E., Havva, E.N., Shkliarevskyi, M.A. & Dmitriev, A.P. (2019). Calcium and components of lipid signaling in implementation of hydrogen sulfide influence on the state of stomata in Arabidopsis thaliana. Cytol. Genet., 53 (2), pp. 99-105. https://doi.org/10.3103/S0095452719020099
90. Prodhan, M.Y., Munemasa, S., Nahar, M.N., Nakamura, Y. & Murata, Y. (2018). Guard cell salicylic acid signaling is integrated into abscisic acid signaling via the Ca2+/CPK-dependent pathway. Plant Physiol., 178, pp. 441-450. https://doi.org/10.1104/pp.18.00321
91. Zhang, T., Li, F., Fan, C., Li, X., Zhang, F. & He, J. (2017). Role and interrelationship of MEK1-MPK6 cascade, hydrogen peroxide and nitric oxide in darkness-induced stomatal closure. Plant Sci., 262, pp. 190-199. https://doi.org/10.1016/j.plantsci.2017.06.010
92. Du, X., Jin, Z., Zhang, L. & Liu, X. (2019). H2S is involved in ABA-mediated stomatal movement through MPK4 to alleviate drought stress in Arabidopsis thaliana. Plant Soil, 435, pp. 295-307. https://doi.org/10.1007/s11104-018-3894-0
93. Patel, M. & Parida, A.K. (2021). Role of hydrogen sulfide in alleviating oxidative stress in plants through induction of antioxidative defense mechanism, and modulations of physiological and biochemical components. In Hydrogen Sulfide in Plant Biology. Elsevier, pp. 55-85. https://doi.org/10.1016/B978-0-323-85862-5.00006-3
94. Gill, S.S. & Tuteja, N. (2010). Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol. Biochem., 48, pp. 909-930. https://doi.org/10.1016/j.plaphy.2010.08.016
95. Bienert, G.P., Moller, A.L., Kristiansen, K.A., Schulz, A., Moller, I.M., Schjoerring, J.K. & Jahn, T.P. (2007). Specific aquaporins facilitate the diffusion of hydrogen peroxide across membranes. J. Biol. Chem., 282, pp. 1183-1192. https://doi.org/10.1074/jbc.M603761200
96. Miller, E.W., Dickinson, B.C. & Chang, C.J. (2010). Aquaporin-3 mediates hydrogen peroxide uptake to regulate downstream intracellular signaling. Proc. Natl. Acad. Sci. USA, 107, pp. 15681-15686. https://doi.org/10.1073/pnas.1005776107
97. Li, Z.G., Gong, M. & Liu, P. (2012). Hydrogen sulfide is a mediator in H2O2-induced seed germination in Jatropha curcas. Acta Physiol. Plant., 34 (6), pp. 2207-2213. https://doi.org/10.1007/s11738-012-1021-z
98. Wang, L., Hou, Z., Hou, L., Zhao, F. & Liu, X. (2012). H2S induced by H2O2 mediates drought-induced stomatal closure in Arabidopsis thaliana. Chinese Bulletin of Botany, 47 (3), pp. 217-225.
99. Ma, Y., Zhang, W., Niu, J., Ren, Y. & Zhang, F. (2019). Hydrogen sulfide may function downstream of hydrogen peroxide in salt stress-induced stomatal closure in Vicia faba. Funct. Plant Biol., 46 (2), pp. 136-145. https://doi.org/10.1071/FP18096
100. Kolupaev, Yu.E., Firsova, E. N. & Yastreb, T.O. (2017). Induction of plant cells heat resistance by hydrogen sulfide donor is mediated by H2O2 generation with participation of NADPH oxidase and superoxide dismutase. Ukr. Biochem. J., 89 (4), pp. 34-42. https://doi.org/10.15407/ubj89.04.034
101. Hancock, J.T. (2019). Hydrogen sulfide and environmental stresses. Environ. Exp. Bot., 61 (9), pp. 50-56. https://doi.org/10.1016/j.envexpbot.2018.08.034
102. Hancock, J.T. & Whiteman, M. (2014). Hydrogen sulfide and cell signaling: Team player or referee? Plant Physiol. Biochem., 78, pp. 37-42. https://doi.org/10.1016/j.plaphy.2014.02.012
103. Mur, L.A.J., Mandon, J., Persijn, S., Cristescu, S.M., Moshkov, I.E., Novikova, G.V., Hall, M.A., Harren, F.J.M., Hebelstrup, K.H. & Gupta, K.J. (2013). Nitric oxide in plants: an assessment of the current state of knowledge. AoB Plants, 5, pls052. https://doi.org/10.1093/aobpla/pls052
104. Blume, Y.B., Krasylenko, Y.A., Demchuk, O.M. & Yemets, A.I. (2013). Tubulin tyrosine nitration regulates microtubule organization in plant cells. Front. Plant Sci., 4, p. 530. https://doi.org/10.3389/fpls.2013.00530
105. Mishra, V., Singh, P., Tripathi, D.K., Corpas, F.J. & Singh,V.P. (2021). Nitric oxide and hydrogen sulfide: an indispensable combination for plant functioning. Trends Plant Sci., 26 (12), pp. 1270-1285. https://doi.org/10.1016/j.tplants.2021.07.016
106. Paul, S. & Roychoudhur, A. (2020). Regulation of physiological aspects in plants by hydrogen sulfide and nitric oxide under challenging environment. Physiol. Plant., 168, pp. 374-393. https:/ doi.org/10.1111/ppl.13021 https://doi.org/10.1111/ppl.13021
107. Karpets, Yu.V., Kolupaev, Yu.E., Lugovaya, A.A., Shvidenko, N.V., Shkliarevskyi, M.A. & Yastreb, T.O. (2020). Functional interaction of ROS and nitric oxide during induction of heat resistance of wheat seedlings by hydrogen sulfide donor. Russ. J. Plant Physiol., 67 (4), pp. 653-660. https://doi.org/10.1134/S1021443720030140
108. Liang, Y., Zheng, P., Li, S., Li, K. & Xu, H. (2018). Nitrate reductase-dependent NO production is involved in H2S-induced nitrate stress tolerance in tomato via activation of antioxidant enzymes. Sci. Horticult., 229, pp. 207-214. https://doi.org/10.1016/j.scienta.2017.10.044
109. Carballal, S., Trujillo, M., Cuevasanta, E., Bartesaghi, S., Miller, M.N., Folkes, L.K., Garcнa-Bereguiaнn, M.A., Gutiйrrez-Merino, C., Wardman, P., Denicola, A., Radi, R. & Alvarez, B. (2011). Reactivity of hydrogen sulfide with peroxynitrite and other oxidants of biological interest. Free Radical Biol. Med., 50 (1), pp. 196-205. https://doi.org/10.1016/j.freeradbiomed.2010.10.705
110. Whiteman, M., Li, L., Kostetski, I., Chu, S.H., Siau, J.L., Bhatia, M. & Moore, P.K. (2006). Evidence for the formation of a novel nitrosothiol from the gaseous mediators nitric oxide and hydrogen sulphide. Biochem. Biophys. Res. Commun., 343 (1), pp. 303-310. https://doi.org/10.1016/j.bbrc.2006.02.154
111. Yang, T., Yuan, G., Zhang, Q., Xuan, L., Li, J., Zhou, L., Shi, H., Wang, X. & Wang, C. (2021). Transcriptome and metabolome analyses reveal the pivotal role of hydrogen sulfide in promoting submergence tolerance in Arabidopsis. Environ. Exp. Bot., 183, p. 104365. https://doi.org/10.1016/j.envexpbot.2020.104365
112. Jin, Z., Xue, S., Luo, Y., Tian, B., Fang, H., Li, H. & Pei, Y. (2013). Hydrogen sulfide interacting with abscisic acid in stomatal regulation responses to drought stress in Arabidopsis. Plant Physiol. Biochem., 62, pp. 41-46. https://doi.org/10.1016/j.plaphy.2012.10.017
113. Shan, C., Zhang, S. & Zhou, Y. (2017). Hydrogen sulfide is involved in the regulation of ascorbate-glutathione cycle by exogenous ABA in wheat seedling leaves under osmotic stress. Cereal Res. Commun., 45, pp. 411-420. https://doi.org/10.1556/0806.45.2017.021
114. Tian, B., Zhang, Y., Jin, Z., Liu, Z. & Pei, Y. (2017). Role of hydrogen sulfide in the methyl jasmonate response to cadmium stress in foxtail millet. Front Biosci (Landmark Ed.), 22, pp. 530-538. https://doi.org/10.2741/4500
115. Filipovic, M.R. & Jovanovic, V.M. (2017). More than just an intermediate: hydrogen sulfide signalling in plants. J. Exp. Bot., 68 (17), pp. 4733-4736. https://doi.org/10.1093/jxb/erx352
116. Shan, C., Sun, H., Zhou, Y. & Wang, W. (2019). Jasmonic acid-induced hydrogen sulfide activates MEK1/2 in regulating the redox state of ascorbate in Arabidopsis thaliana leaves. Plant Signal. Behav., 14 (8), p. 1629265. https://doi.org/10.1080/15592324.2019.1629265
117. Deng, G., Zhou, L., Wang, Y., Zhang, G. & Chen, X. (2020). Hydrogen sulfide acts downstream of jasmonic acid to inhibit stomatal development in Arabidopsis. Planta, 251, p. 42. https://doi.org/10.1007/s00425-019-03334-9
118. Hou, Z.H., Liu, J., Hou, L.X., Li, X.D. & Liu, X. (2011). H2S may function downstream of H2O2 in jasmonic acid-induced stomatal closure in Vicia faba. Chin. Bull. Bot., 46, pp. 396-406. https://doi.org/10.3724/SP.J.1259.2011.00396
119. Li, Z.G., Xie, L.R. & Li, X.J. (2015). Hydrogen sulfide acts as a downstream signal molecule in salicylic acid-induced heat tolerance in maize (Zea mays L.) seedlings. J. Plant Physiol., 177, pp. 121-127. https://doi.org/10.1016/j.jplph.2014.12.018
120. Li, Z.G. (2015). Synergistic effect of antioxidant system and osmolyte in hydrogen sulfide and salicylic acid crosstalk-induced heat tolerance in maize (Zea mays L.) seedlings. Plant Signal, Behav. 10 (9), e1051278. https://doi.org/10.1080/15592324.2015.1051278
121. Karpets, Yu.V., Shkliarevskyi, M.A., Horielova, E.I. & Kolupaev, Yu.E. (2020). Participation of hydrogen sulfide in induction of antioxidant system in roots of wheat plantlets and their heat resistance by salicylic acid. Appl. Biochem. Microbiol., 56 (4), pp. 467-472. https://doi.org/10.1134/S0003683820040079
122. Pan, D.Y., Fu, X., Zhang, X.W., Liu, F.J., Bi, H.G. & Ai, X.Z. (2020). Hydrogen sulfide is required for salicylic acid-induced chilling tolerance of cucumber seedlings. Protoplasma, 257, pp. 1543-1557. https://doi.org/10.1007/s00709-020-01531-y
123. Kaya, C. (2021). Salicylic acid-induced hydrogen sulphide improves lead stress tolerance in pepper plants by upraising the ascorbate-glutathione cycle. Physiol. Plant., 173 (1), pp. 8-19. https://doi.org/10.1111/ppl.13159