Fiziol. rast. genet. 2022, vol. 54, no. 1, 3-25, doi:

Molecular mechanisms of hydrogen sulfide's participation in adaptive reactions of plants

Kolupaev Yu.E.1,2, Havva K.M.2

  1. Yur’ev Institute of Plant Breeding, National Academy of Agrarian Sciences of Ukraine, Kharkiv, Ukraine 142 Moskovskyi Ave., Kharkiv, 61060, Ukraine
  2. State Biotechnological University 44 Alcheskikh Ave., Kharkiv, 61002, Ukraine

Hydrogen sulfide (H2S) is a signaling molecule-gasotransmitter that participates in the regulation of many functions of plant organism, including processes of adaptation to stressors of various natures. In recent years, experimental data on the molecular mechanisms of hydrogen sulfide’s action, including posttranslational modification of proteins, and functional relationships of H2S with other cellular mediators — calcium ions, reactive oxygen species (ROS), and nitric oxide — have been intensively accumulated. The review summarizes the latest data on the mechanisms of hydrogen sulfide’s action in the context of its participation in the plants adaptation to the action of stressors. Information on H2S synthesis pathways in plants is also provided. Experimental data on changes in the content of endogenous hydrogen sulfide in plants under the influence of stressors are considered. Information on the stress-protective effect of H2S donors on plants under the action of hypo- and hyperthermia, dehydration, salinity, and heavy metals is presented. The role of hydrogen sulfide in the regulation of antioxidant system, the accumulation of osmolytes, activation of stress protein synthesis is noted. Data on the functional interaction of hydrogen sulfide with ROS and nitric oxide, in particular, competition for thiol groups of proteins, as well as the influence of these mediators on each other’s synthesis are analyzed. Information on the effect of hydrogen sulfide on the synthesis of key plant stress hormones, namely, abscisic, jasmonic, and salicylic acids, and its participation in the transduction of hormonal signals into the genetic apparatus of plant cells is summarized. Possibilities of practical use of hydrogen sulfide donors as inducers of plant resistance are outlined.

Keywords: hydrogen sulfide, posttranslational modification of proteins, nitric oxide, calcium, reactive oxygen species, plant hormones, cell signaling, adaptive reactions of plants

Fiziol. rast. genet.
2022, vol. 54, no. 1, 3-25

Full text and supplemented materials

Free full text: PDF  


1. Tkachuk, V.A., Tyurin-Kuzmin, P.A., Belousov, V.V. & Vorotnikov, A.V. (2012). Hydrogen peroxide as a new second messenger. Biol. Membrany, 29 (1-2), pp. 21-37 [in Russian].

2. Scott, J.D. & Pawson, T. (2009). Cell signaling in space and time: where proteins come together and when they're apart. Science, 326, pp. 1220-1224.

3. Belousov, V.V., Mishina, N.M., & Enikolopov, G.N. (2013). Compartmentalization of ROS-mediated signal transduction. Russ. J. Bioorganic Chem., 39 (4), pp. 341-355.

4. Zhu, J.K. (2016). Abiotic stress signaling and responses in plants. Cell, 167, pp. 313-324.

5. Carmi-Levy, I., Yannay-Cohen, N., Kay, G., Razin, E. & Nechushtan, H. (2008). Diadenosine tetraphosphate hydrolase is part of the transcriptional regulation network in immunologically activated mast cells. Mol. Cell. Biol., 28, pp. 5777-5784.

6. Kolupaev, Yu.E., Karpets, Yu.V. & Dmitriev, A.P. (2015). Signal mediators in plants in response to abiotic stress: Calcium, reactive oxygen and nitrogen species. Cytol. Genet., 49 (5), pp. 338-348.

7. He, H. & He, L. (2014). The role of carbon monoxide signaling in the responses of plants to abiotic stresses. Nitric Oxide, 42, pp. 40-43.

8. Wang, M. & Liao, W. (2016). Carbon monoxide as a signaling molecule in plants. Front Plant Sci., 7, p. 572.

9. Kolupaev, Yu.E., Karpets, Yu.V., Beschasniy, S.P. & Dmitriev, A.P. (2019). Gasotransmitters and their role in adaptive reactions of plant cells. Cytol. Genet., 53 (5), pp. 392-406.

10. Yao, Y., Yang Y., Li, C., Huang, D., Zhang, J., Wang, C., Li, W., Wang, N., Deng, Y. & Liao, W. (2019). Research progress on the functions of gasotransmitters in plant responses to abiotic stresses. Plants (Basel), 8 (12), p. 605.

11. Karle, S.B., Guru, A., Dwivedi, P. &·Kumar, K. (2021). Insights into the role of gasotransmitters mediating salt stress responses in plants. J. Plant Growth Regul., 40 (6), pp. 1-17.

12. Zhang, H., Hu, S.L., Zhang, Z.J., Hu, L.Y., Jiang, C.X., Wei, Z.J., Liu, J., Wang, H.L. & Jiang, S.T. (2011). Hydrogen sulfide acts as a regulator of flower senescence in plants. Postharv. Biol Technol., 60 (3), pp. 251-257.

13. Li, Z.G., Min, X. & Zhou, Z.H. (2016). Hydrogen sulfide: A signal molecule in plant cross-adaptation. Front. Plant Sci., 7, p. 1621.

14. Li, H., Li, M., Wei, X., Zhang, X., Xue, R., Zhao, Y. & Zhao, H. (2017). Transcriptome analysis of drought-responsive genes regulated by hydrogen sulfide in wheat (Triticum aestivum L.) leaves. Mol. Genet. Genom., 292 (5), pp. 1091-1110.

15. Singh, R., Parihar, P. & Prasad, S.M. (2020). Interplay of calcium and nitric oxide in improvement of growth and arsenic-induced toxicity in mustard seedlings. Sci. Rep., 10, p. 6900.

16. Shi, H., Ye, T., Han, N., Bian, H., Liu, X. & Chan, Z. (2015). Hydrogen sulfide regulates abiotic stress tolerance and biotic stress resistance in Arabidopsis. J. Integr. Plant Biol., 57 (7), pp. 628-640.

17. Pandey, A.K. & Gautam, A. (2020). Stress responsive gene regulation in relation to hydrogen sulfide in plants under abiotic stress. Physiol. Plant., 168, pp. 511-525.

18. Sukmansky, O.I. & Reutov, V.P. (2016). Gasotransmitters: Physiological role and involvement in the pathogenesis of the diseases. Uspekhi Fiziol. Nauk, 47 (3), pp. 30-58 [in Russian].

19. Karpets, Yu.V., Kolupaev, Yu.E. & Shkliarevskyi, M.A. (2021). Functional interaction of hydrogen sulfide with nitric oxide, calcium, and reactive oxygen species under abiotic stress in plants. In Khan, M.N. et al. (eds.). Hydrogen Sulfide and Plant Acclimation to Abiotic Stresses (pp. 31-58). Switzerland: Springer Nature.

20. Romero, L.C., Garcнa, I. & Gotor, C. (2013). L-cysteine desulfhydrase 1 modulates the generation of the signaling molecule sulfide in plant cytosol. Plant Signal Behav., 8 (5), pp. 4621-4634.

21. Li, Z.G. (2013). Hydrogen sulfide: a multifunctional gaseous molecule in plants. Russ. J. Plant Physiol., 60 (6), pp. 733-740.

22. Riemenschneider, A., Wegele, R., Schmidt, A. & Papenbrock, J. (2005). Isolation and characterization of a D-cysteine desulfhydrase protein from Arabidopsis thaliana. FEBS J., 272 (5), pp. 1291-1304.

23. Guo, H., Xiao, T., Zhou, H., Xie, Y. & Shen, W. (2016). Hydrogen sulfide: a versatile regulator of environmental stress in plants. Acta Physiol. Plant., 38, p. 16.

24. Li, Z.G., Yang, S.Z., Long, W.B., Yang, G.X. & Shen, Z.Z. (2013). Hydrogen sulfide may be a novel downstream signal molecule in nitric oxide-induced heat tolerance of maize (Zea mays L.) seedlings. Plant Cell Environ., 36 (8), pp. 1564-1572.

25. Li, Z.G. (2015). Analysis of some enzymes activities of hydrogen sulfide metabolism in plants. Methods Enzymol., 555, pp. 253-269.

26. Zhang, H. (2016). Hydrogen sulfide in plant biology. In Lamattina, L., Garcia-Mata, C. (eds.). Signaling and Communication in Plants. Vol. Gasotransmitters in Plants. The Rise of a New Paradigm in Cell Signaling. Switzerland: Springer (pp. 23-51).

27. Lisjak, M., Teklic, T., Wilson, I.D., Whiteman, M. & Hancock, J.T. (2013). Hydrogen sulfide: environmental factor or signalling molecule? Plant Cell Environ., 36 (9), pp. 1607-1616.

28. Ali, S., Anjum, M.A., Nawaz, A., Naz, S., Sardar, H. & Hasan, M.U. (2021). Hydrogen sulfide regulates temperature stress in plants. In Hydrogen Sulfide in Plant Biology. Elsevier Inc. (pp. 1-24).

29. Oz, M.T. & Eyidogan, F. (2021). Hydrogen sulfide: a road ahead for abiotic stress tolerance in plants. In Khan, M.N. et al. (eds.). Hydrogen Sulfide and Plant Acclimation to Abiotic Stresses (pp. 13-28).

30. Li, H., Li, X., Liu, S., Zhu, X., Song, F. & Liu, F. (2020). Induction of cross tolerance by cold priming and acclimation in plants. Physiological, biochemical and molecular mechanisms. In Hossain, M.A. et al. (eds.). Priming-Mediated Stress and Cross-Stress Tolerance in Crop Plants, Academic Press (pp. 183-202).

31. Singh, A. & Roychoudhury, A. (2021). Hydrogen sulfide and redox homeostasis for alleviation of heavy metal stress. In Khan, M.N. et al. (eds.). Hydrogen Sulfide and Plant Acclimation to Abiotic Stresses, Switzerland: Springer Nature (pp. 59-72).

32. Roychoudhury, A. & Chakraborty, S. (2021). Effect of hydrogen sulfide on osmotic adjustment of plants under different abiotic stresses. In Khan, M.N. et al. (eds.), Hydrogen Sulfide and Plant Acclimation to Abiotic Stresses. Switzerland: Springer Nature (pp. 73-84).

33. Liu, Z., Li, Y., Cao, C.,·Liang, S., Ma, Y.,·Liu, X. & Pei, Y. (2019). The role of H2S in low temperature-induced cucurbitacin C increases in cucumber. Plant Mol. Biol., 99 (6), pp. 535-544.

34. Fu, P.N., Wang, W.J., Hou, L.X. & Liu, X. (2013). Hydrogen sulfide is involved in the chilling stress response in Vitis vinifera L. Acta Societatis Botanicorum Poloniae, 82 (4), pp. 295-302.

35. Du, X., Jin, Z., Liu, D., Yang, G. & Pei, Y. (2017). Hydrogen sulfide alleviates the cold stress through MPK4 in Arabidopsis thaliana. Plant Physiol. Biochem., 120, pp. 112-119.

36. Shi, H., Ye, T. & Chan, Z. (2013). Exogenous application of hydrogen sulfide donor sodium hydrosulfide enhanced multiple abiotic stress tolerance in bermudagrass (Cynodon dactylon L.). Pers.). Plant Physiol. Biochem., 71, pp. 226-234.

37. Shi, H., Ye, T. & Chan, Z. (2014). Nitric oxide-activated hydrogen sulfide is essential for cadmium stress response in bermudagrass (Cynodon dactylon L). Pers.). Plant Physiol. Biochem., 74, pp. 99-107.

38. Kolupaev, Yu.E., Horielova, E.I., Yastreb, T.O., Popov, Yu.V. & Ryabchun, N.I. (2018). Phenylalanine ammonia-lyase activity and content of flavonoid compounds in wheat seedlings at the action of hypothermia and hydrogen sulfide donor. Ukr. Biochem. J., 90 (6), pp. 12-20.

39. Kolupaev, Yu.E., Horielova, E.I., Yastreb, T.O., Ryabchun, N.I. & Kirichenko, V.V. (2019). Stress-protective responses of wheat and rye seedlings whose chilling resistance was induced with a donor of hydrogen sulfide. Russ. J. Plant Physiol., 66 (4), pp. 540-547.

40. Janicka, M., Reda, M., Czyzewska, K. & Kabala, K. (2018). Involvement of signalling molecules NO, H2O2 and H2S in modification of plasma membrane proton pump in cucumber roots subjected to salt or low temperature stress. Funct. Plant Biol., 45, pp. 428-439.

41. Christou, A., Filippou, P., Manganaris, G. & Fotopoulos, V. (2014). Sodium hydrosulfide induces systemic thermotolerance to strawberry plants through transcriptional regulation of heat shock proteins and aquaporin. BMC Plant Biol., 14, p. 42.

42. Chen, X., Chen, Q., Zhang, X., Li, R., Jia, Y., Ef, A.A., Jia, A., Hu, L. & Hu, X. (2016). Hydrogen sulfide mediates nicotine biosynthesis in tobacco (Nicotiana tabacum) under high temperature conditions. Plant Physiol. Biochem., 104, pp. 174-219.

43. Havva, E.N., Kolupaev, Yu.E., Shkliarevskyi, M.A., Kokorev, A.I. & Dmitriev, A.P. (2022). Participation of hydrogen sulfide in formation of heat resistance of wheat seedlings under the action of hardening temperature. Cytol. Genet., 56 (3) (in press).

44. Li, Z.G., Gong, M., Xie, H., Yang, L. & Li, J. (2012). Hydrogen sulfide donor sodium hydrosulfide induced heat tolerance in tobacco (Nicotiana tabacum L) suspension cultured cells and involvement of Ca2+ and calmodulin. Plant Sci., 185-186, pp. 185-189.

45. Cheng, T., Shi, J., Dong, Y., Ma, Y., Peng, Y., Hu, X. & Chen, J. (2018). Hydrogen sulfide enhances poplar tolerance to high-temperature stress by increasing S-nitrosoglutathione reductase (GSNOR) activity and reducing reactive oxygen/nitrogen damage. Plant Growth Regul., 84, pp. 11-23.

46. Kolupaev, Yu.E., Firsova, E.N, Yastreb, T.O. & Lugovaya, A.A. (2017). The participation of calcium ions and reactive oxygen species in the induction of antioxidant enzymes and heat resistance in plant cells by hydrogen sulfide donor. Appl. Biochem. Microbiol., 53 (5), pp. 573-579.

47. Aroca, A., Gotor, C., Bassham, D.C. & Romero, L.C. (2020). Hydrogen sulfide: from a toxic molecule to a key molecule of cell life. Antioxidants (Basel), 9 (7), p. 621.

48. Liu, H., Wang, J., Liu J, Liu, T. & Xue, S. (2021). Hydrogen sulfide (H2S) signaling in plant development and stress responses. aBIOTECH, 2, pp. 32-63.

49. Jin, Z.P., Shen, J.J., Qiao, Z.J., Yang, G.D., Wang, R. & Pei, Y.X. (2011). Hydrogen sulfide improves drought resistance in Arabidopsis thaliana. Biochem. Biophys. Res. Commun., 414 (3), pp. 481-486.

50. Shan, C.J., Zhang, S.L., Li, D.F., Zhao, Y.Z., Tian, X.L., Zhao, X.L., Wu, Y.X., Wei, X.Y. & Liu, R.Q. (2011). Effects of exogenous hydrogen sulfide on the ascorbate and glutathione metabolism in wheat seedlings leaves under water stress. Acta Physiol. Plant., 33, pp. 2533-2540.

51. Shan, C., Zhang, S. & Ou, X. (2018). The roles of H2S and H2O2 in regulating AsA-GSH cycle in the leaves of wheat seedlings under drought stress. Protoplasma, 255 (4), pp. 1257-1262.

52. Kolupaev, Yu. E., Firsova, K.M., Shvidenko, M.V. & Yastreb, T.O. (2018). Hydrogen sulfide donor influence on state of antioxidant system of wheat seedlings under osmotic stress. Fiziol. rast. genet., 50 (1), pp. 29-38 [in Ukrainian].

53. Kolupaev, Yu.E., Firsova, E.N., Yastreb, T.O., Ryabchun, N.I. & Kirichenko, V.V. (2019). Effect of hydrogen sulfide donor on antioxidant state of wheat plants and their resistance to soil drought. Russ. J. Plant Physiol., 66 (1), pp. 59-66.

54. Lai, DW., Mao, Y., Zhou, H., Li, F., Wu, M., Zhang, J., He, Z., Cui,W. & Xie, Y. (2014). Endogenous hydrogen sulfide enhances salt tolerance by coupling the reestablishment of redox homeostasis and preventing salt-induced K+ loss in seedlings of Medicago sativa. Plant Sci., 225, pp. 117-129.

55. da-Silva, C.J. & Modolo, L.V. (2018). Hydrogen sulfide: a new endogenous player in an old mechanism of plant tolerance to high salinity. Acta Botanica Brasilica, 32, pp. 150-160.

56. Yastreb, T.O., Kolupaev, Y.E., Havva, E.N., Horielova, E.I. & Dmitriev, A.P. (2020). Involvement of the JIN1/MYC2 transcription factor in inducing salt resistance in Arabidopsis plants by exogenous hydrogen sulfide. Cytol. Genet., 54 (2), pp. 96-102.

57. Wang, Y., Li, L., Cui, W., Xu, S., Shen, W. & Wang, R. (2012). Hydrogen sulfide enhances alfalfa (Medicago sativa) tolerance against salinity during seed germination by nitric oxide pathway. Plant Soil, 351 (1-2), pp. 107-119.

58. Jiang, J.L., Tian, Y., Li, L., Yu, M., Hou, R.P. & Ren, X.M. (2019). H2S alleviates salinity stress in cucumber by maintaining the Na+/K+ balance and regulating H2S metabolism and oxidative stress response. Front. Plant Sci., 10, p. 678.

59. Fang, H., Jing, T., Liu, Z., Zhang, L., Jin, Z. & Pei, Y. (2014). Hydrogen sulfide interacts with calcium signaling to enhance the chromium tolerance in Setaria italica. Cell Calcium, 56 (6), pp. 472-481.

60. Kabala, K., Zboinska, M., Glowiak, D., Reda, M., Jakubowska, D. & Janicka, M. (2019). Interaction between the signaling molecules hydrogen sulfide and hydrogen peroxide and their role in vacuolar H+-ATPase regulation in cadmiumstressed cucumber roots. Physiol. Plant., 166, pp. 688-704.

61. Wang, H., Ji, F., Zhang, Y., Hou, J., Liu, W., Huang, J. & Liang, W. (2019). Interactions between hydrogen sulphide and nitric oxide regulate two soybean citrate transporters during the alleviation of aluminium toxicity. Plant Cell Environ., 42 (8), pp. 2340-2356.

62. Amist, N. & Singh, N.B. (2021). Regulation of metal stress toxicity in plants by the hydrogen sulfide. In Singh, S. et al. (eds.). Hydrogen Sulfide in Plant Biology, Elsevier Inc. (pp. 87-102).

63. Bhardwaj, S. & Kapoor, D. (2021). General view on H2S and abiotic stress tolerance in plants. In Singh, S. et al. (eds.). Hydrogen Sulfide in Plant Biology. Elsevier Inc. (pp. 113-132).

64. Huang, Z.Q., Shao-Can, Y.L., Hu, L.Y. & Hu, D. (2016). Hydrogen sulfide promotes wheat grain germination under cadmium stress. Proc. Natl Acad. Sci., India Section B: Biological Sci., 86 (4), pp. 887-895.

65. Kharbech, O., Houmani, H., Chaoui, A. & Corpas, F.J. (2017). Alleviation of Cr(VI)-induced oxidative stress in maize (Zea mays L.) seedlings by NO and H2S donors through differential organ-dependent regulation of ROS and NADPH-recycling metabolisms. J. Plant Physiol., 219, pp. 71-80.

66. Kour, J., Khanna, K., Sharma, P., Singh, A.D., Sharma, I., Arora, P., Kumar, P., Devi, K., Ibrahim, M., Ohri, P., Mir, B.A., Sharma, A. & Bhardwaj, R. (2021). Hydrogen sulfide and phytohormones crosstalk in plant defense against abiotic stress. In Singh, S. et al. (eds.). Hydrogen Sulfide in Plant Biology. Elsevier Inc. (pp. 267-301).

67. Yuan, S., Shen, X. & Kevil, C.G. (2017). Beyond a gasotransmitter: hydrogen sulfide and polysulfide in cardiovascular health and immune response. Antioxidants Redox Signaling, 27, pp. 634-653.

68. Filipovic, M.R., Zivanovic, J., Alvarez, B. & Banerjee, R. (2018). Chemical biology of h2s signaling through persulfidation. Chem Rev., 118 (3), pp. 1253-1337.

69. Paul, B.D. & Snyder, S.H. (2018). Gasotransmitter hydrogen sulfide signaling in neuronal health and disease. Biochem. Pharmacol., 149, pp. 101-109.

70. Aroca, A., Zhang, J., Xie, Y., Romero, L.C. & Gotor, C. (2021). Hydrogen sulfide signaling in plant adaptations to adverse conditions: molecular mechanisms. J. Exp. Bot., 72 (16), pp. 5893-5904.

71. Filipovic, M.R., Miljkovic, J.Lj., Nauser, T., Royzen, M., Klos, K., Shubina, T., Koppenol, W.H., Lippard, S.J. & Ivanovic-Burmazovic, I. (2012). Chemical characterization of the smallest S-nitrosothiol, HSNO; cellular cross-talk of H2S and S-nitrosothiols. J. Amer. Chem. Soc., 134, pp. 12016-12027.

72. Cuevasanta, E., Lange, M., Bonanata, J., Coitico, E.L., Ferrer-Sueta, G., Filipovic, M.R. & Alvarez, B. (2015). Reaction of hydrogen sulfide with disulfide and sulfenic acid to form the strongly nucleophilic persulfide. J. Biol. Chem. 290, pp. 26866-26880.

73. Zivanovic, J., Kouroussis, E., Kohl, J.B., Adhikari, B., Bursac, B., Schott-Roux, S., Petrovic, D., Miljkovic, J.L., Thomas-Lopez, D., Jung, Y., Miler, M. Mitchell, S., Milosevic, V. Gomes, J.E., Benhar, M., Gonzalez-Zorn, B., Ivanovic-Burmazovic, I., Torregrossa, R., Mitchell, J.R., Whiteman, M., Schwarz, G., Snyder, S.H., Paul, B.D., Carroll, K.S. & Filipovic, M.R. (2019). Selective persulfide detection reveals evolutionarily conserved antiaging effects of S-sulfhydration. Cell Metab., 30 (6), pp. 1152-1170.

74. Aroca, A., Gotor, C. & Romero, L.C. (2018). Hydrogen sulfide signaling in plants: emerging roles of protein persulfidation. Front. Plant Sci., 9, p. 1369.

75. Gruhlke, M.C. (2019). Reactive sulfur species a new player in plant physiology? In Hasanuzzaman, M. (eds.). Reactive Oxygen, Nitrogen and Sulfur Species in Plants: Production, Metabolism, Signaling and Defense Mechanisms, vol 2. John Wiley & Sons Ltd, pp. 715-728.

76. Kolupaev, Yu.E., Karpets, Yu.V. & Kabashnikova, L.F. (2019). Antioxidative system of plants: Cellular compartmentalization, protective and signaling functions, mechanisms of regulation (Review). Appl. Biochem. Microbiol., 55 (5), pp. 441-459.

77. Khan, N.M., Siddiqui, Z.H., Naeem, M., Abbas, Z.K. & Ansari, M.W. (2022). Nitric oxide and hydrogen sulfide interactions in plants under adverse environmental conditions. In Aftab, T. et al. (eds.). Emerging Plant Growth Regulators in Agriculture: Roles in Stress Tolerance, Academic Press (pp. 215-244).

78. Shivaraj, S.M., Vats, S., Bhat, J.A., Dhakte, P., Goyal, V., Khatri, P., Kumawat, S., Singh, A., Prasad, M., Sonah, H., Sharma, T.R. & Deshmukh, R. (2020). Nitric oxide and hydrogen sulfide crosstalk during heavy metal stress in plants. Physiol. Plant., 168 (2), pp. 437-455.

79. Corpas, F.J., Barroso, J.B., Gonzбlez-Gordo, S., Mucoz-Vargas, M.A. & Palma, J.M. (2019). Hydrogen sulfide: A novel component in Arabidopsis peroxisomes which triggers catalase inhibition. J. Integr. Plant Biol., 61 (7), pp. 871-883.

80. Li, J., Shi, C., Wang, X., Liu, C., Ding, X., Ma, P., Wang, X. & Jia, H. (2020). Hydrogen sulfide regulates the activity of antioxidant enzymes through persulfidation and improves the resistance of tomato seedling to copper oxide nanoparticles (CuO NPs)-induced oxidative stress. Plant Physiol. Biochem., 156, pp. 257-266.

81. Shen, J., Zhang, J., Zhou, M., Zhou, H., Cui, B., Gotor, C., Romero, L.C., Fu, L., Yang, J., Foyer, C.H., Pan, Q., Shen, W. & Xie, Y. (2020). Persulfidation-based modification of cysteine desulfhydrase and the NADPH oxidase RBOHD controls guard cell abscisic acid signaling. Plant Cell, 32 (4), pp. 1000-1017.

82. Sen, N., Paul, B.D., Gadalla, M.M., Mustafa, A.K., Sen, T., Xu, R., Kim, S. & Snyder, S.H. (2012). Hydrogen sulfide-linked sulfhydration of NF-kB mediates its antiapoptotic actions. Mol. Cell, 45 (1), pp. 13-24.

83. Aroca, A., Benito, J.M., Gotor, C. & Romero, L.C. (2017). Persulfidation proteome reveals the regulation of protein function by hydrogen sulfide in diverse biological processes in Arabidopsis. J. Exp. Bot., 68 (17), pp. 4915-4927.

84. Guo, Z., Liang, Y., Yan, J., Yang, E., Li, K. & Xu, H. (2018). Physiological response and transcription profiling analysis reveals the role of H2S in alleviating excess nitrate stress tolerance in tomato roots. Plant Physiol. Biochem., 124, pp. 59-69.

85. Kim, M.C., Chung, W.S., Yun, D.J. & Cho, M.J. (2009). Calcium and calmodulin-mediated regulation of gene expression in plants. Mol. Plant., 2 (1), pp. 13-21.

86. Michal Johnson, J. Reichelt, M., Vadassery, J., Gershenzon, J. & Oelmьller, R. (2014). An Arabidopsis mutant impaired in intracellular calcium elevation is sensitive to biotic and abiotic stress. BMC Plant Biol., 14, p. 162.

87. Li, Z.G., Long, W.B., Yang, S.Z., Wang, Y.C., Tang, J.H., Wen, L., Zhu, B. & Min, X. (2015). Endogenous hydrogen sulfide regulated by calcium is involved in thermotolerance in tobacco Nicotiana tabacum L. suspension cell cultures. Acta Physiol. Plant., 37, p. 219.

88. Valivand, M., Amooaghaie, R. & Ahadi, A. (2019). Interplay between hydrogen sulfide and calcium/calmodulin enhances systemic acquired acclimation and antioxidative defense against nickel toxicity in zucchini. Environ. Exp. Bot., 158, pp. 40-50.

89. Yastreb, T.O., Kolupaev, Yu.E., Havva, E.N., Shkliarevskyi, M.A. & Dmitriev, A.P. (2019). Calcium and components of lipid signaling in implementation of hydrogen sulfide influence on the state of stomata in Arabidopsis thaliana. Cytol. Genet., 53 (2), pp. 99-105.

90. Prodhan, M.Y., Munemasa, S., Nahar, M.N., Nakamura, Y. & Murata, Y. (2018). Guard cell salicylic acid signaling is integrated into abscisic acid signaling via the Ca2+/CPK-dependent pathway. Plant Physiol., 178, pp. 441-450.

91. Zhang, T., Li, F., Fan, C., Li, X., Zhang, F. & He, J. (2017). Role and interrelationship of MEK1-MPK6 cascade, hydrogen peroxide and nitric oxide in darkness-induced stomatal closure. Plant Sci., 262, pp. 190-199.

92. Du, X., Jin, Z., Zhang, L. & Liu, X. (2019). H2S is involved in ABA-mediated stomatal movement through MPK4 to alleviate drought stress in Arabidopsis thaliana. Plant Soil, 435, pp. 295-307.

93. Patel, M. & Parida, A.K. (2021). Role of hydrogen sulfide in alleviating oxidative stress in plants through induction of antioxidative defense mechanism, and modulations of physiological and biochemical components. In Hydrogen Sulfide in Plant Biology. Elsevier, pp. 55-85.

94. Gill, S.S. & Tuteja, N. (2010). Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol. Biochem., 48, pp. 909-930.

95. Bienert, G.P., Moller, A.L., Kristiansen, K.A., Schulz, A., Moller, I.M., Schjoerring, J.K. & Jahn, T.P. (2007). Specific aquaporins facilitate the diffusion of hydrogen peroxide across membranes. J. Biol. Chem., 282, pp. 1183-1192.

96. Miller, E.W., Dickinson, B.C. & Chang, C.J. (2010). Aquaporin-3 mediates hydrogen peroxide uptake to regulate downstream intracellular signaling. Proc. Natl. Acad. Sci. USA, 107, pp. 15681-15686.

97. Li, Z.G., Gong, M. & Liu, P. (2012). Hydrogen sulfide is a mediator in H2O2-induced seed germination in Jatropha curcas. Acta Physiol. Plant., 34 (6), pp. 2207-2213.

98. Wang, L., Hou, Z., Hou, L., Zhao, F. & Liu, X. (2012). H2S induced by H2O2 mediates drought-induced stomatal closure in Arabidopsis thaliana. Chinese Bulletin of Botany, 47 (3), pp. 217-225.

99. Ma, Y., Zhang, W., Niu, J., Ren, Y. & Zhang, F. (2019). Hydrogen sulfide may function downstream of hydrogen peroxide in salt stress-induced stomatal closure in Vicia faba. Funct. Plant Biol., 46 (2), pp. 136-145.

100. Kolupaev, Yu.E., Firsova, E. N. & Yastreb, T.O. (2017). Induction of plant cells heat resistance by hydrogen sulfide donor is mediated by H2O2 generation with participation of NADPH oxidase and superoxide dismutase. Ukr. Biochem. J., 89 (4), pp. 34-42.

101. Hancock, J.T. (2019). Hydrogen sulfide and environmental stresses. Environ. Exp. Bot., 61 (9), pp. 50-56.

102. Hancock, J.T. & Whiteman, M. (2014). Hydrogen sulfide and cell signaling: Team player or referee? Plant Physiol. Biochem., 78, pp. 37-42.

103. Mur, L.A.J., Mandon, J., Persijn, S., Cristescu, S.M., Moshkov, I.E., Novikova, G.V., Hall, M.A., Harren, F.J.M., Hebelstrup, K.H. & Gupta, K.J. (2013). Nitric oxide in plants: an assessment of the current state of knowledge. AoB Plants, 5, pls052.

104. Blume, Y.B., Krasylenko, Y.A., Demchuk, O.M. & Yemets, A.I. (2013). Tubulin tyrosine nitration regulates microtubule organization in plant cells. Front. Plant Sci., 4, p. 530.

105. Mishra, V., Singh, P., Tripathi, D.K., Corpas, F.J. & Singh,V.P. (2021). Nitric oxide and hydrogen sulfide: an indispensable combination for plant functioning. Trends Plant Sci., 26 (12), pp. 1270-1285.

106. Paul, S. & Roychoudhur, A. (2020). Regulation of physiological aspects in plants by hydrogen sulfide and nitric oxide under challenging environment. Physiol. Plant., 168, pp. 374-393. https:/

107. Karpets, Yu.V., Kolupaev, Yu.E., Lugovaya, A.A., Shvidenko, N.V., Shkliarevskyi, M.A. & Yastreb, T.O. (2020). Functional interaction of ROS and nitric oxide during induction of heat resistance of wheat seedlings by hydrogen sulfide donor. Russ. J. Plant Physiol., 67 (4), pp. 653-660.

108. Liang, Y., Zheng, P., Li, S., Li, K. & Xu, H. (2018). Nitrate reductase-dependent NO production is involved in H2S-induced nitrate stress tolerance in tomato via activation of antioxidant enzymes. Sci. Horticult., 229, pp. 207-214.

109. Carballal, S., Trujillo, M., Cuevasanta, E., Bartesaghi, S., Miller, M.N., Folkes, L.K., Garcнa-Bereguiaнn, M.A., Gutiйrrez-Merino, C., Wardman, P., Denicola, A., Radi, R. & Alvarez, B. (2011). Reactivity of hydrogen sulfide with peroxynitrite and other oxidants of biological interest. Free Radical Biol. Med., 50 (1), pp. 196-205.

110. Whiteman, M., Li, L., Kostetski, I., Chu, S.H., Siau, J.L., Bhatia, M. & Moore, P.K. (2006). Evidence for the formation of a novel nitrosothiol from the gaseous mediators nitric oxide and hydrogen sulphide. Biochem. Biophys. Res. Commun., 343 (1), pp. 303-310.

111. Yang, T., Yuan, G., Zhang, Q., Xuan, L., Li, J., Zhou, L., Shi, H., Wang, X. & Wang, C. (2021). Transcriptome and metabolome analyses reveal the pivotal role of hydrogen sulfide in promoting submergence tolerance in Arabidopsis. Environ. Exp. Bot., 183, p. 104365.

112. Jin, Z., Xue, S., Luo, Y., Tian, B., Fang, H., Li, H. & Pei, Y. (2013). Hydrogen sulfide interacting with abscisic acid in stomatal regulation responses to drought stress in Arabidopsis. Plant Physiol. Biochem., 62, pp. 41-46.

113. Shan, C., Zhang, S. & Zhou, Y. (2017). Hydrogen sulfide is involved in the regulation of ascorbate-glutathione cycle by exogenous ABA in wheat seedling leaves under osmotic stress. Cereal Res. Commun., 45, pp. 411-420.

114. Tian, B., Zhang, Y., Jin, Z., Liu, Z. & Pei, Y. (2017). Role of hydrogen sulfide in the methyl jasmonate response to cadmium stress in foxtail millet. Front Biosci (Landmark Ed.), 22, pp. 530-538.

115. Filipovic, M.R. & Jovanovic, V.M. (2017). More than just an intermediate: hydrogen sulfide signalling in plants. J. Exp. Bot., 68 (17), pp. 4733-4736.

116. Shan, C., Sun, H., Zhou, Y. & Wang, W. (2019). Jasmonic acid-induced hydrogen sulfide activates MEK1/2 in regulating the redox state of ascorbate in Arabidopsis thaliana leaves. Plant Signal. Behav., 14 (8), p. 1629265.

117. Deng, G., Zhou, L., Wang, Y., Zhang, G. & Chen, X. (2020). Hydrogen sulfide acts downstream of jasmonic acid to inhibit stomatal development in Arabidopsis. Planta, 251, p. 42.

118. Hou, Z.H., Liu, J., Hou, L.X., Li, X.D. & Liu, X. (2011). H2S may function downstream of H2O2 in jasmonic acid-induced stomatal closure in Vicia faba. Chin. Bull. Bot., 46, pp. 396-406.

119. Li, Z.G., Xie, L.R. & Li, X.J. (2015). Hydrogen sulfide acts as a downstream signal molecule in salicylic acid-induced heat tolerance in maize (Zea mays L.) seedlings. J. Plant Physiol., 177, pp. 121-127.

120. Li, Z.G. (2015). Synergistic effect of antioxidant system and osmolyte in hydrogen sulfide and salicylic acid crosstalk-induced heat tolerance in maize (Zea mays L.) seedlings. Plant Signal, Behav. 10 (9), e1051278.

121. Karpets, Yu.V., Shkliarevskyi, M.A., Horielova, E.I. & Kolupaev, Yu.E. (2020). Participation of hydrogen sulfide in induction of antioxidant system in roots of wheat plantlets and their heat resistance by salicylic acid. Appl. Biochem. Microbiol., 56 (4), pp. 467-472.

122. Pan, D.Y., Fu, X., Zhang, X.W., Liu, F.J., Bi, H.G. & Ai, X.Z. (2020). Hydrogen sulfide is required for salicylic acid-induced chilling tolerance of cucumber seedlings. Protoplasma, 257, pp. 1543-1557.

123. Kaya, C. (2021). Salicylic acid-induced hydrogen sulphide improves lead stress tolerance in pepper plants by upraising the ascorbate-glutathione cycle. Physiol. Plant., 173 (1), pp. 8-19.