Фізіологія рослин і генетика 2021, том 53, № 6, 463-483, doi: https://doi.org/10.15407/frg2021.06.463

Фiзiолого-бiохiмiчнi та генетичнi особливостi ячменю як продукту функцiонального харчування

Катрiй В.Б.1, Рибалка О.I.1,2, Моргун Б.В.1,3

  1. Iнститут фізіології рослин і генетики Національної академії наук України 03022 Київ, вул. Васильківська, 31/17
  2. Селекційно-генетичний інститут—Національний центр насіннєзнавства та сортовивчення Національної академії аграрних наук України 65036 Одеса, Овідіопольська дорога, 3
  3. Iнститут клітинної біології та генетичної інженерії Національної академії наук України 03680 Київ, вул. Академіка Заболотного, 148

В огляді наведено сучасні дані про фізіолого-біохімічні та генетичні особливості ячменю як продукту функціонального харчування. Увага до ячменю посилилась в останні 10—15 років у зв’язку з новітніми клінічними, дієтологічними і біохімічними дослідженнями продуктів із його зерна, що були виконані в лабораторіях провідних країн світу і довели винятково високу харчову цінність ячмінного зерна, насамперед його здатність слугувати профілактичним засобом проти таких найтяжчих недугів останнього століття, як коронарна хвороба серця, діабет та ін. Вкрай висока харчова цінність зерна ячменю пов’язана з вмістом у ньому унікальних некрохмалистих полісахаридів бета-глюканів, цілого комплексу речовин із широким спектром антиоксидантної активності (токоли, фітостероли, флавоноїди, фітофеноли), комплексу вітамінів групи В, нікотинової кислоти, цінних мінералів, таких як залізо, цинк, ман­ган, селен. Приділено увагу технології селекції голозерного ячменю, що включає цілу низку специфічних завдань, пов’язаних із фізичними характеристиками зерна без плівки, його біохімічними й технологічними властивостями. Висвітлено новітні тенденції генетичних досліджень, спрямованих на поліпшення зерна ячменю за складом крохмалю, якістю білка, вмістом вітамінів, мінералів та антиоксидантів. Показано перспективність використання для поліпшення харчових ознак ячменю молекулярно-біологічних методів, які дадуть змогу за допомогою специфічних молекулярних маркерів скерувати генетичну мінливість цих ознак у потрібному для селекціонера напрямі. Описано новий для України напрям селекції злакових культур із кольоровим зерном з метою підвищення харчової цінності зерна, що є основою для появи на продовольчому ринку нашої держави нових продуктів функціонального харчування.

Ключові слова: ячмінь, глютен, амілоза, фітати, антиоксидантна активність, антоціани, генетичні дослідження, молекулярні маркери

Фізіологія рослин і генетика
2021, том 53, № 6, 463-483

Повний текст та додаткові матеріали

У вільному доступі: PDF  

Цитована література

1. Kumar, P., Banjarey, P., Malik R., Tikle, A.N. & Verma, R.P. (2020). Population structure and diversity assessment of barley (Hordeum vulgare L.) introduction from ICARDA. Journal of Genetics, 99(70), pp. 70-79. https://doi.org/10.1007/s12041-020-01226-6

2. Karoui-Kharrat, D., Kaddour, H., Hamdi, Y., Mokni, M., Amri, M. & Mezghani, S. (2017). Response of antioxidant enzymes to cadmium-induced cytotoxicity in rat cerebellar granule neurons. Open Life Sci., 12, pp. 113-119. https://doi.org/10.1515/biol-2017-0013

3. Liu, Y., Qiu, J., Yue, Y., Li, K. & Ren, G. (2018). Dietary black-grained wheat intake improves glycemic control and inflammatory profile in patients with type 2 diabetes: a randomized controlled trial. Therapeutic and Clinical Risk Management, 14, pp. 247-256. https://doi.org/10.2147/TCRM.S151424

4. Idehen, E., Tang, Y. & Sang, Sh. (2017). Bioactive phytochemicals in barley. J. of Food and Drug Analysis, 25, pp. 148-161. https://doi.org/10.1016/j.jfda.2016.08.002

5. Yaoguang, L., Dongyun, M., Dexiang, S. & Chenyang, W. (2015). Total phenolic, flavonoid content, and antioxidant activity of flour, noodles, and steamed bread made from different colored wheat grains by three milling methods. The Crop J., 3, pp. 328-334. https://doi.org/10.1016/j.cj.2015.04.004

6. Sherman, J., Souza, E., See, D. & Talbert, L.E. (2008). Microsatellite markers for kernel color genes in wheat. Crop Science, 48, pp. 1419-1424. https://doi.org/10.2135/cropsci2007.10.0561

7. Abraham, Z., Iglesias-Fernandez, R., Martinez, M., Rubio-Somoza, I., Diaz, I., Carbonero, P. & Vicente-Carbajosa, J. (2016). A developmental switch of gene expression in the barley seed mediated by HvVP1 (Viviparous-1) and HvGAMYB interactions. Plant Physiol., 170, pp. 2146-2158. https://doi.org/10.1104/pp.16.00092

8. Bai, B., Peviani, A., Gamm, M., Snel, B., Bentsink, L. & Hanson, J. (2017). Extensive translational regulation during seed germination revealed by polysomal profiling. New Phytol., 214, pp. 233-244. https://doi.org/10.1111/nph.14355

9. Narsai, R., Gouil, Q., Secco, D., Srivastava, A., Karpievitch, Y.V., Liew, L.C., Lister, R., Lewsey, M.G. & Whelan, J. (2017). Extensive transcriptomic and epigenomic remodelling occurs during Arabidopsis thaliana germination. Genome Biol., 18, p. 172. https://doi.org/10.1186/s13059-017-1302-3

10. Resentini, F., Felipo-Benavent, A., Colombo, L., Blazquez, M.A., Alabadi, D. & Masiero, S. (2015). TCP14 and TCP15 mediate the promotion of seed germination by gibberellins in Arabidopsis thaliana. Mol. Plant., 8, pp. 482-485. https://doi.org/10.1016/j.molp.2014.11.018

11. Zhu, Y., Li, T., Fu, X., Abbasi, A.M., Zheng, B. & Liu, R.H. (2015). Phenolics content, antioxidant and antiproliferative activities of dehulled highland barley (Hordeum vulgare L.). J. Funct. Foods., 19, pp. 439-450. https://doi.org/10.1016/j.jff.2015.09.053

12. Krzysztoforska, K., Mirowska-Guzel, D. & Widy-Tyszkiewicz, E. (2019). Pharmacological effects of protocatechuic acid and its therapeutic potential in neurodegenerative diseases: Review on the basis of in vitro and in vivo studies in rodents and humans. Nutr. Neurosci., 22, pp. 72-82. https://doi.org/10.1080/1028415X.2017.1354543

13. Awasthi, R., Bhandari, K. & Nayyar, H. (2015). Temperature stress and redox homeostasis in agricultural crops. Front. Environ. Sci., 3, p. 11. https://doi.org/10.3389/fenvs.2015.00011

14. Rybalka, O.I. (2011). Yakist pshenytci ta ii polipshennya. Kyiv [in Ukrainian].

15. Hammami, Z., Gauffreteau, A., BelhajFraj, M., Sahli, A., Jeuffroy, M.H., Rezgui, S., Bergaoui, K., McDonnell, R. & Trifa, Y. (2017). Predicting yield reduction in improved barley (Hordeum vulgare L.) varieties and landraces under salinity using selected tolerance traits. Field Crops Res., 211, pp. 10-18. https://doi.org/10.1016/j.fcr.2017.05.018

16. Bohmdorfern, S., Oberlerchner, J., Fuchs, C., Rosenau, T. & Grausgruber, H. (2018). Profling and quantifcation of grain anthocyanins in purple pericarp'blue aleurone wheat crosses by high-performance thin-layer chromatography and densitometry. Plant Methods, 14, pp. 1-15. https://doi.org/10.1186/s13007-018-0296-5

17. Lan, S., Li, X. & Liu, X.P. (2008). Genetic of seed pigment of blue kernel wheat. Acta Agriculturae Boreali Sinica, 23, pp. 12-14.

18. Qualset, C., Soliman, K., Jan, C., Dvorak, J., McGuire, P. & Vogt, H. (2005). Triticum aestivum blue aleurone genetic stock. Crop Sci., 45, pp. 432-435. https://doi.org/10.2135/cropsci2005.0432

19. Liu, H.L., Chen, X.M., Zhang, D.W., Wang, J., Wang, S. & Sun, B.G. (2018). Effects of highland barley bran extract rich in phenolic acids on the formation of Ne-carboxymethyllysine in a biscuit model. J. Agric. Food Chem., 66, pp. 1916-1922. https://doi.org/10.1021/acs.jafc.7b04957

20. Ahmed, Z., Tetlow, I.J., Ahmed, R., Morell, M.K. & Emes, M.J. (2015). Protein-protein interactions among enzymes of starch biosynthesis in high-amylose barley genotypes reveal differential roles of heteromeric enzyme complexes in the synthesis of A and B granules. Plant Sci., 233, pp. 95-106. https://doi.org/10.1016/j.plantsci.2014.12.016

21. Oliver, R.E., Islamovic, E., Obert, D.E., Wise, M.L. & Herrin, L.L. (2015). Comparative systems biology reveals allelic variation modulating tocochromanol profiles in barley (Hordeum vulgare L.). PLoS One, 54, p. 9. e96276. https://doi.org/10.1371/journal.pone.0106020

22. Pasam, R.K., Sharma, R., Malosetti, M., Eeuwijk, F.A., Haseneyer, G., Kilian, B. & Graner, A. (2012). Genome-wide association studies for agronomical traits in a world wide spring barley collection. BMC Plant Biol., 12, p. 16. https://doi.org/10.1186/1471-2229-12-16

23. Sallam, A.H., Tyagi, P., Brown-Guedira, G., Muehlbauer, G.J., Hulse, A. & Steffenson, B.J. (2017). Genome-wide association mapping of stem rust resistance in Hordeum vulgare subsp spontaneum. Genes Genomes Genetics, 7, pp. 3491-3507. https://doi.org/10.1534/g3.117.300222

24. Zhang, C., Cahoon, R.E., Hunter, S.C., Chen, M., Han, J. & Cahoon, E.B. (2013). Genetic and biochemical basis for alternative routes of tocotrienol biosynthesis for enhanced vitamin E antioxidant production. The Plant Journal, 73, pp. 628-639. https://doi.org/10.1111/tpj.12067

25. Sichcar, N.M. (1963). On the dependence of gluten formation on the total protein content and its alcohol-soluble fraction. Naych. tr. Kybanskoy st., 2, pp. 278-288 [in Ukrainian].

26. Bader, U.l., Ain, H., Saeed, F., Ahmad, N., Imran, A., Niaz, B., Afzaal, M., Imran, M., Tufail, T. & Javed, A. (2018). Functional and health-endorsing properties of wheat and barley cell wall's non-starch polysaccharides. Int. J. Food Prop., 21, pp. 1463-1480. https://doi.org/10.1080/10942912.2018.1489837

27. Kruma, Z., Tomsone, L., Galoburda, R., Straumite, E., Kronberga, A. & Assveen, M. (2016). Total phenols and antioxidant capacity of hull-less barley and hull-less oats. Agronomy Research, 14, pp. 1361-1371.

28. Rybalka, O., Morgun, B. & Polishchuk, S. (2016). Barley as a product of functional nutrition. Kyiv [in Ukrainian].

29. Morell, M., Kosar-Hashemi, B., Cmiel, M., Samuel, M., Chandler, P., Rahman, S., Buleon, A., Batey, I. & Li, Z. (2003). Barley sex6 mutants lack starch synthase IIa activity and contain a starch with novel properties. Plant J., 34, pp. 173-185. https://doi.org/10.1046/j.1365-313X.2003.01712.x

30. Elhassan, M.S., Emmambux, M.N., Hays, D.B., Peterson, G.C. & Taylor, J.N. (2015). Novel biofortified sorghum lines with combined waxy (high amylopectin) starch and high protein digestibility traits: Effects on endosperm and flour properties. J. Cereal Sci., 65, pp. 132-139. https://doi.org/10.1016/j.jcs.2015.06.017

31. Zhu, Y., Li, T., Fu, X., Brennan, M., Abbasi, A.M., Zheng, B. & Liu, R.H. (2016). The use of an enzymatic extraction procedure for the enhancement of highland barley (Hordeum vulgare L.) phenolic and antioxidant compounds. Int. J. Food Sci. Technol., 51, pp. 1916-1924. https://doi.org/10.1111/ijfs.13165

32. Guariguata, L., Whiting, D.R., Hambleton, I.R., Beagle, J., Linnenkamp, U. & Shaw, J.E. (2014). Global estimates of diabetes prevalence for 2013 and projections for 2035. Diabetes Res. Clin. Pract., 103, pp. 137-149. https://doi.org/10.1016/j.diabres.2013.11.002

33. Lockyer, S. & Nugent, A.P. (2017). Health effects of resistant starch. Nutr. Bull., 2, pp. 10-41. https://doi.org/10.1111/nbu.12244

34. Bhattarai, R.R., Dhita, l.S., Mense, A., Gidley, M.J. & Shi, Y.-C. (2018). Intact cellular structure in cereal endosperm limits starch digestion in vitro. Food Hydrocoll., 81, pp.139-148. https://doi.org/10.1016/j.foodhyd.2018.02.027

35. Fedak, G. & Roche, I.A. (1997). Lipid and fatty acid composition of barley kernels. Can. J. Plant Sci., 57, pp. 257-260. https://doi.org/10.4141/cjps77-035

36. Bhatty, R.S. & Rossnagel, B.B. (1979). Oil content of Riso 1508 barley. J. Cereal Chem., 56, p. 586.

37. Baghalian, K., Hajirezaei, M.R. & Schreiber, F. (2015). Plant metabolic modeling: achieving new insight into metabolism and metabolic engineering. Plant Cell., 26(10), pp. 3847-3866. https://doi.org/10.1105/tpc.114.130328

38. Carciofi, M., Blennow, A., Jensen, S.L., Shaik, S.S., Henriksen, A., Bulѕon A., Holm, P.B. & Hebelstrup, K.H. (2012). Concerted suppression of all starch branching enzyme genes in barley produces amylose-only starch granules. BMC Plant Biol., 12, p. 223. https://doi.org/10.1186/1471-2229-12-223

39. Ehrenbergerova, J., Belcrediova, N., Pryma, J., Vaculova, K. & Newman, C.W. (2006). Effect of cultivar, year grown, and cropping system on the content of tocopherols and tocotrienols in grains of hulled and hulless barley. J. Plant Foods Human Nutr., 61, pp. 145-150. https://doi.org/10.1007/s11130-006-0024-6

40. Grafahrend-Belau, E., Schreiber, F., Koschтtzki, D. & Junker, B.H. (2009). Flux balance analysis of barley seeds: a computational approach to study systemic properties of central metabolism. Plant Physiol., 149(1), pp. 585-598. https://doi.org/10.1104/pp.108.129635

41. Vaculova, K., Ehrenbergerova, J., Nemejc, R. & Pryma, J. (2001). The variability and correlations between the content of vitamin E and its isomers in hybrids of the F2 generation of spring barley. Acta Univ. Agric. et Silva. Mendel. Brun., 5, pp. 1-9.

42. Borisjuk, L., Macherel, D., Benamar, A., Wobus, U. & Rolletschek, H. (2007). Low oxygen sensing and balancing in plant seeds - a role for nitric oxide. New Phytol., 176 (4), pp. 813-823. https://doi.org/10.1111/j.1469-8137.2007.02226.x

43. Einbonda, L., Reynertsona, K., Luoa, X.-D., Margaret, J. Basileb, M. & Kennelly, E. (2004). Anthocyanin antioxidants from edible fruits. Food Chem., 8, pp. 23-28. https://doi.org/10.1016/S0308-8146(03)00162-6

44. Dykes, L. & Rooney, L. (2006). Sorghum and millet phenols and antioxidants. J. Cereal Sci., 44, pp. 236-251. https://doi.org/10.1016/j.jcs.2006.06.007

45. Cavallero, A. & Viva, M. (2000). Stanca Improvement of spaghetti and bread with beta-glucan and tocols from naked barley flour. Proc. of the 8th Int. Barley Genet. Symp., 1, pp. 282-285.

46. Li, L., Perret, J., Haris, M., Wilson, J. & Haley, S. (2003). Antioxidant Properties of Bran Extracts from «Akron» Wheat Grown at Different Locations. J. Agric. Food Chem., 51, pp. 1566-1570. https://doi.org/10.1021/jf020950z

47. Andersen, O. & Jordheim, M. (2006). The anthocyanins. In Flavonoids: Chemistry, Biochemistry and Applications. Boca Raton, FL: CRC Press, pp. 471-552. https://doi.org/10.1201/9781420039443.ch10

48. Julian, I., Gandullo, J., Santos-Silva, L.K., Diaz, I. & Martinez, M. (2013). Phylogenetically distant barley legumains have a role in both seed and vegetative tissues. J. Exp. Bot., 64(10), pp. 2929-2941. https://doi.org/10.1093/jxb/ert132

48. Rolletschek, H., Melkus, G., Grafahrend-Belau, E., Fuchs, J., Heinzel, N., Schreiber, F., Jakob, P.M. & Borisjuk, L. (2011). Combined noninvasive imaging and modeling approaches reveal metabolic compartmentation in the barley endosperm. Plant Cell., 23 (8), pp. 3041-3054. https://doi.org/10.1105/tpc.111.087015

49. Aman, P. & Newman, C.W. (1986). Chemical composition of some different types of barley grown in Montana, USA. J. Cereal Sci., 4, pp. 133-141. https://doi.org/10.1016/S0733-5210(86)80016-9

50. Liu, R.H. (2007). Potential synergy of phytochemicals in cancer prevention: mechanism of action. J. Nut., 134, pp. 3479-3485. https://doi.org/10.1093/jn/134.12.3479S

51. Rivas-Gonzalo, J.C., Santos-Buelga, C. & Williamson, G. (2003). Analysis of anthocyanins. In Method in Polyphenol. The Royal Society of Chemistry, 32, pp. 338-358.

52. Finch, R. & Simpson, E. (1978). New colors and complementary color genes in barley. Z. Pflanzenzucht, 81, pp. 40-53.

53. Adom, K.K. & Liu, R.H. (2013). Antioxidant Activity of Grains. J. Agric. Food Chem., 50 (21), pp. 6182-6187. https://doi.org/10.1021/jf0205099

54. Jia, Q., Wang, J., Zhu, J., Hua, W., Shang, Y. & Yang, J. (2017). Toward identification of black lemma and pericarp gene Blp1 in barley combining bulked segregant analysis and specific-locus amplified fragment sequencing. Front. Plant Sci., 8, p. 1414. https://doi.org/10.3389/fpls.2017.01414

55. Pasqualone, A., Bianco, A.M., Paradiso, V.M., Summo, C., Gambacorta, G., Caponio, F. & Blanco, A. (2015). Production and characterization of functional biscuits obtained from purple wheat. Food Chem., 180, pp. 64-70. https://doi.org/10.1016/j.foodchem.2015.02.025

56. Kim, M., Hyun, J., Kim, J., Park, J., Kim, M. & Kim, J. (2007). Relationship between phenolic compounds, anthocyanins content and antioxidant activity in colored barley germplasm. J. Agric. Food Chem., 55(12), pp. 4802-4809. https://doi.org/10.1021/jf0701943

57. Siebenhandl, S., Grausgruber, H., Pellegrini, N., Del-Rio, D., Fogliano, V. & Pernice, R. (2007). Phytochemical profile of main antioxidants in different fractions of purple and blue wheat, and black barley. J. Agric. Food Chem., 55(21), pp. 8541-8547. https://doi.org/10.1021/jf072021j

58. Long, Z., Jia, Y., Tan, C., Zhang, X.-Q., Angessa, T., Broughton, S., Westcott, S., Dai, F., Zhang, G., Sun, D., Xu, Y. & Li, C. (2019). Genetic mapping and evolutionary analyses of the black grain trait in barley. Front Plant Sci., 9, pp. 1-11. https://doi.org/10.3389/fpls.2018.01921

59. Kahkonen, M. & Heinonen, M. (2003). Antioxidant activity of anthocyanins and their aglycones. J. Agric. Food Chem., 51, pp. 628-633. https://doi.org/10.1021/jf025551i

60. DeFuria, J., Bennett, G. & Strissel, K. (2009). Dietary blueberry attenuates whole-body insulin resistance in high fat-fed mice by reducing adipocyte death and its inflammatory sequelae. J. Nutr., 139, pp. 1-7. https://doi.org/10.3945/jn.109.105155

61. Fukumoto, L. & Mazza, G. (2000). Assessing antioxidant and prooxidant activities of phenolic compounds. J. Agric. Food Chem., 48, pp. 3597-3604. https://doi.org/10.1021/jf000220w

62. Astadi, I., Astuti, M., Santoso, U. & Nugraheni, P. (2009). In vitro antioxidant activity of anthocyanins of black soybean seed coat in human low density lipoprotein (LDL). Food Chem., 112, pp. 659-663. https://doi.org/10.1016/j.foodchem.2008.06.034

63. Fimognari, C., Berti, F., Nusse, M., Cantelli-Forti, G. & Hrelia, P. (2004). Induction of apoptosis in two human leukemia cell lines as well as differentiation in human promyelocytic cells by cyanin-3-O-beta-glucopyranoside. Biochem. Pharmacol., 67, pp. 2047-2056. https://doi.org/10.1016/j.bcp.2004.02.021

64. Kang, S., Seeram, N., Nair, M. & Bourquin, L. (2003). Tart cherry anthocyanins inhibit tumor development in Apc (Min) mice and reduce proliferation of human colon cancer cells. Cancer Lett, 194, pp. 13-19. https://doi.org/10.1016/S0304-3835(02)00583-9

65. Ghosh, D. & Konishi, T. (2007). Anthocyanins and anthocyanin-rich extracts: role in diabetes and eye function. Asia Pac. J. Clin. Nutr., 16, pp. 200-208. https://doi.org/10.6133/APJCN.2007.16.2.01

66. Sajilata, M.G., Singhal, R.S. & Kulkarni, P.R. (2006). Resistant Starch-A Review. Food Science and Food Safety, 5, pp. 1-17. https://doi.org/10.1111/j.1541-4337.2006.tb00076.x

67. Ojo, O., Adebowale, F. & Wang, X.H. (2018). The effect of dietary glycaemic index on glycaemia in patients with type 2 diabetes: A systematic review and meta-analysis of randomized controlled trials. Nutrients, 10, p. 373. https://doi.org/10.3390/nu10030373

68. Englyst, K., Vinoy, S., Englyst, H. & Lang, V. (2003). Glycaemic index of cereal products explained by their content of rapidly and slowly available glucose. Br. J. of Nutr., 89, pp. 329-339. https://doi.org/10.1079/BJN2002786

69. Sui, X., Yap, Yi. & Zhou, W. (2015). Anthocyanins During Baking: Their Degradation Kinetics and Impacts on Color and Antioxidant Capacity of Bread. Food Bioprocess Technol., 8, pp. 983-994. https://doi.org/10.1007/s11947-014-1464-x

70. Wu, X., Beecher, G.R., Holden, J.M., Haytowitz, D.B., Gebhard, S.E. & Prior, R.L. (2004). Lipophilic and hydrophilic antioxidant capacities of common foods in the United States. J. Agric. Food Chem., 52, pp. 4026-4037. https://doi.org/10.1021/jf049696w

71. Bashir, K.M. & Choi, J.S. (2017). Clinical and physiological perspectives of b-glucans: The past, present, and future. Int. J. of Mol. S., 18(9), p. 1906. https://doi.org/10.3390/ijms18091906

72. Jabri, B. & Sollid, L.M. (2017). T cells in celiac disease. J. Immunol., 198, pp. 3005-3014. https://doi.org/10.4049/jimmunol.1601693

73. Niu, M. & Hou, G.G. (2018). Whole wheat noodle: Processing, quality improvement, and nutritional and health benefits. Cereal Chem. J., 96, pp. 23-33. https://doi.org/10.1002/cche.10095

74. Rosell, C., Barro, F. & Sousa, C. (2014). Cereals for developing gluten-free products and analytical tools for gluten detection. J. Cereal Sci., 59, pp. 354-364. https://doi.org/10.1016/j.jcs.2013.10.001

75. Zuidmeer, L., Goldhahn, K. & Rona, R. (2008). The prevalence of plant food allergies: a systematic review. J. Allergy Clin. Immunol., 121, pp. 1210-1218. https://doi.org/10.1016/j.jaci.2008.02.019

76. Comino, I., Real, A. & Moreno, M. (2013). Immunological determination of gliadin 33-mer equivalent peptides in beers as a speci?c and practical analytical method to assess safety for celiac patients. J. Sci. Food Agric., 15, pp. 933-943. https://doi.org/10.1002/jsfa.5830

77. Zhang, K., Yang, J., Qia, Z., Cao, X., Luo, Q., Zhao, J., Wa, F. & Zhan, W. (2019). Assessment of b-glucans, phenols, flavor and volatile profiles of hulless barley wine originating from highland areas of China. Food Chem., 293, pp. 32-40. https://doi.org/10.1016/j.foodchem.2019.04.053

78. Jood, S. & Kalra, S. (2001). Chemical composition and nutritional characteristics of some hull less and hulled barley cultivars grown in India. Nahrung, 45, pp. 35-39. https://doi.org/10.1002/1521-3803(20010101)45:1<35::AID-FOOD35>3.0.CO;2-U https://doi.org/10.1002/1521-3803(20010101)45:1<35::AID-FOOD35>3.0.CO;2-U

79. Oboh, G., Ademiluyi, A.O., Akinyemi, A.J., Henle, T., Saliu, J.A. & Schwarzenbolz, U. (2012). Inhibitory effect of polyphenol-rich extracts of jute leaf (Corchorus olitorius) on key enzyme linked to type 2 diabetes (a-amylase and a-glucosidase) and hypertension (angiotensin I converting) in vitro. J. Funct. Foods., 4, pp. 450-458. https://doi.org/10.1016/j.jff.2012.02.003

80. Otman, E.M., Frid, A.H., Groop, L.C. & Bjorck, M.E. (2005). A dietary exchange of common bread for tailored bread of low glycaemic index and rich in dietary fibre improved insulin economy in young women with impaired glucose tolerance. Eur. J. Clin. Nutr., 60, pp. 334-341. https://doi.org/10.1038/sj.ejcn.1602319

81. Vicentini, A., Liberatore, L. & Mastrocola, D. (2016). Functional foods: Trends and development of the global market. Ital. J. Food Sci., 28, pp. 338-351. https://doi.org/10.14674/1120-1770/ijfs.v211

82. Yildiz, G. & Bigicli, N. (2012). Effects of whole buckwheat flour on physical, chemical and sensory properties of flat bread, Lavas. Czech. J. Food Sci., 30(6), pp. 534-540. https://doi.org/10.17221/10/2012-CJFS

83. Zhou, G., Panozzo, J., Zhang, X.-Q., Cakir, M., Harasymow, S. & Li, C. (2016). QTL mapping reveals genetic architectures of malting quality between Australian and Canadian malting barley (Hordeum vulgare L.). Mol. Breeding, 36(6), pp. 1-12. https://doi.org/10.1007/s11032-016-0492-9

84. Mattila, P., Pihlava, J.M. & Hellstrom, J. (2005). Contents of phenolic acids, alkyl- and alkenylresorcinols, and avenanthramides in commercial grain products. J. Agric. Food Chem., 53, pp. 8290-8295. https://doi.org/10.1021/jf051437z

85. Newbigin, E., Bacic, A., Langridge, P. & Fincher, G. (2004). Functional genomics in the productivity and-use quality of barley. Czech. J. Genet. Plant Breed., 40, pp. 107.

86. Onimawo, I.A. & Asug, S. (2004). Effects of germination on the nutrient content and functional properties of pigeon pea flour. J. Food Sci. Technol., 41, pp. 170-174. https://doi.org/10.3923/pjn.2009.737.744

87. Dawson, I.K., Russell, J., Powell, W., Steffenson, B. & Waugh, R. (2015). Barley: a translational model for adaptation to climate change. New Phytologist, 206, pp. 913-931. https://doi.org/10.1111/nph.13266

88. Tanno, K. & Willcox, G. (2012). Distinguishing wild and domestic wheat and barley spikelets from early Holocene sites in the Near East. Vegetation History and Archaeobotany, 21, pp. 107-111. https://doi.org/10.1007/s00334-011-0316-0

89. Farzaneh, V., Ghodsvali, A., Bakhshabadi, H., Zare, Z. & Carvalho, I.S. (2017). The impact of germination time on the some selected parameters through malting process. Int. J. Biol. Macromol., 94, pp. 663-668. https://doi.org/10.1016/j.ijbiomac.2016.10.052

90. Dogan, Y., Kendal, E. & Oral, E. (2016). Identifying of relationship between traits and grain yield in spring Barley by GGE biplot analysis. J. Agric. Forestry, 62(4), pp. 239-252. https://doi.org/10.17707/AgricultForest.62.4.25

91. Hafez, Y.M., Mourad, R.Y., Mansour, M. & Abdelaal, K.A. (2014). Impact of non-traditional compounds and fungicides on physiological and biochemical characters of barely infected with Blumeria graminis f. sp hordeiunder field conditions. J. Biol. Pest. Control, 24, pp. 445-453.

92. Hepworth, C., Doheny-Adams, T., Hunt, L., Cameron, D.D. & Gray, J.E. (2015). Manipulating stomatal density enhances drought tolerance without deleterious effect on nutrient uptake. New Phytol., 208, pp. 336-341. https://doi.org/10.1111/nph.13598

93. Tamang, P., Neupane, A., Mamidi, S., Friesen, T. & Brueggeman, R. (2015). Association mapping of seedling resistance to spot form net blotch in a worldwide collection of barley. Phytopathology, 105(4), pp. 500-508. https://doi.org/10.1094/PHYTO-04-14-0106-R

94. Wang, W., Vinocur, B. & Altman, A. (2003). Plant responses to drought, salinity and extreme temperatures: Towards genetic engineering for stress tolerance. Planta, 218, pp. 1-14. https://doi.org/10.1007/s00425-003-1105-5

95. Bhargava, S. & Sawant, K. (2013). Drought stress adaptation: Metabolic adjustment and regulation of gene expression. Plant Breed., 132, pp. 21-32. https://doi.org/10.1111/pbr.12004

96. Gao, J., Vasanthan, T. & Hoover, R. (2009). Isolation and Characterization of High-Purity Starch Isolates from Regular, Waxy, and High-Amylose Hulless Barley Grains. Cereal Chemistry, 86, pp. 157-163. https://doi.org/10.1094/CCHEM-86-2-0157

97. Ahmed, I.M., Dai, H., Zheng, W., Cao, F., Zhang, G., Sun, D. & Wu, F. (2013). Genotypic differences in physiological characteristics in the tolerance to drought and salinity combined stress between Tibetan wild and cultivated barley. Plant Physiol. Biochem., 63, pp. 49-60. https://doi.org/10.1016/j.plaphy.2012.11.004

98. Polakova, K., Vaculova, K. & Kucera, L. (2004). Selection of barley lines with waxy endosperm and hulless grains: genotyping and phenotyping. Czech. J. Genet. Plant Breed., 40, p. 114.

99. Jacobs, D. & Steffen, L. (2003). Nutrients, foods, and dietary patterns as exposures in research: A framework for food synergy. Am. J. Clin. Nutr., 78, pp. 508-513. https://doi.org/10.1093/ajcn/78.3.508S