Fiziol. rast. genet. 2021, vol. 53, no. 6, 463-483, doi:

Physiological-biochemical and genetic features of barley as a product for functional nutrition

Katrii V.B.1, Rybalka A.I.1,2, Morgun B.V.1,3

  1. Institute of Plant Physiology and Genetics of the National Academy of Sciences of Ukraine 31/17 Vasylkivska St., Kyiv, 03022, Ukraine
  2. Plant Breeding and Genetics Institute—National Center of Seed and Cultivars Investigation, National Academy of Agrarian Sciences of Ukraine  3 Ovidiopolska Road, Odesa, 65036, Ukraine
  3. Institute of Cell Biology and Genetic Engineering of the National Academy of Sciences of Ukraine 148 Akademika Zabolotnoho St., Kyiv, 03143, Ukraine

The literature review presents current data on the physiological, biochemical and genetic characteristics of barley as a product for functional nutrition. Attention to barley has increased especially in the last 10—15 years due to the latest clinical, dietary and biochemical studies of its grain products, performed in laboratories of leading countries, which proved the exceptionally high nutritional value of barley grain, especially its ability to serve prophylactic against such serious diseases of the last century as coronary heart disease, diabetes, etc. It is shown that the extremely high nutritional value of barley grain is due to the content of unique non-starch polysaccharides beta-glucans, a complex of substances with a wide range of antioxidant activity (tocol, phytosterols, flavonoids, phytophenols), vitamin B complex, nicotinic acid, nicotine minerals such as iron, zinc, manganese, selenium. Attention is paid to the technology of selection of hull-less barley, which includes a number of specific tasks related to the physical characteristics of grain without hull, its biochemical and technological properties. The latest trends in genetic research aimed at improving barley grain in terms of starch composition, protein quality, content of vitamins, minerals and antioxidants are highlighted. The prospects of using molecular-biological methods to improve the nutritional characteristics of barley are shown, which allow using specific molecular markers to direct the genetic variability of these characteristics in the direction necessary for the breeder. A new direction for Ukraine in the selection of cereals with colored grain in order to increase the nutritional value of grain, which is the basis for the emergence of new functional foods in the food market of our country, is described.

Keywords: barley, gluten, amylose, phytates, antioxidant activity, anthocyanins, genetic research, molecular markers

Fiziol. rast. genet.
2021, vol. 53, no. 6, 463-483

Full text and supplemented materials

Free full text: PDF  


1. Kumar, P., Banjarey, P., Malik R., Tikle, A.N. & Verma, R.P. (2020). Population structure and diversity assessment of barley (Hordeum vulgare L.) introduction from ICARDA. Journal of Genetics, 99(70), pp. 70-79.

2. Karoui-Kharrat, D., Kaddour, H., Hamdi, Y., Mokni, M., Amri, M. & Mezghani, S. (2017). Response of antioxidant enzymes to cadmium-induced cytotoxicity in rat cerebellar granule neurons. Open Life Sci., 12, pp. 113-119.

3. Liu, Y., Qiu, J., Yue, Y., Li, K. & Ren, G. (2018). Dietary black-grained wheat intake improves glycemic control and inflammatory profile in patients with type 2 diabetes: a randomized controlled trial. Therapeutic and Clinical Risk Management, 14, pp. 247-256.

4. Idehen, E., Tang, Y. & Sang, Sh. (2017). Bioactive phytochemicals in barley. J. of Food and Drug Analysis, 25, pp. 148-161.

5. Yaoguang, L., Dongyun, M., Dexiang, S. & Chenyang, W. (2015). Total phenolic, flavonoid content, and antioxidant activity of flour, noodles, and steamed bread made from different colored wheat grains by three milling methods. The Crop J., 3, pp. 328-334.

6. Sherman, J., Souza, E., See, D. & Talbert, L.E. (2008). Microsatellite markers for kernel color genes in wheat. Crop Science, 48, pp. 1419-1424.

7. Abraham, Z., Iglesias-Fernandez, R., Martinez, M., Rubio-Somoza, I., Diaz, I., Carbonero, P. & Vicente-Carbajosa, J. (2016). A developmental switch of gene expression in the barley seed mediated by HvVP1 (Viviparous-1) and HvGAMYB interactions. Plant Physiol., 170, pp. 2146-2158.

8. Bai, B., Peviani, A., Gamm, M., Snel, B., Bentsink, L. & Hanson, J. (2017). Extensive translational regulation during seed germination revealed by polysomal profiling. New Phytol., 214, pp. 233-244.

9. Narsai, R., Gouil, Q., Secco, D., Srivastava, A., Karpievitch, Y.V., Liew, L.C., Lister, R., Lewsey, M.G. & Whelan, J. (2017). Extensive transcriptomic and epigenomic remodelling occurs during Arabidopsis thaliana germination. Genome Biol., 18, p. 172.

10. Resentini, F., Felipo-Benavent, A., Colombo, L., Blazquez, M.A., Alabadi, D. & Masiero, S. (2015). TCP14 and TCP15 mediate the promotion of seed germination by gibberellins in Arabidopsis thaliana. Mol. Plant., 8, pp. 482-485.

11. Zhu, Y., Li, T., Fu, X., Abbasi, A.M., Zheng, B. & Liu, R.H. (2015). Phenolics content, antioxidant and antiproliferative activities of dehulled highland barley (Hordeum vulgare L.). J. Funct. Foods., 19, pp. 439-450.

12. Krzysztoforska, K., Mirowska-Guzel, D. & Widy-Tyszkiewicz, E. (2019). Pharmacological effects of protocatechuic acid and its therapeutic potential in neurodegenerative diseases: Review on the basis of in vitro and in vivo studies in rodents and humans. Nutr. Neurosci., 22, pp. 72-82.

13. Awasthi, R., Bhandari, K. & Nayyar, H. (2015). Temperature stress and redox homeostasis in agricultural crops. Front. Environ. Sci., 3, p. 11.

14. Rybalka, O.I. (2011). Yakist pshenytci ta ii polipshennya. Kyiv [in Ukrainian].

15. Hammami, Z., Gauffreteau, A., BelhajFraj, M., Sahli, A., Jeuffroy, M.H., Rezgui, S., Bergaoui, K., McDonnell, R. & Trifa, Y. (2017). Predicting yield reduction in improved barley (Hordeum vulgare L.) varieties and landraces under salinity using selected tolerance traits. Field Crops Res., 211, pp. 10-18.

16. Bohmdorfern, S., Oberlerchner, J., Fuchs, C., Rosenau, T. & Grausgruber, H. (2018). Profling and quantifcation of grain anthocyanins in purple pericarp'blue aleurone wheat crosses by high-performance thin-layer chromatography and densitometry. Plant Methods, 14, pp. 1-15.

17. Lan, S., Li, X. & Liu, X.P. (2008). Genetic of seed pigment of blue kernel wheat. Acta Agriculturae Boreali Sinica, 23, pp. 12-14.

18. Qualset, C., Soliman, K., Jan, C., Dvorak, J., McGuire, P. & Vogt, H. (2005). Triticum aestivum blue aleurone genetic stock. Crop Sci., 45, pp. 432-435.

19. Liu, H.L., Chen, X.M., Zhang, D.W., Wang, J., Wang, S. & Sun, B.G. (2018). Effects of highland barley bran extract rich in phenolic acids on the formation of Ne-carboxymethyllysine in a biscuit model. J. Agric. Food Chem., 66, pp. 1916-1922.

20. Ahmed, Z., Tetlow, I.J., Ahmed, R., Morell, M.K. & Emes, M.J. (2015). Protein-protein interactions among enzymes of starch biosynthesis in high-amylose barley genotypes reveal differential roles of heteromeric enzyme complexes in the synthesis of A and B granules. Plant Sci., 233, pp. 95-106.

21. Oliver, R.E., Islamovic, E., Obert, D.E., Wise, M.L. & Herrin, L.L. (2015). Comparative systems biology reveals allelic variation modulating tocochromanol profiles in barley (Hordeum vulgare L.). PLoS One, 54, p. 9. e96276.

22. Pasam, R.K., Sharma, R., Malosetti, M., Eeuwijk, F.A., Haseneyer, G., Kilian, B. & Graner, A. (2012). Genome-wide association studies for agronomical traits in a world wide spring barley collection. BMC Plant Biol., 12, p. 16.

23. Sallam, A.H., Tyagi, P., Brown-Guedira, G., Muehlbauer, G.J., Hulse, A. & Steffenson, B.J. (2017). Genome-wide association mapping of stem rust resistance in Hordeum vulgare subsp spontaneum. Genes Genomes Genetics, 7, pp. 3491-3507.

24. Zhang, C., Cahoon, R.E., Hunter, S.C., Chen, M., Han, J. & Cahoon, E.B. (2013). Genetic and biochemical basis for alternative routes of tocotrienol biosynthesis for enhanced vitamin E antioxidant production. The Plant Journal, 73, pp. 628-639.

25. Sichcar, N.M. (1963). On the dependence of gluten formation on the total protein content and its alcohol-soluble fraction. Naych. tr. Kybanskoy st., 2, pp. 278-288 [in Ukrainian].

26. Bader, U.l., Ain, H., Saeed, F., Ahmad, N., Imran, A., Niaz, B., Afzaal, M., Imran, M., Tufail, T. & Javed, A. (2018). Functional and health-endorsing properties of wheat and barley cell wall's non-starch polysaccharides. Int. J. Food Prop., 21, pp. 1463-1480.

27. Kruma, Z., Tomsone, L., Galoburda, R., Straumite, E., Kronberga, A. & Assveen, M. (2016). Total phenols and antioxidant capacity of hull-less barley and hull-less oats. Agronomy Research, 14, pp. 1361-1371.

28. Rybalka, O., Morgun, B. & Polishchuk, S. (2016). Barley as a product of functional nutrition. Kyiv [in Ukrainian].

29. Morell, M., Kosar-Hashemi, B., Cmiel, M., Samuel, M., Chandler, P., Rahman, S., Buleon, A., Batey, I. & Li, Z. (2003). Barley sex6 mutants lack starch synthase IIa activity and contain a starch with novel properties. Plant J., 34, pp. 173-185.

30. Elhassan, M.S., Emmambux, M.N., Hays, D.B., Peterson, G.C. & Taylor, J.N. (2015). Novel biofortified sorghum lines with combined waxy (high amylopectin) starch and high protein digestibility traits: Effects on endosperm and flour properties. J. Cereal Sci., 65, pp. 132-139.

31. Zhu, Y., Li, T., Fu, X., Brennan, M., Abbasi, A.M., Zheng, B. & Liu, R.H. (2016). The use of an enzymatic extraction procedure for the enhancement of highland barley (Hordeum vulgare L.) phenolic and antioxidant compounds. Int. J. Food Sci. Technol., 51, pp. 1916-1924.

32. Guariguata, L., Whiting, D.R., Hambleton, I.R., Beagle, J., Linnenkamp, U. & Shaw, J.E. (2014). Global estimates of diabetes prevalence for 2013 and projections for 2035. Diabetes Res. Clin. Pract., 103, pp. 137-149.

33. Lockyer, S. & Nugent, A.P. (2017). Health effects of resistant starch. Nutr. Bull., 2, pp. 10-41.

34. Bhattarai, R.R., Dhita, l.S., Mense, A., Gidley, M.J. & Shi, Y.-C. (2018). Intact cellular structure in cereal endosperm limits starch digestion in vitro. Food Hydrocoll., 81, pp.139-148.

35. Fedak, G. & Roche, I.A. (1997). Lipid and fatty acid composition of barley kernels. Can. J. Plant Sci., 57, pp. 257-260.

36. Bhatty, R.S. & Rossnagel, B.B. (1979). Oil content of Riso 1508 barley. J. Cereal Chem., 56, p. 586.

37. Baghalian, K., Hajirezaei, M.R. & Schreiber, F. (2015). Plant metabolic modeling: achieving new insight into metabolism and metabolic engineering. Plant Cell., 26(10), pp. 3847-3866.

38. Carciofi, M., Blennow, A., Jensen, S.L., Shaik, S.S., Henriksen, A., Bulѕon A., Holm, P.B. & Hebelstrup, K.H. (2012). Concerted suppression of all starch branching enzyme genes in barley produces amylose-only starch granules. BMC Plant Biol., 12, p. 223.

39. Ehrenbergerova, J., Belcrediova, N., Pryma, J., Vaculova, K. & Newman, C.W. (2006). Effect of cultivar, year grown, and cropping system on the content of tocopherols and tocotrienols in grains of hulled and hulless barley. J. Plant Foods Human Nutr., 61, pp. 145-150.

40. Grafahrend-Belau, E., Schreiber, F., Koschтtzki, D. & Junker, B.H. (2009). Flux balance analysis of barley seeds: a computational approach to study systemic properties of central metabolism. Plant Physiol., 149(1), pp. 585-598.

41. Vaculova, K., Ehrenbergerova, J., Nemejc, R. & Pryma, J. (2001). The variability and correlations between the content of vitamin E and its isomers in hybrids of the F2 generation of spring barley. Acta Univ. Agric. et Silva. Mendel. Brun., 5, pp. 1-9.

42. Borisjuk, L., Macherel, D., Benamar, A., Wobus, U. & Rolletschek, H. (2007). Low oxygen sensing and balancing in plant seeds - a role for nitric oxide. New Phytol., 176 (4), pp. 813-823.

43. Einbonda, L., Reynertsona, K., Luoa, X.-D., Margaret, J. Basileb, M. & Kennelly, E. (2004). Anthocyanin antioxidants from edible fruits. Food Chem., 8, pp. 23-28.

44. Dykes, L. & Rooney, L. (2006). Sorghum and millet phenols and antioxidants. J. Cereal Sci., 44, pp. 236-251.

45. Cavallero, A. & Viva, M. (2000). Stanca Improvement of spaghetti and bread with beta-glucan and tocols from naked barley flour. Proc. of the 8th Int. Barley Genet. Symp., 1, pp. 282-285.

46. Li, L., Perret, J., Haris, M., Wilson, J. & Haley, S. (2003). Antioxidant Properties of Bran Extracts from «Akron» Wheat Grown at Different Locations. J. Agric. Food Chem., 51, pp. 1566-1570.

47. Andersen, O. & Jordheim, M. (2006). The anthocyanins. In Flavonoids: Chemistry, Biochemistry and Applications. Boca Raton, FL: CRC Press, pp. 471-552.

48. Julian, I., Gandullo, J., Santos-Silva, L.K., Diaz, I. & Martinez, M. (2013). Phylogenetically distant barley legumains have a role in both seed and vegetative tissues. J. Exp. Bot., 64(10), pp. 2929-2941.

48. Rolletschek, H., Melkus, G., Grafahrend-Belau, E., Fuchs, J., Heinzel, N., Schreiber, F., Jakob, P.M. & Borisjuk, L. (2011). Combined noninvasive imaging and modeling approaches reveal metabolic compartmentation in the barley endosperm. Plant Cell., 23 (8), pp. 3041-3054.

49. Aman, P. & Newman, C.W. (1986). Chemical composition of some different types of barley grown in Montana, USA. J. Cereal Sci., 4, pp. 133-141.

50. Liu, R.H. (2007). Potential synergy of phytochemicals in cancer prevention: mechanism of action. J. Nut., 134, pp. 3479-3485.

51. Rivas-Gonzalo, J.C., Santos-Buelga, C. & Williamson, G. (2003). Analysis of anthocyanins. In Method in Polyphenol. The Royal Society of Chemistry, 32, pp. 338-358.

52. Finch, R. & Simpson, E. (1978). New colors and complementary color genes in barley. Z. Pflanzenzucht, 81, pp. 40-53.

53. Adom, K.K. & Liu, R.H. (2013). Antioxidant Activity of Grains. J. Agric. Food Chem., 50 (21), pp. 6182-6187.

54. Jia, Q., Wang, J., Zhu, J., Hua, W., Shang, Y. & Yang, J. (2017). Toward identification of black lemma and pericarp gene Blp1 in barley combining bulked segregant analysis and specific-locus amplified fragment sequencing. Front. Plant Sci., 8, p. 1414.

55. Pasqualone, A., Bianco, A.M., Paradiso, V.M., Summo, C., Gambacorta, G., Caponio, F. & Blanco, A. (2015). Production and characterization of functional biscuits obtained from purple wheat. Food Chem., 180, pp. 64-70.

56. Kim, M., Hyun, J., Kim, J., Park, J., Kim, M. & Kim, J. (2007). Relationship between phenolic compounds, anthocyanins content and antioxidant activity in colored barley germplasm. J. Agric. Food Chem., 55(12), pp. 4802-4809.

57. Siebenhandl, S., Grausgruber, H., Pellegrini, N., Del-Rio, D., Fogliano, V. & Pernice, R. (2007). Phytochemical profile of main antioxidants in different fractions of purple and blue wheat, and black barley. J. Agric. Food Chem., 55(21), pp. 8541-8547.

58. Long, Z., Jia, Y., Tan, C., Zhang, X.-Q., Angessa, T., Broughton, S., Westcott, S., Dai, F., Zhang, G., Sun, D., Xu, Y. & Li, C. (2019). Genetic mapping and evolutionary analyses of the black grain trait in barley. Front Plant Sci., 9, pp. 1-11.

59. Kahkonen, M. & Heinonen, M. (2003). Antioxidant activity of anthocyanins and their aglycones. J. Agric. Food Chem., 51, pp. 628-633.

60. DeFuria, J., Bennett, G. & Strissel, K. (2009). Dietary blueberry attenuates whole-body insulin resistance in high fat-fed mice by reducing adipocyte death and its inflammatory sequelae. J. Nutr., 139, pp. 1-7.

61. Fukumoto, L. & Mazza, G. (2000). Assessing antioxidant and prooxidant activities of phenolic compounds. J. Agric. Food Chem., 48, pp. 3597-3604.

62. Astadi, I., Astuti, M., Santoso, U. & Nugraheni, P. (2009). In vitro antioxidant activity of anthocyanins of black soybean seed coat in human low density lipoprotein (LDL). Food Chem., 112, pp. 659-663.

63. Fimognari, C., Berti, F., Nusse, M., Cantelli-Forti, G. & Hrelia, P. (2004). Induction of apoptosis in two human leukemia cell lines as well as differentiation in human promyelocytic cells by cyanin-3-O-beta-glucopyranoside. Biochem. Pharmacol., 67, pp. 2047-2056.

64. Kang, S., Seeram, N., Nair, M. & Bourquin, L. (2003). Tart cherry anthocyanins inhibit tumor development in Apc (Min) mice and reduce proliferation of human colon cancer cells. Cancer Lett, 194, pp. 13-19.

65. Ghosh, D. & Konishi, T. (2007). Anthocyanins and anthocyanin-rich extracts: role in diabetes and eye function. Asia Pac. J. Clin. Nutr., 16, pp. 200-208.

66. Sajilata, M.G., Singhal, R.S. & Kulkarni, P.R. (2006). Resistant Starch-A Review. Food Science and Food Safety, 5, pp. 1-17.

67. Ojo, O., Adebowale, F. & Wang, X.H. (2018). The effect of dietary glycaemic index on glycaemia in patients with type 2 diabetes: A systematic review and meta-analysis of randomized controlled trials. Nutrients, 10, p. 373.

68. Englyst, K., Vinoy, S., Englyst, H. & Lang, V. (2003). Glycaemic index of cereal products explained by their content of rapidly and slowly available glucose. Br. J. of Nutr., 89, pp. 329-339.

69. Sui, X., Yap, Yi. & Zhou, W. (2015). Anthocyanins During Baking: Their Degradation Kinetics and Impacts on Color and Antioxidant Capacity of Bread. Food Bioprocess Technol., 8, pp. 983-994.

70. Wu, X., Beecher, G.R., Holden, J.M., Haytowitz, D.B., Gebhard, S.E. & Prior, R.L. (2004). Lipophilic and hydrophilic antioxidant capacities of common foods in the United States. J. Agric. Food Chem., 52, pp. 4026-4037.

71. Bashir, K.M. & Choi, J.S. (2017). Clinical and physiological perspectives of b-glucans: The past, present, and future. Int. J. of Mol. S., 18(9), p. 1906.

72. Jabri, B. & Sollid, L.M. (2017). T cells in celiac disease. J. Immunol., 198, pp. 3005-3014.

73. Niu, M. & Hou, G.G. (2018). Whole wheat noodle: Processing, quality improvement, and nutritional and health benefits. Cereal Chem. J., 96, pp. 23-33.

74. Rosell, C., Barro, F. & Sousa, C. (2014). Cereals for developing gluten-free products and analytical tools for gluten detection. J. Cereal Sci., 59, pp. 354-364.

75. Zuidmeer, L., Goldhahn, K. & Rona, R. (2008). The prevalence of plant food allergies: a systematic review. J. Allergy Clin. Immunol., 121, pp. 1210-1218.

76. Comino, I., Real, A. & Moreno, M. (2013). Immunological determination of gliadin 33-mer equivalent peptides in beers as a speci?c and practical analytical method to assess safety for celiac patients. J. Sci. Food Agric., 15, pp. 933-943.

77. Zhang, K., Yang, J., Qia, Z., Cao, X., Luo, Q., Zhao, J., Wa, F. & Zhan, W. (2019). Assessment of b-glucans, phenols, flavor and volatile profiles of hulless barley wine originating from highland areas of China. Food Chem., 293, pp. 32-40.

78. Jood, S. & Kalra, S. (2001). Chemical composition and nutritional characteristics of some hull less and hulled barley cultivars grown in India. Nahrung, 45, pp. 35-39.<35::AID-FOOD35>3.0.CO;2-U<35::AID-FOOD35>3.0.CO;2-U

79. Oboh, G., Ademiluyi, A.O., Akinyemi, A.J., Henle, T., Saliu, J.A. & Schwarzenbolz, U. (2012). Inhibitory effect of polyphenol-rich extracts of jute leaf (Corchorus olitorius) on key enzyme linked to type 2 diabetes (a-amylase and a-glucosidase) and hypertension (angiotensin I converting) in vitro. J. Funct. Foods., 4, pp. 450-458.

80. Otman, E.M., Frid, A.H., Groop, L.C. & Bjorck, M.E. (2005). A dietary exchange of common bread for tailored bread of low glycaemic index and rich in dietary fibre improved insulin economy in young women with impaired glucose tolerance. Eur. J. Clin. Nutr., 60, pp. 334-341.

81. Vicentini, A., Liberatore, L. & Mastrocola, D. (2016). Functional foods: Trends and development of the global market. Ital. J. Food Sci., 28, pp. 338-351.

82. Yildiz, G. & Bigicli, N. (2012). Effects of whole buckwheat flour on physical, chemical and sensory properties of flat bread, Lavas. Czech. J. Food Sci., 30(6), pp. 534-540.

83. Zhou, G., Panozzo, J., Zhang, X.-Q., Cakir, M., Harasymow, S. & Li, C. (2016). QTL mapping reveals genetic architectures of malting quality between Australian and Canadian malting barley (Hordeum vulgare L.). Mol. Breeding, 36(6), pp. 1-12.

84. Mattila, P., Pihlava, J.M. & Hellstrom, J. (2005). Contents of phenolic acids, alkyl- and alkenylresorcinols, and avenanthramides in commercial grain products. J. Agric. Food Chem., 53, pp. 8290-8295.

85. Newbigin, E., Bacic, A., Langridge, P. & Fincher, G. (2004). Functional genomics in the productivity and-use quality of barley. Czech. J. Genet. Plant Breed., 40, pp. 107.

86. Onimawo, I.A. & Asug, S. (2004). Effects of germination on the nutrient content and functional properties of pigeon pea flour. J. Food Sci. Technol., 41, pp. 170-174.

87. Dawson, I.K., Russell, J., Powell, W., Steffenson, B. & Waugh, R. (2015). Barley: a translational model for adaptation to climate change. New Phytologist, 206, pp. 913-931.

88. Tanno, K. & Willcox, G. (2012). Distinguishing wild and domestic wheat and barley spikelets from early Holocene sites in the Near East. Vegetation History and Archaeobotany, 21, pp. 107-111.

89. Farzaneh, V., Ghodsvali, A., Bakhshabadi, H., Zare, Z. & Carvalho, I.S. (2017). The impact of germination time on the some selected parameters through malting process. Int. J. Biol. Macromol., 94, pp. 663-668.

90. Dogan, Y., Kendal, E. & Oral, E. (2016). Identifying of relationship between traits and grain yield in spring Barley by GGE biplot analysis. J. Agric. Forestry, 62(4), pp. 239-252.

91. Hafez, Y.M., Mourad, R.Y., Mansour, M. & Abdelaal, K.A. (2014). Impact of non-traditional compounds and fungicides on physiological and biochemical characters of barely infected with Blumeria graminis f. sp hordeiunder field conditions. J. Biol. Pest. Control, 24, pp. 445-453.

92. Hepworth, C., Doheny-Adams, T., Hunt, L., Cameron, D.D. & Gray, J.E. (2015). Manipulating stomatal density enhances drought tolerance without deleterious effect on nutrient uptake. New Phytol., 208, pp. 336-341.

93. Tamang, P., Neupane, A., Mamidi, S., Friesen, T. & Brueggeman, R. (2015). Association mapping of seedling resistance to spot form net blotch in a worldwide collection of barley. Phytopathology, 105(4), pp. 500-508.

94. Wang, W., Vinocur, B. & Altman, A. (2003). Plant responses to drought, salinity and extreme temperatures: Towards genetic engineering for stress tolerance. Planta, 218, pp. 1-14.

95. Bhargava, S. & Sawant, K. (2013). Drought stress adaptation: Metabolic adjustment and regulation of gene expression. Plant Breed., 132, pp. 21-32.

96. Gao, J., Vasanthan, T. & Hoover, R. (2009). Isolation and Characterization of High-Purity Starch Isolates from Regular, Waxy, and High-Amylose Hulless Barley Grains. Cereal Chemistry, 86, pp. 157-163.

97. Ahmed, I.M., Dai, H., Zheng, W., Cao, F., Zhang, G., Sun, D. & Wu, F. (2013). Genotypic differences in physiological characteristics in the tolerance to drought and salinity combined stress between Tibetan wild and cultivated barley. Plant Physiol. Biochem., 63, pp. 49-60.

98. Polakova, K., Vaculova, K. & Kucera, L. (2004). Selection of barley lines with waxy endosperm and hulless grains: genotyping and phenotyping. Czech. J. Genet. Plant Breed., 40, p. 114.

99. Jacobs, D. & Steffen, L. (2003). Nutrients, foods, and dietary patterns as exposures in research: A framework for food synergy. Am. J. Clin. Nutr., 78, pp. 508-513.