Повний текст та додаткові матеріали
Цитована література
1. Kumar, A., Jigyasu, D.K., Kumar, A., Subrahmanyam, G., Mondal, R., Shabnam, A.A., Cabral-Pinto, M.M.S., Malyan, S.K., Chaturvedi, A.K., Gupta, D.K., Fagodiya, R.K., Khan, S.A. & Bhatia, A. (2021). Nickel in terrestrial biota: Comprehensive review on contamination, toxicity, tolerance and its remediation approaches. Chemosphere, 275, p. 129996. https://doi.org/10.1016/j.chemosphere.2021.129996
2. Kaluarachchi, H., Chan Chung, K.C. & Zamble, D.B. (2010). Microbial nickel proteins. Nat. Prod. Rep. 27, pp. 681-694. https://doi.org/10.1039/b906688h
3. Kтpper, H. & Kroneck, P.M.H. (2007). Nickel in the Environment and Its Role in the Metabolism of Plants and Cyanobacteria, pp. 31-61. In: Nickel and Its Surprising Impact in Nature. Editor(s): Astrid Sigel, Helmut Sigel, Roland K. O. Sigel, Online ISBN:9780470028131. https://doi.org/10.1002/9780470028131.ch2
4. Awasthi, S., Chauhan, R. & Srivastava, S. (2022). Chapter 2 - The importance of beneficial and essential trace and ultratrace elements in plant nutrition, growth, and stress tolerance. Editor(s): Vinay Kumar, Ashish Kumar Srivastava, Penna Suprasanna, Plant Nutrition and Food Security in the Era of Climate Change, Academic Press, 2022, pp. 27-46. https://doi.org/10.1016/B978-0-12-822916-3.00001-9
5. Ahmad, M.S.A. & Ashraf, M. (2011). Essential roles and hazardous effects of nickel in plants. Reviews of Environmental Contamination and Toxicology, 214, pp. 125-167. https://doi.org/10.1007/978-1-4614-0668-6_6
6. Papadopoulos, A., Prochaska, C., Papadopoulos, F., Gantidis, N. & Metaxa, E. (2007). Determination and evaluation of cadmium, copper, nickel, and zinc in agricultural soils of western Macedonia, Greece. Environ. Manag., 40, pp. 719-726. https://doi.org/10.1007/s00267-007-0073-0
7. Zhang, Y., Rodionov, D.A., Gelfand, M.S. & Gladyshev, V.N. (2009). Comparative genomic analyses of nickel, cobalt and vitamin B12 utilization. BMC Genomics, 10, pp. 78. https://doi.org/10.1186/1471-2164-10-78
8. Van der Pas, L. & Ingle, R.A. (2019). Towards an understanding of the molecular basis of nickel hyperaccumulation in plants. Plants, 8, p. 11. https://doi.org/10.3390/plants8010011
9. Chen, C., Huang, D. & Liu, J. (2009). Functions and toxicity of nickel in plants: recent advances and future prospects. Clean, 37, pp. 304-313. https://doi.org/10.1002/clen.200800199
10. Eitinger, T., Suhr, J., Moore, L. & Smith, J.A.C. (2005). Secondary transporters for nickeland cobalt ions: theme and variations. Biometals, 18, pp. 399-405. https://doi.org/10.1007/s10534-005-3714-x
11. Haydon, M.J. & Cobbett, C.S. (2007). Transporters of ligands for essential metal ions in plants: research review. New Phytol., 174, pp. 499-506. https://doi.org/10.1111/j.1469-8137.2007.02051.x
12. Rahman, H., Sabreen, S., Alam, S. & Kawai, S. (2005). Effects of nickel on growth and composition of metal micronutrients in barley plants grown in nutrient solution. J. Plant Nutr., 28, pp. 393-404. https://doi.org/10.1081/PLN-200049149
13. Gajewska, E., SkYodowska, M., Slaba, M. & Mazur, J. (2006). Effect of nickel on antioxidative nzyme activities, proline and chlorophyll contents in wheat shoots. Biol. Plant., 50, pp. 653-659. https://doi.org/10.1007/s10535-006-0102-5
14. Maheshwari, R. & Dubey, R.S. (2007). Nickel toxicity inhibits ribonuclease and protease activities in rice seedlings: protective effects of proline. Plant Growth Regul., 51, pp. 231-243. https://doi.org/10.1007/s10725-006-9163-x
15. Bolan, N.S., Park, J.H., Robinson, B., Naidu, R. & Huh, K.Y. (2011). Phytostabilization. A green approach to contaminant containment. Adv. Agron., 112, pp. 145-204. https://doi.org/10.1016/B978-0-12-385538-1.00004-4
16. Li, Y.M., Chaney, R.L., Brewer, E.P., Angle, J.S. & Nelkin, J. (2003). Phytoextraction of nickel and cobalt by hyperaccumulator Alyssum species grown on nickelcontaminated soils. Environ. Sci. Technol., 37, pp. 1463-1468. https://doi.org/10.1021/es0208963
17. Giordani, C., Cecchi, S. & Zanchi, C. (2005). Phytoremediation of soil polluted by nickel using agricultural crops. Environ. Manag., 36, pp. 675-681. https://doi.org/10.1007/s00267-004-0171-1
18. Al Chami, Z., Amer, N., Al Bitar, L. & Cavoski, I. (2015). Potential use of Sorghum bicolor and Carthamus tinctorius in phytoremediation of nickel, lead and zinc. Int. J. Environ. Sci. Technol., 12, pp. 3957-3970. https://doi.org/10.1007/s13762-015-0823-0
19. Gupta, V., Jatav, P., Verma, R. & Kachhwaha, S. (2017). Nickel accumulation and its effect on growth, physiological and biochemical parameters in millets and oats. Environ. Sci. Pollut. Res., 24, pp. 23915-23925. https://doi.org/10.1007/s11356-017-0057-4
20. Akbas, H., Dane, F. & Kartal, C. (2009). Effect of nickel on root growth and the kinetics of metal ions transport in onion (Allium cepa) root. Ind. J. Biochem. Biophys., 46, pp. 332-336.
21. Antonkiewicz, J., Jasiewicz, C., Koncewicz-Baran, M. & Sendor, R. (2016). Nickel bioaccumulation by the chosen plant species. Acta Physiol. Plant., 38, p. 40. https://doi.org/10.1007/s11738-016-2062-5
22. Sreekanth, T., Nagajyothi, P., Leem, K. & Prasad, T. (2013). Occurrence, physiological responses and toxicity of nickel in plants. Int. J. Environ. Sci. Technol., 10, pp. 1129-1140. https://doi.org/10.1007/s13762-013-0245-9
23. Gajewska, E. & SkYodowska, M. (2007). Relations between tocopherol, chlorophyll and lipid peroxides contents in shoots of Ni-treated wheat. J. Plant Physiol., 164, pp. 364-368. https://doi.org/10.1016/j.jplph.2006.05.021
24. Ishtiaq, S. & Mahmood, S. (2012). Phytotoxicity of nickel and its accumulation in tissues of three Vigna species at their early growth stages. J. Appl. Bot. Food Qual., 84, pp. 223-228. https://doi.org/10.5073/JABFQ.2011.084.033
25. Khellaf, N. & Zerdaoui, M. (2010). Growth response of the duckweed Lemna gibba L. to copper and nickel phytoaccumulation. Ecotoxicology, 19, pp. 1363-1368. https://doi.org/10.1007/s10646-010-0522-z
26. Ali, M.A., Ashraf, M. & Athar, H.R. (2009). Influence of nickel stress on growth and some important physiological/biochemical attributes in some diverse canola (Brassica napus L.) cultivars. J. Hazardous Materials, 172, pp. 964-969. https://doi.org/10.1016/j.jhazmat.2009.07.077
27. Li, Yin-M., Chaney, R.L., Brewer, E., Angle, J.S. & Nelkin, J. (2003). Phytoextraction of Nickel and Cobalt by Hyperaccumulator Alyssum Species Grown on Nickel-Contaminated Soils. Environ. Sci. Technol., 37, pp. 1463-1468. https://doi.org/10.1021/es0208963
28. Bani, A., Echevarria, G., Mullaj, A., Reeves, R., Morel, J.L. & Sulce, S. (2009). Nickel Hyperaccumulation by Brassicaceae in Serpentine Soils of Albania and Northwestern Greece. Northeastern Naturalist, 16, pp. 385-404. https://doi.org/10.1656/045.016.0528
29. Jabeen, R., Ahmad, A. & Iqbal, M. (2009). Phytoremediation of heavy metals: physiological and molecular mechanisms. Bot. Rev., 75, pp. 339-364. https://doi.org/10.1007/s12229-009-9036-x
30. Subhashini, V. & Swamy, A.V.V.S. (2013). Phytoremediation of Pb and Ni contaminated soils using Catharanthus roseus (L.). Univers. J. Environ. Res. Technol., 3, pp. 465-472.
31. Marchiol, L., Sacco, P., Assolari, S. & Zerbi, G. (2004.) Reclamation of polluted soil: phytoremediation potential of crop-related Brassica Species. Water Air Soil Pollut., 158, pp. 345-356. https://doi.org/10.1023/B:WATE.0000044862.51031.fb
32. Boularbah, A., Schwartz, C., Bitton, G., Aboudrar, W., Ouhammou, A. & Morel, J.L. (2006). Heavy metal contamination from mining sites in South Morocco: 2. Assessment of metal accumulation and toxicity in plants. Chemosphere, 63, pp. 811-817. https://doi.org/10.1016/j.chemosphere.2005.07.076