У природі рослинний організм піддається дії багатьох стресових чинників, які негативно впливають на фотосинтетичний апарат і особливо на ФС II, яка найвразливіша до стресу. Метою досліджень було визначення місця токсичної дії стресових чинників у електронтранспортному ланцюзі (ЕТЛ) ФС II. Функціональний стан ЕТЛ ФС II у листках проростків пшениці, що зазнали комплексної токсичної дії Co2+ та фотоінгібування, визначали на основі різних характеристик затримки флуоресценції хлорофілу а (ms DF Chl a). Вплив Co2+ виражався в різкому зменшенні характерного значення ms DF Chl a реакційного центру ФС II та в слабшому блокуванні донорної сторони, що характеризує стан кластера Mn4O5Ca та Yz. Активні форми кисню, які утворюються в процесі фотоінгібування, також більшою мірою блокували акцепторну сторону ЕТЛ ФСII. Зі збільшенням часу адаптації спостерігалося значне падіння активності на донорній стороні ЕТЛ ФСII. Сукупний вплив обох чинників мало вплинув на зміну флуоресцентних характеристик, які залишалися майже на рівні дії Co2+. Було показано, що адаптивні можливості фотохімічних реакцій, що відбуваються в ЕТЛ ФС II за комбінованого стресу, стимулюються низькомолекулярним антиоксидантом Na-аскорбатом. Відновлення Na-аскорбатом процесів, пригнічених одночасною дією фотоінгібування та Co2+, відбувається упродовж індукційного періоду ms DF Chl a та, очевидно, полягає в ефективній нейтралізації утворених АФК. Це свідчить, що механізм, який призводить до змін характеру індукційного патерну ms DF Chl a в результаті дії обох чинників, має єдину природу. Стресостійкість фотосинтетичного апарату зростає зі збільшенням активності антиоксидантних ферментів або ефективності низькомолекулярних антиоксидантів. В результаті фотосинтетичний апарат перемикається на адаптивну програму, що забезпечує підвищення його стресостійкості. Припускається, що Na-аскорбат відіграє вирішальну роль у захисті хлоропластів від окиснювального стресу шляхом гасіння O2– та *OH1.
Ключові слова: Triticum aestivum L., PSII, ETC, Со2+, фотоінгібування, активні форми кисню, Na-аскорбат
Повний текст та додаткові матеріали
У вільному доступі: PDFЦитована література
1. Ahmad, P., Sarwat, M. & Sharma, S. (2008). Reactive oxygen species, antioxidants and signaling in plants. J. Plant Biol., 51, pp. 167-173. https://doi.org/10.1007/BF03030694
2. Sharma, A., Kumar, V., Shahzad, B., Ramakrishnan, M., Singh Sidhu, G.P., Bali, A.Sh., Handa, N., Kapoor, Dh., Yadav, P., Khanna, K., Bakshi, P., Rehman, A., Kohli, S. K., Khan, E.A., Parihar, R. D., Yuan, H., Thukral, A.K., Bhardwaj, R. & Zheng, B. (2020). Photosynthetic response of plants under different abiotic stresses: A review. J. Plant Growth Regul., 39, pp. 509-531. https://doi.org/10.1007/s00344-019-10018-x
3. Breusegem, F.V. & Dat, J.F. (2006). Reactive oxygen species in plant cell death. Plant Physiol., 141, (2), pp. 384-390. https://doi.org/10.1104/pp.106.078295
4. Barber, J. (2003). Photosystem II: the engine of life. Q. Rev. Biophys., 36(1), pp. 71-89. https://doi.org/10.1017/S0033583502003839
5. Foyer, Ch.H. & Noctor, G. (2005). Redox homeostasis and antioxidant signaling: a metabolic interface between stress perception and physiological responses. Plant Cell, 17(7), pp. 1866-1875. https://doi.org/10.1105/tpc.105.033589
6. Polle, A. (2001). Dissecting the superoxide dismutase-ascorbate-glutathione-pathway in chloroplasts by metabolic modeling. Computer simulations as a step towards flux analysis. Plant Physiol., 126, (1), pp. 445-462. https://doi.org/10.1104/pp.126.1.445
7. Sabehat, A., Weiss, D. & Lurie, S. (1998). Heat-shock proteins and cross-tolerance in plants. Physiol. Plant., 103(3), pp. 437-441. https://doi.org/10.1034/j.1399-3054.1998.1030317.x
8. Andersson, B. & Barber, J. (1996). Mechanisms of photodamage and protein degradation during photoinhibition of photosystem II. In N.R. Baker (Ed.), Photosynthesis and the Environment (pp. 101-121). UK: Springer Dordrecht. https://doi.org/10.1007/0-306-48135-9
9. Biswal, B. (2005). Photosynthetic response of green plants to environmental stress: Inhibition of photosynthesis and adaptational of photosynthesis and adaptational mechanisms. In M. Pessarakli (Ed.), Photosynthesis (pp. 739-749). USA: CRC Press Taylor & Francis Group. https://doi.org/10.1201/9781420027877.ch38
10. Biswal, B., Joshi, P.N., Raval, M.K. & Biswal, U.C. (2011). Photosyntesis, a global sensor of environmental stress in green plants: Stress signaling and adaptation. Current Sci., 101(1), pp. 47-56.
11. Jafarova, J., Ganieva, R., Mammadova, L., Agalarov, R. & Gasanov, R. (2021). Structural and functional dependence of PSII activity under oxidative stress. Fiziol. rast. genet., 53(5), pp. 435-443. https://doi.org/10.15407/frg2021.05.435
12. Ganieva, R.A., Kurbanova, I.M. & Dadashova, S.B. (2000). Chlorophyll fluorescence and polypeptide composition of thylakoids upon exposure of wheat sprouts to NaCl and polyethyleneglycol. Physiol. biochem. cultivat. plants, 32(4), pp. 273-278 [in Russian].
13. Gaziyev, A., Aliyeva, S., Kurbanova, I., Ganiyeva, R., Bayramova, S. & Gasanov, R. (2011). Molecular operation of metals into the function and state of photosystem II. Metallomics, 3(12), pp. 1362-1367. https://doi.org/10.1039/c1mt00100k
14. Kтpper, H., ћetlHk, I., Spiller, M., Kтpper, F.C. & Pr«лil, O. (2002). Heavy metal-induced inhibition of photosynthesis: targets of in vivo heavy metal chlorophyll formation. J. Phycol., 38(3), pp. 429-441. https://doi.org/10.1046/j.1529-8817.2002.01148.x
15. Tyystj¬rvi, E. (2008). Photoinhibition of photosystem II and photodamage of the oxygen evolving manganese cluster. Coordinat. Chem. Rev., 252(3-4), pp. 361-376. https://doi.org/10.1016/j.ccr.2007.08.021
16. Vass, I. (2012). Molecular mechanisms of photodamage in the Photosystem II complex. Biochim. Biophys. Acta-Bioenergetics, 1817(1), pp. 209-217. https://doi.org/10.1016/j.bbabio.2011.04.014
17. Chan, T., Shimizu, Y., PospHлil, P., Nijo, N., Fujiwara, A., Taninaka, Y., Ishikawa, T., Hori, H., Nanba, D., Imai, A., Morita, N., Yoshioka-Nishimura, M., Izumi, Y., Yamamoto, Y., Kobayashi, H., Mizusawa, N., Wada, H. & Yamamoto, Y. (2012). Quality control of photosystem II: lipid peroxidation accelerates photoinhibition under excessive illumination. Plos One, 7(12), e52100. https://doi.org/10.1371/journal.pone.0052100
18. Jafarova, J., Bayramova, S. & Ganiyeva, R. (2012). The role of ascorbate in protection of FSII from photooxidative stress in cucumber (Cucumis sativus L.) leaves. X International scientific-metodical conference «Introduction of nontraditional and rare plants», pp. 215-220 [in Russian].
19. Nijs, D., Kelley, P.M. (1991). Vitamins C and E donate single hydrogen atoms in vivo. FEBS Lett., 284(2), pp. 147-151. https://doi.org/10.1016/0014-5793(91)80672-P
20. Rubin, A.B., Krendeleva, T.Y., Venediktov, P.S. & Matorin, D.N. (1984) Primary processes of photosynthesis and photosynthetic productivity. Agricult. Biol., 6, pp. 81-92.
21. Goltsev, V., Zaharieva, I., Chernev, P. & Strasser, R.J. (2009). Delayed chlorophyll fluorescence as a monitor for physiological state of photosynthetic apparatus. Biotechnol. Biotechnol. Equip., 23(1), pp. 452-457. https://doi.org/10.1080/13102818.2009.10818461
22. Gasanov, R.A., Aliyeva, S., Arao, S., Ismailova, A., Katsuta, N., Kitade, H., Yamada, Sh., Kawamori, A. & Mamedov, F. (2007). Comparative study of the water oxidizing reactions and the millisecond delayed chlorophyll fluorescence in photosystem II at different pH. J. Photochem. Photobiol., B: Biology, 86(2), pp. 160-164. https://doi.org/10.1016/j.jphotobiol.2006.08.008
23. Mahmudov, Z.M., Abdullayev, Kh.D. & Gasanov, R.A. (2005). Photoinhibition in vivo of photosystem II reactions during development of the photosystems of wheat seedlings. Photosynth. Res., 84(1-3), pp. 9-14. https://doi.org/10.1007/s11120-005-0897-5
24. Gasanov, R.A., Aliyeva, S.A. & Mamedov, F. (2015). Delayed fluorescence in a millisecond range - a probe for the donor side-induced photoinhibition of photosystem II. In S. Itoh, P. Mohanty, K.N. Guruprasad (Ed.), Photosynthesis: Basics to applications (pp. 101-107). New Delhi, India: I.K. International Publishing House Pvt. Ltd.
25. Kurbanova, I.M., Ganiyeva, R.A., Dadashova, S.B., Bayramova, S.A. & Gasanov, R.A. (2010). The state of chlorophyll-protein complexes of RC FS II and LHC under action of Cd2+ and Co2+ on wheat seedlings. Actual problems of bioecol., pp. 168-172 [in Russian].
26. Naz, H., Akram, N.A. & Ashraf, M. (2016). Impact of ascorbic acid on growth and some physiological attributes of cucumber (Cucumis sativus) plants under water-deficit conditions. Pak. J. Bot., 48(3), pp. 877-883.
27. Akram, N.A., Shafiq, F. & Ashraf, M. (2017). Ascorbic acid - a potential oxidant scavenger and its role in plant development and abiotic stress tolerance. Front. Plant Sci., 8, pp. 613. https://doi.org/10.3389/fpls.2017.00613
28. Xiao, M., Li, Z., Zhu, L., Wang, J., Zhang, B., Zheng, F., Zhao, B., Zhang, H., Wang, Y. & Zhang, Zh. (2021). The multiple roles of ascorbate in the abiotic stress response of plants: Antioxidant, Cofactor, and Regulator. Front. Plant Sci., 12, p. 598173.