Фізіологія рослин і генетика 2022, том 54, № 5, 371-386, doi: https://doi.org/10.15407/frg2022.05.371

Мелатонiн у рослин: участь у сигналiнгу й адаптацiї до абiотичних чинникiв

Колупаєв Ю.Є.1, Тарабан Д.А.2, Карпець Ю.В.2, Панченко В.Г.3

  1. Iнститут рослинництва ім. В.Я. Юр’єва Національної академії аграрних наук України 61060 Харків, пр. Героїв Харкова, 142
  2. Державний біотехнологічний університет  61002 Харків, вул. Алчевських, 44
  3. Харківський національний університет ім. В.Н. Каразіна 61002 Харків, майдан Свободи, 4

У світі інтенсивно накопичуються дані стосовно синтезу й фізіологічних функцій у рослин нейротрансмітерів, властивих тваринним організмам. Одним із них є мелатонін, який останніми роками розглядають як поліфункціональний біорегулятор рослинних організмів. У першому вітчизняному огляді з фітофізіології мелатоніну узагальнено відомості про шляхи синтезу і метаболізму мелатоніну в рослин. Розглянуто феноменологію змін ендогенного вмісту мелатоніну в органах рослин різних видів за дії на них стресових чинників (екстремальних температур, посухи, засолення тощо). Наведено дані щодо впливу екзогенного мелатоніну на стійкість рослин до гіпо- і гіпертермії, зне­воднення, сольового стресу, дії важких металів. Зазначено, що стрес-протекторні ефекти мелатоніну можуть бути зумовлені його прямою антиоксидантною і мембранопротекторною дією, впливом на експресію генів, активність антиоксидантних ферментів, синтез стресових білків і низькомолекулярних захисних сполук, зокрема поліамінів та проліну. Розглянуто молекулярні механізми дії мелатоніну. Обговорено роль рецептороподібних кіназ (RLK) та білка Cand2 (GPCR) як можливих рецепторів мелатоніну. Проаналізовано експериментальні дані щодо впливу мелатоніну на кальцієвий гомеостаз рослинних клітин і синтез у них активних форм кисню (АФК). Розглянуто роль оксиду азо­ту (NO) в реалізації стрес-протекторних ефектів мелатоніну. Зазначено, що ключовими складовими дії мелатоніну можуть бути пострансляційні модифікації білків, у тому числі транскрипційних факторів, зокрема S-нітрозилювання, тіольні модифікації, фосфорилювання різними кіназами. Такі модифікації змінюють експресію генів, причетних до формування адаптивних реакцій рослин. Наголошено, що досі маловивченими залишаються функціональні зв’язки між компонентами сигнальної мережі, задіяними в реалізації фізіологічних ефектів мелатоніну.

Ключові слова: мелатонін, стрес-протекторні реакції рослин, клітинний сигналінг, антиоксиданти, активні форми кисню, оксид азоту, кальцій

Фізіологія рослин і генетика
2022, том 54, № 5, 371-386

Повний текст та додаткові матеріали

У вільному доступі: PDF  

Цитована література

1. Akula, R. & Mukherjee, S. (2020). New insights on neurotransmitters signaling mechanisms in plants. Plant Signal. Behav., 15, No. 6, pp. 1737450. https://doi.org/10.1080/15592324.2020.1737450

2. Fan, J., Xie, Y., Zhang, Z. & Chen, L. (2018). Melatonin: a multifunctional factor in plants. Int. J. Mol. Sci., 19, pp. 1528. https://doi.org/10.3390/ijms19051528

3. Arnao, M.B. & Hern«ndez-Ruiz, J. (2019). Melatonin: a new plant hormone and/or a plant master regulator? Trends. Plant Sci., 24, No. 1, pp. 38-48. https://doi.org/10.1016/j.tplants.2018.10.010

4. Dubbels, R., Reiter, R.J., Klenke, E., Goebel, A., Schnakenberg, E., Ehlers, C., Schiwara, H.W. & Schloot, W. (1995). Melatonin in edible plants identified by radioimmunoassay and by high performance liquid chromatography-mass spectrometry. J. Pineal Res., 18, pp. 28-31. https://doi.org/10.1111/j.1600-079X.1995.tb00136.x

5. Sun, Q., Zhang, N., Wang, J., Zhang, H., Li, D., Shi, J., Li, R., Weeda, S., Zhao, B., Ren, S. & Guo, Y.D. (2015). Melatonin promotes ripening and improves quality of tomato fruit during postharvest life. J. Exp. Bot., 66, No. 3, pp.657-668. https://doi.org/10.1093/jxb/eru332

6. Yu, Y., Lv, Y., Shi, Y, Li, T., Chen, Y., Zhao, D. & Zhao, Z. (2018). The role of phyto-melatonin and related metabolites in response to stress. Molecules, 23, No. 8, pp. 1887. https://doi.org/10.3390/molecules23081887

7. Arnao, M.B. & Hern«ndez-Ruiz, J. (2015). Functions of melatonin in plants: a review. J. Pineal Res., 59, pp. 133-150. https://doi.org/10.1111/jpi.12253

8. Altaf, M.A., Shahid, R., Ren, M.X., Mora-Poblete, F., Arnao, M.B., Naz, S., Anwar, M., Altaf, M.M., Shahid, S., Shakoor, A., Sohail, H., Ahmar, S., Kamran, M. & Chen, J.T. (2021). Phytomelatonin: an overview of the importance and mediating functions of melatonin against environmental stresses. Physiol. Plant., 172, No. 2, pp. 820-846. https://doi.org/10.1111/ppl.13262

9. Cui, G., Zhao, X., Liu, S., Sun, F., Zhang, C. & Xi, Y. (2017). Beneficial effects of melatonin in overcoming drought stress in wheat seedlings. Plant Physiol. Biochem., 118, pp. 138-149. https://doi.org/10.1016/j.plaphy.2017.06.014

10. Ahammed, G.J., Xu, W., Liu, A., Chen, S. (2019). Endogenous melatonin deficiency aggravates high temperature-induced oxidative stress in Solanum lycopersicum L. Environ. Exp. Bot., 161, pp. 303-311. https://doi.org/10.1016/j.envexpbot.2018.06.006

11. Jahan, M.S., Shu, S., Wang, Y., Chen, Z., He, M., Tao, M., Sun, J. & Guo, S. (2019). Melatonin alleviates heat-induced damage of tomato seedlings by balancing redox homeostasis and modulating polyamine and nitric oxide biosynthesis. BMC Plant Biol., 19, No. 1, pp. 414. https://doi.org/10.1186/s12870-019-1992-7

12. Back, K. (2021). Melatonin metabolism, signaling and possible roles in plants. Plant J., 105, pp. 376-391. https://doi.org/10.1111/tpj.14915

13. Hong, Y., Zhang, Y., Sinumporn, S., Yu, N., Zhan, X., Shen, X., Chen, D., Yu, P., Wu, W., Liu, Q., Cao, Z., Zhao, C., Cheng, S. & Cao, L. (2018). Premature leaf senescence 3, encoding a methyltransferase, is required for melatonin biosynthesis in rice. Plant J., 95, pp. 877-891. https://doi.org/10.1111/tpj.13995

14. Ye, T., Yin, X., Yu, L., Zheng, S.J., Cai, W.J., Wu, Y. & Feng, Y.Q. (2018). Metabolic analysis of the melatonin biosynthesis pathway using chemical labeling coupled with liquid chromatography-mass spectrometry. J. Pineal Res., 66, pp. e12531. https://doi.org/10.1111/jpi.12531

15. Schmid, J. & Amrhein, N. (1995). Molecular organization of the shikimate pathway in higher plants. Phytochemistry, 39, No. 4, pp. 737-749. https://doi.org/10.1016/0031-9422(94)00962-S

16. Posmyk, M.M. & Janas, K.M. (2009). Melatonin in plants. Acta Physiol. Plant., 31, pp. 1. https://doi.org/10.1007/s11738-008-0213-z

17. Zuo, B., Zheng, X., He, P., Wang, L., Lei, Q., Feng, C., Zhou, J., Li, Q., Han, Z. & Kong, J. (2014). Overexpression of MzASMT improves melatonin production and enhances drought tolerance in transgenic Arabidopsis thaliana plants. J. Pineal Res., 57, pp. 408-417. https://doi.org/10.1111/jpi.12180

18. Choi, G.H., Lee, H.Y. & Back, K. (2017). Chloroplast overexpression of rice caffeic acid O-methyltransferase increases melatonin production in chloroplasts via the 5-methoxytryptamine pathway in transgenic rice plants. J. Pineal Res., 63, pp. e12412. https://doi.org/10.1111/jpi.12412

19. Arnao, M.B. & Hern«ndez-Ruiz, J. (2013). Growth conditions determine different melatonin levels in Lupinus albus L. J. Pineal Res., 55, pp. 149-155. https://doi.org/10.1111/jpi.12055

20. Byeon, Y., Lee, H.Y., Hwang, O.J., Lee, H.J., Lee, K. & Back, K. (2015). Coordinated regulation of melatonin synthesis and degradation genes in rice leaves in response to cadmium treatment. J. Pineal Res., 58, No. 4, pp. 470-478. https://doi.org/10.1111/jpi.12232

21. Afreen, F., Zobayed, S.M.A. & Kozai, T. (2006). Melatonin in Glycyrrhiza uralensis: response of plant roots to spectral quality of light and UV-B radiation. J. Pineal Res., 41, pp. 108-115. https://doi.org/10.1111/j.1600-079X.2006.00337.x

22. Byeon, Y. & Back, K. (2014). Melatonin synthesis in rice seedlings in vivo is enhanced at high temperatures and under dark conditions due to increased serotonin N-acetyltransferase and N-acetylserotonin methyltransferase activities. J. Pineal Res., 56, pp. 189-195. https://doi.org/10.1111/jpi.12111

23. Buttar, Z.A., Wu, S.N., Arnao, M.B., Wang, C., Ullah, I. & Wang, C. (2020). Melatonin suppressed the heat stress-induced damage in wheat seedlings by modulating the antioxidant machinery. Plants (Basel), 9, No. 7, pp. 809. https://doi.org/10.3390/plants9070809

24. Shi, H., Tan, D.X., Reiter, R.J., Ye, T., Yang, F. & Chan, Z. (2015). Melatonin induces class A1 heat-shock factors (HSFA1s) and their possible involvement of thermotolerance in Arabidopsis. J. Pineal Res., 58, No. 3, pp. 335-342. https://doi.org/10.1111/jpi.12219

25. Xu, W., Cai, S.Y., Zhang, Y., Wang, Y., Ahammed, G.J., Xia, X.J., Shi K., Zhou, Y.H., Yu, J.Q., Reiter, R.J. & Zhou, J. (2016). Melatonin enhances thermotolerance by promoting cellular protein protection in tomato plants. J. Pineal Res., 61, No. 4, pp. 457-469. https://doi.org/10.1111/jpi.12359

26. Li, C., Tan, D.X., Liang, D., Chang, C., Jia, D. & Ma, F. (2015). Melatonin mediates the regulation of ABA metabolism, free-radical scavenging, and stomatal behaviour in two Malus species under drought stress. J. Exp. Bot., 66, No. 3, pp. 669-680. https://doi.org/10.1093/jxb/eru476

27. Chang, J., Guo, Y., Li, J., Su, Z., Wang, C., Zhang, R., Wei, C., Ma, J., Zhang, X. & Li, H. (2021). Positive interaction between H2O2 and Ca2+ mediates melatonin-induced CBF pathway and cold tolerance in watermelon (Citrullus lanatus L.). Antioxidants, 10, pp. 1457. https://doi.org/10.3390/antiox10091457

28. Sun, L., Li, X., Wang, Z., Sun, Z., Zhu, X., Liu, S., Song, F., Liu, F. & Wang, Y. (2018). Cold priming induced tolerance to subsequent low temperature stress is enhanced by melatonin application during recovery in wheat. Molecules, 23, No. 5, pp. 1091. https://doi.org/10.3390/molecules23051091

29. Zhang, H., Liu, L., Wang, Z., Feng, G., Gao, Q. & Li, X. (2021). Induction of low temperature tolerance in wheat by pre-soaking and parental treatment with melatonin. Molecules, 26, pp. 1192. https://doi.org/10.3390/molecules26041192

30. Iqbal, N., Fatma, M., Gautam, H., Umar, S., Sofo, A., Dippolito, I. & Khan, N.A. (2021). The crosstalk of melatonin and hydrogen sulfide determines photosynthetic performance by regulation of carbohydrate metabolism in wheat under heat stress. Plants, 10, pp. 1778. https://doi.org/10.3390/plants10091778

31. Alam, M.N., Zhang, L., Yang, L., Islam, M.R., Liu, Y., Luo, H., Yang, P., Wang, Q. & Chan, Z. (2018). Transcriptomic profiling of tall fescue in response to heat stress and improved thermotolerance by melatonin and 24-epibrassinolide. BMC Genomics, 19, No. 1, pp. 224. https://doi.org/10.1186/s12864-018-4588-y

32. Nawaz, K., Chaudhary, R., Sarwar, A., Ahmad, B., Gul, A., Hano, C., Abbasi, B.H. & Anjum, S. (2021). Melatonin as master regulator in plant growth, development and stress alleviator for sustainable agricultural production: current status and future perspectives. Sustainability, 13, pp. 294. https://doi.org/10.3390/su13010294

33. Jahan, M.S., Shu, S., Wang, Y., Hasan, M.M., El-Yazied, A.A., Alabdallah, N.M., Hajjar, D., Altaf, M.A., Sun, J. & Guo, S. (2021). Melatonin pretreatment confers heat tolerance and repression of heat-induced senescence in tomato through the modulation of ABAand GA-mediated pathways. Front. Plant Sci., 12, pp. 650955. https://doi.org/10.3389/fpls.2021.650955

34. Zhang, J., Shi, Y., Zhang, X., Du, H., Xu, B. & Huang, B. (2017). Melatonin suppression of heat-induced leaf senescence involves changes in abscisic acid and cytokinin biosynthesis and signaling pathways in perennial ryegrass (Lolium perenne L.). Environ. Exp. Bot., 138, pp. 36-45. https://doi.org/10.1016/j.envexpbot.2017.02.012

35. Cui, G., Sun, F., Gao, X., Xie, K., Zhang, C., Liu, S. & Xi, Y. (2018). Proteomic analysis of melatonin-mediated osmotic tolerance by improving energy metabolism and autophagy in wheat (Triticum aestivum L.). Planta, 248, No. 1, pp. 69-87. https://doi.org/10.1007/s00425-018-2881-2

36. Li, D., Batchelor, W.D., Zhang, D., Miao, H., Li, H., Song, S. & Li, R. (2020). Analysis of melatonin regulation of germination and antioxidant metabolism in different wheat cultivars under polyethylene glycol stress. PLoS One, 15, No. 8, pp. e0237536. https://doi.org/10.1371/journal.pone.0237536

37. Haydari, M., Maresca, V., Rigano, D., Taleei, A., Shahnejat-Bushehri, A.A., Hadian, J., Sorbo, S., Guida, M., Manna, C., Piscopo, M., Notariale, R., De Ruberto, F., Fusaro, L. & Basile, A. (2019). Salicylic acid and melatonin alleviate the effects of heat stress on essential oil composition and antioxidant enzyme activity in Mentha ' piperita and Mentha arvensis L. Antioxidants (Basel), 8, No. 11, pp. 547. https://doi.org/10.3390/antiox8110547

38. Li, D., Zhang, D., Wang, H., Li, Y. & Li, R. (2017). Physiological response of plants to polyethylene glycol (PEG-6000) by exogenous melatonin application in wheat. Zemdirbyste-Agriculture, 104, No. 3, pp. 219-228. https://doi.org/10.13080/z-a.2017.104.028

39. Martinez, V., Nieves-Cordones, M., Lopez-Delacalle, M., Rodenas, R., Mestre, T.C., Garcia-Sanchez, F., Rubio, F., Nortes, P.A., Mittler, R. & Rivero, R.M. (2018). Tolerance to stress combination in tomato plants: new insights in the protective role of melatonin. Molecules, 23, No. 3, pp. 535. https://doi.org/10.3390/molecules23030535

40. Zhao, G., Zhao, Y., Yu, X., Kiprotich, F., Han, H., Guan, R., Wang, R. & Shen, W. (2018). Nitric oxide is required for melatonin-enhanced tolerance against salinity stress in rapeseed (Brassica napus L.) seedlings. Int. J. Mol. Sci., 19, No. 7, pp. 1912. https://doi.org/10.3390/ijms19071912

41. Talaat, N.B. (2021). Polyamine and nitrogen metabolism regulation by melatonin and salicylic acid combined treatment as a repressor for salt toxicity in wheat (Triticum aestivum L.) plants. Plant Growth Regul., 95, pp. 315-329. https://doi.org/10.1007/s10725-021-00740-6

42. Zafar, S., Hasnain, Z., Anwar, S., Perveen, S., Iqbal, N., Noman, A. & Ali, M. (2019). Influence of melatonin on antioxidant defense system and yield of wheat (Triticum aestivum L.) genotypes under saline condition. Pak. J. Bot., 51, No. 6, pp. 1987-1994. https://doi.org/10.30848/PJB2019-6(5)

43. Zhang, Z., Liu, L., Li, H., Zhang, S., Fu, X., Zhai, X., Yang, N., Shen, J., Li, R. & Li, D. (2022). Exogenous melatonin promotes the salt tolerance by removing active oxygen and maintaining ion balance in wheat (Triticum aestivum L.). Front. Plant Sci., 12, pp. 787062. https://doi.org/10.3389/fpls.2021.787062

44. Liu, J., Shabala, S., Zhang, J., Ma, G., Chen, D., Shabala, L., Zeng, F., Chen, Z.H., Zhou, M., Venkataraman, G. & Zhao, Q. (2020). Melatonin improves rice salinity stress tolerance by NADPH oxidase-dependent control of the plasma membrane K+ transporters and K+ homeostasis. Plant Cell Environ., 43, No. 11, pp. 2591-2605. https://doi.org/10.1111/pce.13759

45. Zhang, N., Zhang, H.J., Zhao, B., Sun, Q.Q., Cao, Y.Y., Li, R., Wu, X.X., Weeda, S., Li, L., Ren, S., Reiter, R.J. & Guo, Y.D. (2014). The RNA-seq approach to discriminate gene expression profiles in response to melatonin on cucumber lateral root formation. J. Pineal Res., 56, No. 1, pp. 39-50. https://doi.org/10.1111/jpi.12095

46. Zhang, H.J., Zhang, N., Yang, R.C., Wang, L., Sun, Q.Q., Li, D.B., Cao, Y.Y., Weeda, S., Zhao, B., Ren, S. & Guo, Y.D. (2014). Melatonin promotes seed germination under high salinity by regulating antioxidant systems, ABA and GA4 interaction in cucumber (Cucumis sativus L.). J. Pineal Res., 57, No. 3, pp. 269-279. https://doi.org/10.1111/jpi.12167

47. Tan, D.X., Manchester, L.C. & Helton, P. (2007). Phytoremediative capacity of plants enriched with melatonin. Plant Signal. Behav., 2, pp. 514-516. https://doi.org/10.4161/psb.2.6.4639

48. Posmyk, M.M., Kuran, H. & Marciniak, K. (2008). Pre sowing seed treatment with melatonin protects red cabbage seedlings against toxic copper ion concentrations. J. Pineal Res., 45, pp. 24-31. https://doi.org/10.1111/j.1600-079X.2007.00552.x

49. Nazarian, M. & Ghanati, F. (2020). The role of melatonin in reinforcement of antioxidant system of rice plant (Oryza sativa L.) under arsenite toxicity? Plant Physiol. Rep., 25, pp. 395-404. https://doi.org/10.1007/s40502-020-00523-7

50. Hasan, M., Ahammed, G.J., Yin, L., Shi, K., Xia, X., Zhou, Y., Yu, J. & Zhou, J. (2015). Melatonin mitigates cadmium phytotoxicity through modulation of phytochelatins biosynthesis, vacuolar sequestration, and antioxidant potential in Solanum lycopersicum L. Front. Plant Sci., 6, pp. 601. https://doi.org/10.3389/fpls.2015.00601

51. Siddiqui, M.H., Mukherjee, S., Kumar, R., Alansi, S., Shah, A.A., Kalaji, H.M., Javed, T. & Raza, A. (2022). Potassium and melatonin regulated-fructose-1, 6-bisphosphatase (FBPase) and sedoheptulose-1,7-bisphosphatase (SBPase) activity improve photosynthetic efficiency, carbon assimilation and modulate glyoxylase system and tolerance to cadmium stress in tomato seedlings. Plant Physiol. Biochem., 171, pp. 49-65. https://doi.org/10.1016/j.plaphy.2021.12.018

52. Lei, K., Sun, S., Zhong, K., Li, S., Hu, H., Sun, C., Zheng, Q., Tian, Z., Dai, T. & Sun, J. (2021). Seed soaking with melatonin promotes seed germination under chromium stress via enhancing reserve mobilization and antioxidant metabolism in wheat. Ecotoxicol. Environ. Saf., 220, pp. 112241. https://doi.org/10.1016/j.ecoenv.2021.112241

53. Wei, J., Li, D.X., Zhang, J.R., Shan, C., Rengel, Z., Song, Z.B. & Chen, Q. (2018). Phytomelatonin receptor PMTR1-mediated signaling regulates stomatal closure in Arabidopsis thaliana. J. Pineal Res., 65, No. 2, pp. e12500. https://doi.org/10.1111/jpi.12500

54. Lee, H.Y. & Back, K. (2020). The phytomelatonin receptor (PMRT1) Arabidopsis Cand2 is not a bona fide G protein-coupled melatonin receptor. Melatonin Res., 3, pp. 177-186. https://doi.org/10.32794/mr11250055

55. Lee, H.Y. & Back, K. (2016). Mitogen-activated protein kinase pathways are required for melatonin-mediated defense responses in plants. J. Pineal Res., 60, No. 3, pp. 327-335. https://doi.org/10.1111/jpi.12314

56. Lee, H.Y. & Back, K. (2017). Melatonin is required for H2O2-and NO-mediated defense signaling through MAPKKK3 and OXI1 in Arabidopsis thaliana. J. Pineal Res., 62, No. 2, pp. e12379. https://doi.org/10.1111/jpi.12379

57. Kang, K., Kong, K., Park, S., Natsagdorj, U., Kim, Y.S. & Back, K. (2011). Molecular cloning of a plant N-acetylserotonin methyltransferase and its expression characteristics in rice. J. Pineal Res., 50, No. 3, pp. 304-309. https://doi.org/10.1111/j.1600-079X.2010.00841.x

58. Tan, D.-X., Manchester, L., Esteban-Zubero, E., Zhou, Z. & Reiter, R. (2015). Melatonin as a potent and inducible endogenous antioxidant: Synthesis and metabolism. Molecules, 20, No. 10, pp. 18886-18906. https://doi.org/10.3390/molecules201018886

59. Gong, B., Yan, Y., Wen, D. & Shi, Q. (2017). Hydrogen peroxide produced by NADPH oxidase: a novel downstream signaling pathway in melatonin-induced stress tolerance in Solanum lycopersicum. Physiol. Plant., 160, No. 4, pp. 396-409. https://doi.org/10.1111/ppl.12581

60. Taraban, D.A., Karpets, Yu.V., Yastreb, T.O., Dyachenko, A.I. & Kolupaev, Yu.E. (2022). Ca2+- and ROS-dependent induction of heat resistance of wheat seedlings by exogenous melatonin. Rep. Natl. Acad. Sci. Ukr., 4, pp. 98-105. https://doi.org/ 10.15407/dopovidi2022.04.098

61. Bian, L., Wang, Y., Bai, H., Li, H., Zhang, C., Chen, J. & Xu, W. (2021). Melatonin-ROS signal module regulates plant lateral root development. Plant Signal. Behav., 16, No. 5, pp. 1901447. https://doi.org/10.1080/15592324.2021.1901447

62. Kolupaev, Yu.E., Karpets, Yu.V. & Dmitriev, A.P. (2015). Signal mediators in plants in response to abiotic stress: Calcium, reactive oxygen and nitrogen species. Cytol. Genet., 49, No. 5, pp. 338-348. https://doi.org/10.3103/S0095452715050047

63. Yemets, A.I., Karpets, Yu.V., Kolupaev, Yu.E. & Blume, Ya.B. (2019). Emerging technologies for enhancing ROS/RNS homeostasis. In Hasanuzzaman, M., Fotopoulos, V., Nahar, K. & Fujita, M. (Eds.) Reactive oxygen, nitrogen and sulfur species in plants: production, metabolism, signaling and defense mechanisms, Vol. 2, (pp. 873-922), John Wiley & Sons Ltd. https://doi.org/10.1002/9781119468677.ch39

64. Nabaei, M. & Amooaghaie, R. (2019). Nitric oxide is involved in the regulation of melatonin-induced antioxidant responses in Catharanthus roseus roots under cadmium stress. Botany, 97, pp. 12. https://doi.org/10.1139/cjb-2019-0107