Пшениця (Triticum aestivum L.) займає найбільші посівні площі серед сільськогосподарських культур і є важливим джерелом енергії, поживних речовин, клітковини й білка в раціоні людини. Незважаючи на значний ріст урожайності пшениці за часів «зеленої революції», продовольчі потреби людства також зростають. Створення високопродуктивних сортів із поліпшеними характеристиками стає дедалі актуальнішим зі збільшенням чисельності населення планети. Iз початку ХХ ст. для збільшення різноманітності рослинного матеріалу в селекційну роботу почали впроваджувати штучний мутагенез із використанням радіоактивного опромінення і різноманітних хімічних сполук. Ці методи виявились ефективними інструментами індукування широкого спектра мутацій, однак переважна їх більшість небажана і потребує нейтралізації шляхом копіткої роботи із застосуванням зворотних схрещувань. Натомість редагування геному за допомогою сайтспецифічних ендонуклеаз забезпечує точні, ефективні й цільові модифікації в обраних локусах. Розглянуто історичні аспекти розвитку технологій індукованого мутагенезу та редагування геному за допомогою керованих ендонуклеаз. Серед систем, придатних для редагування геному, найширше використовують CRISPR/Cas-технологію через її простоту та відносну легкість спрямованого редагування генів різних організмів, у тому числі й пшениці з її складним гексаплоїдним геномом. Детально описано напрями застосування системи CRISPR/Cas для надання пшениці нових поліпшених властивостей. Особливу увагу приділено розробці новітніх технологій на основі існуючих систем редагування геному для створення гібридів пшениці. Узагальнено перспективи подальшого використання редагування геному пшениці для поліпшення її продуктивності і харчової цінності. Обговорено регуляторну законодавчу базу щодо виробництва та використання організмів, отриманих із залученням методів цілеспрямованого мутагенезу.
Ключові слова: Triticum aestivum L., пшениця, індукований мутагенез, редагування геному, CRISPR/Cas9
Повний текст та додаткові матеріали
У вільному доступі: PDFЦитована література
1. http://www.fao.org/faostat
2. http://www.ukrstat.gov.ua
3. Rubalka, O.I. Quality of wheat and its improvement. Kyiv: Logos, 2011. 496 p. [in Ukrainian].
4. Henry, R.J., Rangan, P. & Furtado, A. (2016). Functional cereals for production in new and variable climates. Curr. Opin. Plant Biol., 30, pp. 11-18. https://doi.org/10.1016/j.pbi.2015.12.008
5. Evenson, R.E. & Gollin, D. (2003). Assessing the impact of the green revolution, 1960 to 2000. Science, 300, No. 5620, pp. 758-762. https://doi.org/10.1126/science.1078710
6. Langridge, P. (2013). Wheat genomics and the ambitious targets for future wheat production. Genome, 56, No. 10, pp. 545-547. https://doi.org/10.1139/gen-2013-0149
7. Yadav, D., Shavrukov, Y., Bazanova, N., Chirkova, L., Borisjuk, N., Kovalchuk, N., Ismagul, A., Parent, B., Langridge, P., Hrmova, M. & Lopato, S. (2015). Constitutive overexpression of the TaNF-YB4 gene in transgenic wheat significantly improves grain yield. J. Exp. Bot., 66, pp 6635-6650. https://doi.org/10.1093/jxb/erv370
8. Bi, H., Shi, J., Kovalchuk, N., Luang, S., Bazanova, N., Chirkova, L., Zhang, D., Shavrukov, Y., Stepanenko, A., Tricker, P., Langridge, P., Hrmova, M., Lopato, S. & Borisjuk, N. (2018). Overexpression of the TaSHN1 transcription factor in bread wheat leads to leaf surface modifications, improved drought tolerance, and no yield penalty under controlled growth conditions: Characterisation of TaSHN1 from wheat. Plant Cell Environ., 41, pp. 2549-2566. https://doi.org/10.1111/pce.13339
9. Borisjuk, N., Kishchenko, O., Eliby, S., Schramm, C., Anderson, P., Jatayev, S., Kurishbayev, A. & Shavrukov, Y. (2019). Genetic modification for wheat improvement: from transgenesis to genome editing. Biomed Res. Int., 2019, pp. 1-18. https://doi.org/10.1155/2019/6216304
10. Metje-Sprink, J., Sprink, T. & Hartung, F. (2020). Genome-edited plants in the field. Curr. Opin. Biotechnol., 61, pp. 1-6. https://doi.org/10.1016/j.copbio.2019.08.007
11. Zhang, Y., Malzahn, A.A., Sretenovic, S. & Qi, Y. (2019). The emerging and uncultivated potential of CRISPR technology in plant science. Nat. Plants, 5, pp. 778-794. https://doi.org/10.1038/s41477-019-0461-5
12. Bayer, P.E., Golicz, A.A., Scheben, A., Batley, J. & Edwards, D. (2020). Plant pan-genomes are the new reference. Nat. Plants, 6, pp. 914-920. https://doi.org/10.1038/s41477-020-0733-0
13. Henry, R.J. (2020). Cereal genomics databases and plant genetic resources in crop improvement. Methods Mol. Biol., 2072, pp. 9-14. https://doi.org/10.1007/978-1-4939-9865-4_2
14. The International Wheat Genome Sequencing Consortium (IWGSC). Appels, R., Eversole, K., Stein, N., Feuillet, C., Keller, B., Rogers, J., Pozniak, C.J., Choulet, F., Distelfeld, A., Poland, J., Ronen, G., Sharpe, A.G., Barad, O., Baruch, K., Keeble-Gagnиre, G., Mascher, M., Ben-Zvi, G., Josselin, A.-A., Himmelbach, A., Balfourier, F., Gutierrez-Gonzalez, J., Hayden, M., Koh, C., Muehlbauer, G., Pasam, R.K., Paux, E., Rigault, P., Tibbits, J., Tiwari, V., Spannagl, M., Lang, D., Gundlach, H., Haberer, G., Mayer, K.F.X., Ormanbekova, D., Prade, V., Simkova, H., Wicker, T., Swarbreck, D., Rimbert, H., Felder, M., Guilhot, N., Kaithakottil, G., Keilwagen, J., Leroy, P., Lux, T., Twardziok, S., Venturini, L., Juhasz, A., Abrouk, M., Fischer, I., Uauy, C., Borrill, P., Ramirez-Gonzalez, R.H., Arnaud, D., Chalabi, S., Chalhoub, B., Cory, A., Datla, R., Davey, M.W., Jacobs, J., Robinson, S.J., Steuernagel, B., van Ex, F., Wulff, B.B.H., Benhamed, M., Bendahmane, A., Concia, L., Latrasse, D., Bartos, J., Bellec, A., Berges, H., Dolezel, J., Frenkel, Z., Gill, B., Korol, A., Letellier, T., Olsen, O.-A., Singh, K., Valarik, M., van der Vossen, E., Vautrin, S., Weining, S., Fahima, T., Glikson, V., Raats, D., ‡ihalikova, J., Toegelova, H., Vrana, J., Sourdille, P., Darrier, B., Barabaschi, D., Cattivelli, L., Hernandez, P., Galvez, S., Budak, H., Jones, J.D.G., Witek, K., Yu, G., Small, I., Melonek, J., Zhou, R., Belova, T., Kanyuka, K., King, R., Nilsen, K., Walkowiak, S., Cuthbert, R., Knox, R., Wiebe, K., Xiang, D., Rohde, A., Golds, T., ‡izkova, J., Akpinar, B.A., Biyiklioglu, S,. Gao, L., N'Daiye, A., Kubalakova, M., Safaй, J., Alfama, F., Adam-Blondon, A.-F., Flores, R., Guerche, C., Loaec, M., Quesneville, H., Condie, J., Ens, J., Maclachlan, R., Tan, Y., Alberti, A., Aury, J.-M., Barbe, V., Couloux, A., Cruaud, C., Labadie, K., Mangenot, S., Wincker, P., Kaur, G., Luo, M., Sehgal, S., Chhuneja, P., Gupta, O.P., Jindal, S., Kaur, P., Malik, P., Sharma, P., Yadav, B., Singh, N.K., Khurana, J.P., Chaudhary, C., Khurana, P., Kumar, V., Mahato, A., Mathur, S., Sevanthi, A., Sharma, N., Tomar, R.S., Holusova, K., Plihal, O., Clark, M.D., Heavens, D., Kettleborough, G., Wright, J., Balcarkova, B., Hu, Y., Salina, E., Ravin, N., Skryabin, K., Beletsky, A., Kadnikov, V., Mardanov, A., Nesterov, M., Rakitin, A., Sergeeva, E., Handa, H., Kanamori, H., Katagiri, S., Kobayashi, F., Nasuda, S., Tanaka, T., Wu J., Cattonaro, F., Jiumeng, M., Kugler, K., Pfeifer, M., Sandve, S., Xun, X., Zhan, B., Batley, J., Bayer, P.E., Edwards, D., Hayashi, S., Tulpova, Z., Visendi, P., Cui, L., Du, X., Feng, K., Nie, X., Tong, W. & Wang, L. (2018). Shifting the limits in wheat research and breeding using a fully annotated reference genome. Science, 361, Iss. 6403, eaar7191, pp. 1-16. doi: https://doi.org/10.1126/science.aar7191
15. Adli, M. (2018). The CRISPR tool kit for genome editing and beyond. Nat. Communications, 9, No. 1911, pp. 1-13. https://doi.org/10.1038/s41467-018-04252-2
16. Chen, K., Wang, Y., Zhang, R., Zhang, H. & Gao, C. (2019). CRISPR/Cas genome editing and precision plant breeding in agriculture. Annu. Rev. Plant Biol., 70, pp. 667-697. https://doi.org/10.1146/annurev-arplant-050718-100049
17. Chen, K. & Gao, C. (2014). Targeted genome modification technologies and their applications in crop improvements. Plant Cell Rep., 33, pp. 575-583. https://doi.org/10.1007/s00299-013-1539-6
18. Koeppel, I., Hertig, C., Hoffie, R. & Kumlehn, J. (2019). Cas endonuclease technology - a quantum leap in the advancement of barley and wheat genetic engineering. Int. J. Mol. Sci., 20, Iss. 11, E2647, pp. 1-24. https://doi.org/10.3390/ijms20112647
19. Jinek, M., Chylinski, K., Fonfara, I., Hauer, M., Doudna, J.A. & Charpentier, E. (2012). A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science, 337, pp. 816-821. https://doi.org/10.1126/science.1225829
20. Altpeter, F., Springer, N.M., Bartley, L.E., Blechl, A.E., Brutnell, T.P., Citovsky, V., Conrad, L.J., Gelvin, S.B., Jackson, D.P., Kausch, A.P., Lemaux, P.G., Medford, J.I., Orozco-Cбrdenas, M.L. Tricoli, D.M., Van Eck, J., Voytas, D.F., Walbot, V., Wang, K., Zhang, Z.J. & Stewart, C.N.Jr. (2016). Advancing crop transformation in the era of genome editing. Plant Cell., 28, No. 7, pp. 1510-1520. https://doi.org/10.1105/tpc.16.00196
21. Kumar, R., Kaur, A., Pandey, A., Mamrutha, H.M. & Singh, G.P. (2019). CRISPR-based genome editing in wheat: a comprehensive review and future prospects. Mol. Biol. Reports, 46, pp. 3557-3569. https://doi.org/10.1007/s11033-019-04761-3
22. Chen, G., Zhou, Y., Kishchenko, O., Stepanenko, A., Jatayev, S., Zhang, D. & Borisjuk, N. (2020). Gene editing to facilitate hybrid crop production. Biotechnology Advances, In Press. https://doi.org/10.1016/j.biotechadv.2020.107676
23. Wang, K., Gong, Q. & Ye, X. (2020). Recent developments and applications of genetic transformation and genome editing technologies in wheat. Theor. Appl. Genet., 133, pp. 1603-1622. https://doi.org/10.1007/s00122-019-03464-4
24. Arabidopsis, Genome Initiative. (2000). Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature, 408, pp. 796-815. https://doi.org/10.1038/35048692
25. Sasaki, T. (2005). The map-based sequence of the rice genome. Nature, 436, pp. 793-800. https://doi.org/10.1038/nature03895
26. Schmutz, J., Cannon, S.B., Schlueter, J., Ma, J., Mitros, T., Nelson, W., Hyten, D.L., Song, Q., Thelen, J.J., Cheng, J., Xu, D., Hellsten, U., May, G.D., Yu, Y., Sakurai, T., Umezawa, T., Bhattacharyya, M.K., Sandhu, D., Valliyodan, B., Lindquist, E., Peto, M., Grant, D., Shu, S., Goodstein, D., Barry, K., Futrell-Griggs, M., Abernathy, B., Du, J., Tian, Z., Zhu, L., Gill, N., Joshi, T., Libault, M., Sethuraman, A., Zhang, X.-C., Shinozaki, K., Nguyen, H.T., Wing, R.A., Cregan, P., Specht, J., Grimwood, J., Rokhsar, D., Stacey, G., Shoemaker, R.C. & Jackson, S.A. (2010). Genome sequence of the palaeopolyploid soybean. Nature, 463, pp. 178-183. https://doi.org/10.1038/nature08670
27. Schnable, P.S., Ware, D., Fulton, R.S., Stein, J.C., Wei, F., Pasternak, S., Liang, C., Zhang, J., Fulton, L., Graves, T.A., Minx, P., Reily, A.D., Courtney, L., Kruchowski, S.S., Tomlinson, C., Strong, C., Delehaunty, K., Fronick, C., Courtney, B., Rock, S.M., Belter, E., Du, F., Kim, K., Abbott, R.M., Cotton, M., Levy, A., Marchetto, P., Ochoa, K., Jackson, S.M., Gillam, B., Chen, W., Yan, L., Higginbotham, J., Cardenas, M., Waligorski, J., Applebaum, E., Phelps, L., Falcone, J., Kanchi, K., Thane, T., Scimone, A., Thane, N., Henke, J., Wang, T., Ruppert, J., Shah, N., Rotter, K., Hodges, J., Ingenthron, E., Cordes, M., Kohlberg, S., Sgro, J., Delgado, B., Mead, K., Chinwalla, A., Leonard, S., Crouse, K., Collura, K., Kudrna, D., Currie, J., He, R., Angelova, A., Rajasekar, S., Mueller, T., Lomeli, R., Scara, G., Ko, A., Delaney, K., Wissotski, M., Lopez, G., Campos, D., Braidotti, M., Ashley, E., Golser, W., Kim, H., Lee, S., Lin, J., Dujmic, Z., Kim, W., Talag, J., Zuccolo, A., Fan, C., Sebastian, A., Kramer, M., Spiegel, L., Nascimento, L., Zutavern, T., Miller, B., Ambroise, C., Muller, S., Spooner, W., Narechania, A., Ren, L., Wei, S., Kumari, S., Faga, B., Levy, M.J., McMahan, L., Van Buren, P., Vaughn, M.W., Ying, K., Yeh, C.-T., Emrich, S.J., Jia, Y., Kalyanaraman, A., Hsia, A.-P., Barbazuk, W.B., Baucom, R.S., Brutnell, T.P., Carpita, N.C., Chaparro, C., Chia, J.-M., Deragon, J.-M., Estill, J.C., Fu, Y., Jeddeloh, J.A., Han, Y., Lee, H., Li, P., Lisch, D.R., Liu, S., Liu, Z., Nagel, D.H., McCann, M.C., SanMiguel, P., Myers, A.M., Nettleton, D., Nguyen, J., Penning, B.W., Ponnala, L., Schneider, K.L., Schwartz, D.C., Sharma, A., Soderlund, C., Springer, N.M., Sun, Q., Wang, H., Waterman, M., Westerman, R., Wolfgruber, T.K., Yang, L., Yu, Y., Zhang, L., Zhou, S., Zhu, Q., Bennetzen, J.L., Dawe, R.K., Jiang, J., Jiang, N., Presting, G.G., Wessler, S.R., Aluru, S., Martienssen, R.A., Clifton, S.W., McCombie, W.R., Wing, R.A. & Wilson, R.K. (2009). The B73 maize genome: complexity, diversity, and dynamics. Science, 326, pp. 1112-1115. https://doi.org/10.1126/science.1178534
28. Voytas, D.F. & Gao, C. (2014). Precision genome engineering and agriculture: opportunities and regulatory challenges. PLoS Biol., 12, e1001877, pp 1-6. https://doi.org/10.1371/journal.pbio.1001877
29. Dobrovidova, O. (2019). Russia joins in global gene-editing bonanza. Nature, 569, pp. 319-320. https://10.1038/d41586-019-01519-6. https://doi.org/10.1038/d41586-019-01519-6
30. Friedrichs, S., Takasu, Y., Kearns, P., Dagallier, B., Oshima, R., Schofield, J. & Moreddu, C. (2019). An overview of regulatory approaches to genome editing in agriculture. Biotec. Res. Innov., 3, pp. 208-220. https://doi.org/10.1016/j.biori.2019.07.001
31. Muller, H.J. (1927). Artificial transmutation of the gene. Science, 66, pp. 84-87. https://doi.org/10.1126/science.66.1699.84
32. Stadler, L.J. (1928). Genetic effects of X-rays in maize. Proc. Natl. Acad. Sci. USA, 14, Iss. 1, pp. 69-75. https://doi.org/10.1073/pnas.14.1.69
33. Pacher, M. & Puchta, H. (2017). From classical mutagenesis to nuclease-based breeding - directing natural DNA repair for a natural end-product. Plant J., 90, pp. 819-833. https://doi.org/10.1111/tpj.13469
34. Rapoport, I.A. (1946). Carbonyl compounds and the chemical mechanism of mutations. Dokl. USSR Academy of Sciences, 54, No. 1, pp. 65-68 [in Russian].
35. Auerbach, C. & Robson, J. (1946). Chemical production of mutations. Nature, 157, pp. 302. https://doi.org/10.1038/157302a0
36. Dhaliwal, A.K., Mohan, A., Sidhu, G., Maqbool, R. & Gill, K.S. (2015). An ethylmethane sulfonate mutant resource in pre-green revolution hexaploid wheat. PLoS One, 10, Iss. 12, e0145227, pp.1-15. https://doi.org/10.1371/journal.pone.0145227
37. Novak, F.J. & Brunner, H. (1992). Plant breeding: induced mutation technology for crop improvement. IAEA Bulletin, pp. 25-33.
38. Ahloowalia, B.S., Maluszynski, M. & Nichterlein, K. (2004). Global impact of mutation-derived varieties. Euphytica, 135, pp. 187-204. https://doi.org/10.1023/B:EUPH.0000014914.85465.4f
39. Fitzgerald, T.L., Powell, J.J., Stiller, J., Weese, T.L., Abe, T., Zhao, G,. Jia, J., McIntyre, C.L., Li, Z., Manners, J.M. & Kazan, K. (2015). An assessment of heavy ion irradiation mutagenesis for reverse genetics in wheat (Triticum aestivum L.) PLoS One, 10, Iss. 2, e0117369, pp. 1-23. https://doi.org/10.1371/journal.pone.0117369
40. Kharkwal, M.C., Pandey, R.M. & Pawar, S.E. (2004). Mutation breeding in crop improvement. In Plant Breeding - Mendelian to Molecular Approaches. Jain, H.K., Kharkwal, M.C. (Eds). New Delhi: Narosa Publishing House, pp. 601-645 https://doi.org/10.1007/978-94-007-1040-5_26
41. Sovovб, T., Kerins, G., Demnerova, K. & Ovesnб, J. (2017). Genome editing with engineered nucleases in economically important animals and plants: state of the art in the research pipeline. Curr. Issues Mol. Biol., 21, pp. 41-62. https://doi.org/10.21775/ cimb.021.041 41-62.
42. Parry, M.A.J., Madgwick, P.J., Bayon, C., Tearall, K., Hernandez-Lopez, A., Baudo, M., Rakszegi, M., Hamada, W., Al-Yassin, A., Ouabbou, H., Labhilili, M. & Phillips, A.L. (2009). Mutation discovery for crop improvement. J. Exp. Bot., 60, No. 10, pp. 2817-2825. https://doi.org/10.1093/jxb/erp189
43. McCallum, C.M., Comai, L., Greene, E.A. & Heniko, S. (2000). Targeting Induced Local Lesions IN Genomes (TILLING) for plant functional genomics. Plant Physiol., 123, pp. 439-442. https://doi.org/10.1104/pp.123.2.439
44. Colbert, T., Till, B.J., Tompa, R., Reynolds, S., Steine, M.N., Yeung, A.T., McCallum, C.M., Comai, L. & Henikoff, S. (2001). High-throughput screening for induced point mutations. Plant Physiol., 126, pp. 480-484. https://doi.org/10.1104/pp.126.2.480
45. Xiong, H., Zhou, C., Guo, H., Xie, Y., Zhao, L., Gu, J., Zhao, S., Ding, Y. & Liu, L. (2020). Transcriptome sequencing reveals hotspot mutation regions and dwarfing mechanisms in wheat mutants induced by g-ray irradiation and EMS. J Radiat Res., 61, pp. 44-57. https://doi.org/10.1093/jrr/rrz075
46. Uauy, C., Paraiso, F., Colasuonno, P., Tran, R.K., Tsai, H., Berardi, S., Comai, L. & Dubcovsky, J. (2009). A modified TILLING approach to detect induced mutations in tetraploid and hexaploid wheat. BMC Plant Biol., 9, pp. 115-129. https://doi.org/10.1186/1471-2229-9-115
47. Krasileva, K.V., Vasquez-Gross, H.A., Howell, T., Bailey, P., Paraiso, F., Clissold, L., Simmonds, J., Ramirez-Gonzalez, R.H., Wang, X., Borrill, P., Fosker, C., Ayling, S., Phillips, A.L., Uauy, C. & Dubcovsky, J. (2017). Uncovering hidden variation in polyploid wheat. Proc. Natl. Acad. Sci. USA, 114, Iss. 6, pp. E913-E921. https://doi.org/10.1073/pnas.1619268114
48. Rawat, N., Schoen, A., Singh, L., Mahlandt, A., Wilson, D.L., Liu, S., Lin, G., Gill, B.S. & Tiwari, V.K. (2018). TILL-D: an Aegilops tauschii TILLING resource for wheat improvement. Front. Plant Sci., 9, 1665, pp. 1-9. https://doi.org/10.3389/fpls.2018.01665
49. Rawat, N., Sehgal, S.K., Joshi, A., Rothe, N., Wilson, D.L., McGraw, N., Vadlani, P.V., Li, W. & Gill, B.S. (2012). A diploid wheat TILLING resource for wheat functional genomics. BMC Plant Biol., 12, No. 205, pp. 1-11. https://doi.org/10.1186/1471-2229-12-205
50. Acevedo-Garcia, J., Spencer, D., Thieron, H., Reinst¬dler, A., Hammond-Kosack, K., Phillips, A.L., & Panstruga, R. (2017). mlo-based powdery mildew resistance in hexaploid bread wheat generated by a non-transgenic TILLING approach. Plant Biotechnol. J., 15, pp. 367-378. https://doi.org/10.1111/pbi.12631
51. Ingvardsen, C.R., Massange-Sanchez, J.A., Borum, F., Uauy, C. & Gregersen, P.L. (2019). Development of mlo-based resistance in tetraploid wheat against wheat powdery mildew. Theor. Appl. Genet. 132, No. 11, pp. 3009-3022. https://doi.org/10.1007/s00122-019-03402-4
52. Sestili, F., Garcia-Molina, M.D., Gambacorta, G., Beleggia, R., Botticella, E., De Vita, P., Savatin, D.V., Masci, S. & Lafiandra, D. (2019). Provitamin A biofortification of durum wheat through a TILLING approach. Int. J. Mol. Sci., 20, No. 5703, pp. 1-14. https://doi.org/10.3390/ijms20225703
53. Guo, H., Liu, Y., Li, X., Yan, Z., Xie, Y., Xiong, H., Zhao, L., Gu, J., Zhao, S. & Liu, L. (2017). Novel mutant alleles of the starch synthesis gene TaSSIVb-D result in the reduction of starch granule number per chloroplast in wheat. BMC Genomics, 18, No. 358, pp. 1-10. https://doi.org/10.1186/s12864-017-3724-4
54. Sestili, F., Palombieri, S., Botticella, E., Mantovani, P., Bovina, R. & Lafiandra, D. (2015). TILLING mutants of durum wheat result in a high amylose phenotype and provide information on alternative splicing mechanisms. Plant Sci., 233, pp. 127-133. https://doi.org/10.1016/j.plantsci.2015.01.009
55. Chen, A. & Dubcovsky, J. (2012). Wheat TILLING mutants show that the vernalization gene VRN1 down-regulates the flowering repressor VRN2 in leaves but is not essential for flowering. PLoS Genet., 8, No. 12, e1003134, pp. 1-12. https://doi.org/10.1371/journal.pgen.1003134
56. Wallace, R.B., Schold, M., Johnson, M.J., Dembek, P. & Itakura, K. (1981). Oligonucleotide directed mutagenesis of the human b-globin gene: a general method for producing specific point mutations in cloned DNA. Nucleic Acids Res., 9, pp. 3647-3656. https://doi.org/10.1093/nar/9.15.3647
57. Puchta, H., Dujon, B. & Hohn, B. (1993). Homologous recombination in plant cells is enhanced by in vivo induction of double strand breaks into DNA by a site-specific endonuclease. Nucleic Acids Res., 21, No. 22, pp. 5034-5040. https://doi.org/10.1093/nar/21.22.5034
58. Rouet, P., Smih, F. & Jasin, M. (1994). Introduction of double-strand breaks into the genome of mouse cells by expression of a rare-cutting endonuclease. Mol. Cell Biol., 14, No. 12, pp. 8096-8106. https://doi.org/10.1128/MCB.14.12.8096
59. Vu, G.T.H., Cao, H.X., Watanabe, K., Hensel, G., Blattner, F.R., Kumlehn, J. & Schubert, I. (2014). Repair of site-specific DNA double-strand breaks in barley occurs via diverse pathways primarily involving the sister chromatid. Plant Cell, 26, pp. 2156-2167. https://doi.org/10.1105/tpc.114.126607
60. Kim, Y.G., Cha, J. & Chandrasegaran, S. (1996) Hybrid restriction enzymes: zinc finger fusions to Fok I cleavage domain. Proc. Natl. Acad. Sci. USA, 93, pp. 1156-1160. https://doi.org/10.1073/pnas.93.3.1156
61. Carroll, D. (2011). Genome engineering with zinc-finger nucleases. Genetics, 188, No. 4, pp. 773-782. https://doi.org/10.1534/genetics.111.131433
62. Shukla, V.K., Doyon, Y., Miller, J.C., DeKelver, R.C., Moehle, E.A., Worden, S.E., Mitchell, J.C., Arnold, N.L., Gopalan, S., Meng, X., Choi, V.M., Rock, J.M., Wu, Y.Y., Katibah, G.E., Zhifang, G., McCaskill, D., Simpson, M.A., Blakeslee, B., Greenwalt, S.A., Butler, H.J., Hinkley, S.J., Zhang, L., Rebar, E.J., Gregor, P.D. & Urnov, F.D. (2009). Precise genome modification in the crop species Zea mays using zinc-finger nucleases. Nature, 459, No. 7245, pp. 437-441. https://doi.org/10.1038/nature07992
63. Jung, Y.-J., Nogoy, F.M., Lee, S.-K., Cho, Y.-G. & Kang, K.-K. (2018). Application of ZFN for site directed mutagenesis of rice SSIVa gene. Biotechnol. Bioprocess Eng., 23, No. 1, pp. 108-115. https://doi.org/10.1007/s12257-017-0420-9
64. Lahaye, T. & Bonas, U. (2001). Molecular secrets of bacterial type III effector proteins. Trends Plant Sci., 6, pp. 479-485. https://doi.org/10.1016/S1360-1385(01)02083-0
65. Boch, J., Scholze, H., Schornack, S., Landgraf, A., Hahn, S., Kay, S., Lahaye, T., Nickstadt, A. & Bonas, U. (2009). Breaking the code of DNA binding specificity of TAL-type III effectors. Science, 326, pp. 1509-1512. https://doi.org/10.1126/science.1178811
66. Pattanayak, V., Guilinger, J.P. & Liu, D.R. (2014). Determining the specificities of TALENs, Cas9, and other genome-editing enzymes. Methods Enzymol., 546, pp. 47-78. https://doi.org/10.1016/B978-0-12-801185-0.00003-9
67. Cermak, T., Doyle, E.L., Christian, M., Wang, L., Zhang, Y., Schmidt, C., Baller, J.A., Somia, N.V., Bogdanove, A.J. & Voytas, D.F. (2011). Efficient design and assembly of custom TALEN and other TAL effector-based constructs for DNA targeting. Nucleic Acids Res., 39, e82, pp. 1-11, https://doi.org/10.1093/nar/gkr218
68. Sprink, T., Metje, J. & Hartung, F. (2015). Plant genome editing by novel tools: TALEN and other sequence specific nucleases. Curr. Opin. Biotechnol., 32, pp. 47-53. https://doi.org/10.1016/j.copbio.2014.11.010
69. Wang, Y., Zong, Y. & Gao, C. (2017). Targeted mutagenesis in hexaploid bread wheat using the TALEN and CRISPR/Cas systems. Methods Mol. Biol., 1679, pp. 169-185. https://doi.org/10.1007/978-1-4939-7337-8_11
70. Luo, M., Li, H., Chakraborty, S., Morbitzer, R., Rinaldo, A., Upadhyaya, N., Bhatt, D., Louis, S., Richardson, T., Lahaye, T. & Ayliffe, M. (2019). Efficient TALEN-mediated gene editing in wheat. Plant Biotechnol J., 17, pp. 2026-2028. https://doi.org/10.1111/pbi.13169
71. Chen, D.F. & Dale, P.J. (1992). A comparison of methods for delivering DNA to wheat: the application of wheat dwarf virus DNA to seeds with exposed apical meristems. Transgenic Res., 1, pp. 93-100. https://doi.org/10.1007/BF02513026
72. Anzalone, A.V., Randolph, P.B., Davis, J.R., Sousa, A.A., Koblan, L.W., Levy, J.M., Chen, P.J., Wilson, C., Newby, G.A., Raguram, A. & Liu, D.R. (2019). Search-and-replace genome editing without double-strand breaks or donor DNA. Nature, 576, pp. 149-157. https://doi.org/10.1038/s41586-019-1711-4
73. Makarova, K.S., Haft, D.H., Barrangou, R., Brouns, S.J.J., Charpentier, E., Horvath, P., Moineau, S., Mojica, F.J.M., Wolf, Y.I., Yakunin, A.F., van der Oost, J. & Koonin, E.V. (2011). Evolution and classification of the CRISPR-Cas systems. Nat. Rev. Microbiol., 9, pp. 467-477. https://doi.org/10.1038/nrmicro2577
74. Slaymaker, I.M., Gao, L., Zetsche, B., Scott, D.A., Yan, W.X. & Zhang, F. (2016). Rationally engineered Cas9 nucleases with improved specificity. Science, 351, pp. 84-88. https://doi.org/10.1126/science.aad5227
75. Kleinstiver, B.P., Pattanayak, V., Prew, M.S., Tsai, S.Q., Nguyen, N.T., Zheng, Z. & Joung, J.K. (2016). High-fidelity CRISPR-Cas9 nucleases with no detectable genome-wide off-target effects. Nature, 529, Iss. 7587, pp. 490-495. doi: htttps://doi.org/10.1038/ nature16526 https://doi.org/10.1038/nature16526
76. Endo, M., Mikami, M., Endo, A., Kaya, H., Itoh, T., Nishimasu, H., Nureki, O. & Toki, S. (2019). Genome editing in plants by engineered CRISPR-Cas9 recognizing NG PAM. Nat Plants, 5, pp. 14-17. https://doi.org/10.1038/s41477-018-0321-8
77. Walton, R.T., Christie, K.A., Whittaker, M.N. & Kleinstiver, B.P. (2020). Unconstrained genome targeting with near-PAMless engineered CRISPR-Cas9 variants. Science, 368, pp. 290-296. https://doi.org/10.1126/science.aba8853
78. Adli, M. (2018). The CRISPR tool kit for genome editing and beyond. Nat. Commun., 9, 1911, pp. 1-13. https://doi.org/10.1038/s41467-018-04252-2
79. Xu, X. & Qi, L.S. (2019). A CRISPR-dCas toolbox for genetic engineering and synthetic biology. J. Mol. Biol., 431, pp. 34-47. https://doi.org/10.1016/j.jmb.2018.06.037
80. Lowder, L.G., Zhang, D., Baltes, N.J., Paul, J.W., Tang, X., Zheng, X., Voytas, D.F., Hsieh, T.-F., Zhang, Y. & Qi, Y. (2015). A CRISPR-Cas9 toolbox for multiplexed plant genome editing and transcriptional regulation. Plant Physiol., 169, pp.971-985. https://doi.org/10.1104/pp.15.00636
81. Tang, X., Lowder, L.G., Zhang, T., Malzahn, A.A., Zheng, X., Voytas, D.F., Zhong, Z., Chen, Y., Ren, Q., Li, Q., Kirkland, E.R., Zhang, Y. & Qi, Y. (2017). A CRISPR-Cpf1 system for efficient genome editing and transcriptional repression in plants. Nat. Plants, 3, 17018. https://doi.org/10.1038/nplants.2017.18
82. Hilton, I.B., D'Ippolito, A.M., Vockley, C.M., Thakore, P.I., Crawford, G.E., Reddy, T.E. & Gersbach, C.A. (2015). Epigenome editing by a CRISPR-Cas9-based acetyltransferase activates genes from promoters and enhancers. Nat. Biotechnol., 33, pp. 510-517. https://doi.org/10.1038/nbt.3199
83. Zong, Y., Wang, Y., Li C., Zhang, R., Chen, K., Ran, Y., Qiu, J.-L., Wang, D. & Gao, C. (2017). Precise base editing in rice, wheat and maize with a Cas9-cytidine deaminase fusion. Nat. Biotechnol. 35, pp. 438-440. https://doi.org/10.1038/nbt.3811
84. Zong, Y., Song, Q., Li, C., Jin, S., Zhang, D., Wang, Y., Qiu, J.-L. & Gao, C. (2018). Efficient C-to-T base editing in plants using a fusion of nCas9 and human APOBEC3A. Nat. Biotechnol., 36, pp. 950-953. https://doi.org/10.1038/nbt.4261
85. Li, C., Zong, Y., Wang, Y., Jin, S., Zhang, D., Song ,Q., Zhang, R. & Gao, C. (2018). Expanded base editing in rice and wheat using a Cas9-adenosine deaminase fusion. Genome Biol., 19, 59, pp. 1-9. https://doi.org/10.1186/s13059-018-1443-z
86. Zhang, R., Liu, J., Chai, Z., Chen, S., Bai, Y., Zong, Y., Chen, K., Li, J., Jiang, L. & Gao, C. (2019). Generation of herbicide tolerance traits and a new selectable marker in wheat using base editing. Nat. Plants, 5, pp. 480-485. https://doi.org/10.1038/s41477-019-0405-0
87. Anzalone, A.V., Koblan, L.W. & Liu, D.R. (2020). Genome editing with CRISPR-Cas nucleases, base editors, transposases and prime editors. Nat Biotechnol., 38, pp. 824-844. https://doi.org/10.1038/s41587-020-0561-9
88. Marzec, M. & Hensel, G. (2020). Prime editing: game changer for modifying plant genomes. Trends Plant Sci., 25, pp. 722-724. https://doi.org/10.1016/j.tplants.2020.05.008
89. Lin, Q., Zong, Y., Xue, C., Wang, S., Jin, S., Zhu, Z., Wang, Y., Anzalone, A.V., Raguram, A., Doman, J.L., Liu, D.R. & Gao, C. (2020). Prime genome editing in rice and wheat. Nat. Biotechnol., 38, pp. 582-585. https://doi.org/10.1038/s41587-020-0455-x
90. Kim, E., Koo, T., Park, S.W., Kim, D., Kim, K., Cho, H.-Y., Song, D.W., Lee, K.J., Jung, M.H., Kim, S., Kim, J.H., Kim, J.H. & Kim, J.-S. (2017). In vivo genome editing with a small Cas9 orthologue derived from Campylobacter jejuni. Nat Commun., 8, 14500. https://doi.org/10.1038/ncomms14500
91. Hou, Z., Zhang, Y., Propson, N.E., Howden, S.E., Chu, L.-F., Sontheimer, E.J. & Thomson, J.A. (2013). Efficient genome engineering in human pluripotent stem cells using Cas9 from Neisseria meningitidis. Proc. Natl. Acad. Sci. USA, 110, pp. 15644-15649. https://doi.org/10.1073/pnas.1313587110
92. Mojica, F.J.M., Diez-Villasenor, C., Garcia-Martinez, J. & Almendros, C. (2009). Short motif sequences determine the targets of the prokaryotic CRISPR defence system. Microbiology, 155, pp. 733-740. https://doi.org/10.1099/mic.0.023960-0
93. Zetsche, B., Gootenberg, J.S., Abudayyeh, O.O., Slaymaker, I.M., Makarova, K.S., Essletzbichler, P., Volz, S.E., Joung, J., van der Oost, J., Regev, A., Koonin, E.V. & Zhang, F. (2015). Cpf1 Is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system. Cell, 163, pp. 759-771. https://doi.org/10.1016/j.cell.2015.09.038
94. Abudayyeh, O.O., Gootenberg, J.S., Essletzbichler, P., Han, S., Joung, J., Belanto, J.J., Verdine, V., Cox, D.B.T., Kellner, M.J., Regev, A., Lander, E.S., Voytas, D.F., Ting, A.Y. & Zhang, F. (2017). RNA targeting with CRISPR-Cas13. Nature, 550, pp. 280-284. https://doi.org/10.1038/nature24049
95. Cox, D.B.T., Gootenberg, J.S., Abudayyeh, O.O., Franklin, B., Kellner, M.J., Joung, J. & Zhang, F. (2017). RNA editing with CRISPR-Cas13. Science, 358, pp. 1019-1027. https://doi.org/10.1126/science.aaq0180
96. Konermann, S., Lotfy, P., Brideau, N.J., Oki, J., Shokhirev, M.N. & Hsu, P.D. (2018) Transcriptome engineering with RNA-targeting type VI-D CRISPR effectors. Cell, 173, pp. 665-676.e14. https://doi.org/10.1016/j.cell.2018.02.033
97. Komarnytsky, S. & Borisjuk, N. (2003). Functional analysis of promoter elements in plants. In: Genetic Engineering. Genetic engineering: principles and methods, 25, Setlow J.K. (Ed.) (pp. 113-141). Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-0073-5_6
98. Aman, R., Ali, Z., Butt, H., Mahas, A., Aljedaani, F., Khan, M.Z., Ding, S. & Mahfouz, M. (2018). RNA virus interference via CRISPR/Cas13a system in plants. Genome Biol., 19, pp. 1-9. https://doi.org/10.1186/s13059-017-1381-1
99. Mikami, M., Toki, S. & Endo, M. (2017). In planta processing of the SpCas9-gRNA complex. Plant Cell Physiol., 58, pp. 1857-1867. https://doi.org/10.1093/pcp/pcx154
100. Gil-Humanes, J., Wang, Y., Liang, Z., Shan, Q., Ozuna, C.V., Sanchez-Leon, S., Baltes, N.J., Starker, C., Barro, F., Gao, C. & Voytas, D.F. (2017). High-efficiency gene targeting in hexaploid wheat using DNA replicons and CRISPR-Cas9. Plant J., 89, pp. 1251-1262. https://doi.org/10.1111/tpj.13446
101. Cermak, T., Curtin, S.J., Gil-Humanes, J., Cegan, R., Kono, T.J.Y., Konecna, E., Belanto, J.J., Starker, C.G., Mathre, J.W., Greenstein, R.L. & Voytas, D.F. (2017). A multipurpose toolkit to enable advanced genome engineering in plants. Plant Cell, 29, pp. 1196-1217. https://doi.org/10.1105/tpc.16.00922
102. Xie, K., Minkenberg, B. & Yang, Y. (2015). Boosting CRISPR-Cas9 multiplex editing capability with the endogenous tRNA-processing system. Proc. Natl. Acad. Sci. USA, 112, pp. 3570-3575. https://doi.org/10.1073/pnas.1420294112
103. Tsai, S.Q., Wyvekens, N., Khayter, C., Foden, J.A., Thapar, V., Reyon, D., Goodwin, M.J., Aryee, M.J. & Joung, J.K. (2014). Dimeric CRISPR RNA-guided FokI nucleases for highly specific genome editing. Nat Biotechnol., 32, pp. 569-576. https://doi.org/10.1038/nbt.2908
104. Gao, Y. & Zhao, Y. (2014). Self-processing of ribozyme-flanked RNAs into guide RNAs in vitro and in vivo for for CRISPR-mediated genome editing. J. Integr. Plant Biol., 56, pp. 343-349. https://doi.org/10.1111/jipb.12152
105. Kurata, M., Wolf, N.K., Lahr, W.S., Weg, M.T., Kluesner, M.G., Lee, S., Hui, K., Shiraiwa, M., Webber, B.R. & Moriarity, B.S. (2018). Highly multiplexed genome engineering using CRISPR-Cas9 gRNA arrays. PLOS One, 13, e0198714. https://doi.org/10.1371/journal.pone.0198714
106. Wang, W., Pan, Q., He F., Akhunova, A., Chao, S., Trick, H. & Akhunov, E. (2018). Transgenerational CRISPR-Cas9 activity facilitates multiplex gene editing in allopolyploid wheat. CRISPR J., 1, pp. 65-74. https://doi.org/10.1089/crispr.2017.0010
107. Ding, D., Chen, K., Chen, Y., Li, H. & Xie, K. (2018). Engineering introns to express RNA guides for Cas9- and Cpf1-mediated multiplex genome editing. Mol. Plant, 11, pp. 542-552. https://doi.org/10.1016/j.molp.2018.02.005
108. Shan, Q., Wang, Y., Li, J., Zhang, Y., Chen, K., Liang, Z., Zhang, K., Liu, J., Xi, J.J., Qiu, J.-L. & Gao, C. (2013). Targeted genome modification of crop plants using a CRISPR-Cas system. Nat. Biotechnol., 31, pp. 686-688. https://doi.org/10.1038/nbt.2650
109. Shan, Q., Wang, Y., Li J. & Gao, C. (2014). Genome editing in rice and wheat using the CRISPR/Cas system. Nat. Protocols, 9, No. 10, pp. 2395-2410. https://doi.org/10.1038/nprot.2014.157
110. Zhang, Y., Liang, Z., Zong, Y., Wang, Y., Liu, J., Chen, K., Qiu, J.-L. & Gao, C. (2016). Efficient and transgene-free genome editing in wheat through transient expression of CRISPR-Cas9 DNA or RNA. Nat. Commun., 7, No. 12617, pp. 1-8. https://doi.org/10.1038/ncomms12617
111. Liang, Z., Chen, K., Li, T., Zhang ,Y., Wang, Y., Zhao, Q., Liu, J., Zhang, H., Liu, C., Ran, Y. & Gao, C. (2017). Efficient DNA-free genome editing of bread wheat using CRISPR-Cas9 ribonucleoprotein complexes. Nat. Commun., 8, No. 14261, pp. 1-5. https://doi.org/10.1038/ncomms14261
112. Arndell, T., Sharma, N., Langridge, P., Baumann, U., Watson-Haigh, N.S. & Whitford, R. (2019). gRNA validation for wheat genome editing with the CRISPR-Cas9 system. BMC Biotechnology, 19, pp. 71-89. https://doi.org/10.1186/s12896-019-0565-z
113. Bhowmik, P., Ellison, E., Polley, B., Bollina, V., Kulkarni, M., Ghanbarnia, K., Song, H., Gao, C., Voytas, D.F. & Kagale, S. (2018). Targeted mutagenesis in wheat microspores using CRISPR-Cas9. Sci. Rep., 8, No. 6502, pp. 1-10. https://doi.org/10.1038/s41598-018-24690-8
114. Upadhyay, S.K., Kumar, J., Alok, A. & Tuli, R. (2013). RNA-guided genome editing for target gene mutations in wheat. G3 (Bethesda), 3, pp. 2233-2238. https://doi.org/10.1534/g3.113.008847
115. Hamada, H., Liu, Y., Nagira, Y., Miki, R., Taoka, N. & Imai, R. (2018). Biolistic-delivery-based transient CRISPR/Cas9 expression enables in planta genome editing in wheat. Sci. Rep., 8, No. 14422, pp. 1-7. https://doi.org/10.1038/s41598-018-32714-6
116. Singh, M., Kumar, M., Albertsen, M.C., Young, J.K. & Cigan, A.M. (2018). Concurrent modifications in the three homeologs of Ms45 gene with CRISPR-Cas9 lead to rapid generation of male sterile bread wheat (Triticum aestivum L.). Plant Mol. Biol., 97, pp. 371-383. https://doi.org/10.1007/s11103-018-0749-2
117. Howells, R.M., Craze, M., Bowden, S. & Wallington, E.J. (2018). Efficient generation of stable, heritable gene edits in wheat using CRISPR-Cas9. BMC Plant Biol., 18, No. 215, pp. 1-11. https://doi.org/10.1186/s12870-018-1433-z
118. Wang, Y., Cheng, X., Shan, Q., Zhang, Y., Liu, J., Gao, C. & Qiu, J.-L. (2014). Simultaneous editing of three homoeoalleles in hexaploid bread wheat confers heritable resistance to powdery mildew. Nat. Biotechnol., 32, pp. 947-951. https://doi.org/10.1038/nbt.2969
119. Svitashev, S., Schwartz, C., Lenderts, B., Young, J.K. & Cigan, M.A. (2016). Genome editing in maize directed by CRISPR-Cas9 ribonucleoprotein complexes. Nat. Commun., 7, No. 13274, pp. 1-7. doi; https://doi.org/10.1038/ncomms13274
120. Grohmann, L., Keilwagen, J., Duensing, N., Dagand, E., Hartung, F., Wilhelm, R., Bendiek, J. & Sprink, T. (2019). Detection and identification of genome editing in plants: challenges and opportunities. Front. Plant Sci., 10, No. 236, https://doi.org/10.3389/fpls.2019.00236
121. Liang, Z., Chen, K., Yan, Y., Zhang, Y. & Gao, C. (2018). Genotyping genome-edited mutations in plants using CRISPR ribonucleoprotein complexes. Plant Biotechnol. J., 16, pp. 2053-2062. https://doi.org/10.1111/pbi.12938
122. Wang, W., Pan, Q., Tian, B., He, F., Chen, Y., Bai, G., Akhunova, A., Trick, H.N. & Akhunov, E. (2019). Gene editing of the wheat homologs of TONNEAU 1-recruiting motif encoding gene affects grain shape and weight in wheat. Plant J., 100, pp. 251-264. https://doi.org/10.1111/tpj.14440
123. Xu, H., Zhao, M., Zhang, Q., Xu, Z. & Xu, Q. (2016). The DENSE AND ERECT PANICLE 1 (DEP1) gene offering the potential in the breeding of high-yielding rice. Breed. Sci., 66, pp. 659-667. https://doi.org/10.1270/jsbbs.16120
124. Li, M., Li, X., Zhou, Z., Wu, P., Fang, M., Pan, X., Lin, Q., Luo, W., Wu, G. & Li, H. (2016). Reassessment of the four yield-related genes Gn1a, DEP1, GS3, and IPA1 in rice using a CRISPR-Cas9 system. Front. Plant Sci., 7, pp. 377-377. https://doi.org/10.3389/fpls.2016.00377
125. Sanchez-Leon, S., Gil-Humanes, J., Ozuna, C.V., Gimenez, M.J., Sousa, C., Voytas, D.F. & Barro, F. (2018). Low-gluten, nontransgenic wheat engineered with CRISPR-Cas9. Plant Biotechnol. J., 16, pp. 902-910. https://doi.org/10.1111/pbi.12837
126. Jouanin, A., Schaart, J.G., Boyd, L.A., Cockram, J., Leigh, F.J., Bates, R., Wallington, E.J., Visser, R.G.F. & Smulders, M.J.M. (2019). Outlook for coeliac disease patients: towards bread wheat with hypoimmunogenic gluten by gene editing of a- and g-gliadin gene families. BMC Plant Biol., 19, No. 333, pp. 1-16. https://doi.org/10.1186/s12870-019-1889-5
127. Garcнa-Molina, M.D., Gimѕnez, M.J., Sбnchez-LeЩn, S. & Barro, F. (2019). Gluten Free Wheat: Are We There? Nutrients, 11, No. 3, pp. 1-13. https://doi.org/10.3390/nu11030487
128. Li, J., Jiao, G., Sun, Y., Chen, J., Zhong, Y., Yan, L., Jiang, D., Ma & Y., Xia, L. (2020). Modification of starch composition, structure and properties through editing of TaSBEIIa in both winter and spring wheat varieties by CRISPR/Cas9. Plant Biotechnol. J., 5, pp. 1-15. doi: 10.1111/pbi.13519. https://doi.org/10.1111/pbi.13519
129. Kamiya, Y., Abe, F., Mikami, M., Endo, M. & Kawaura, K. (2020). A rapid method for detection of mutations induced by CRISPR/Cas9-based genome editing in common wheat. Plant Biotechnol., 37, pp. 247-251. https://doi.org/10.5511/plantbiotechnology.20.0404b
130. Nalam, V.J., Alam, S., Keereetaweep, J., Venables, B., Burdan, D., Lee, H., Trick, H.N., Sarowar, S., Makandar, R. & Shah, J. (2015). Facilitation of Fusarium graminearum infection by 9-lipoxygenases in Arabidopsis and wheat. Mol. Plant Microbe Interact., 28, pp. 1142-1152. https://doi.org/10.1094/MPMI-04-15-0096-R
131. Frye, C.A., Tang, D. & Innes, R.W. (2001). Negative regulation of defense responses in plants by a conserved MAPKK kinase. Proc. Natl. Acad. Sci. USA, 98, pp. 373-378. https://doi.org/10.1073/pnas.011405198
132. Zhang, Y., Bai, Y., Wu, G., Zou, S., Chen, Y., Gao, C. & Tang, D. (2017). Simultaneous modification of three homoeologs of TaEDR1 by genome editing enhances powdery mildew resistance in wheat. Plant J., 91, pp. 714-724. https://doi.org/10.1111/tpj.13599
133. Lu, S., Zhao, H., Des Marais, D.L., Parsons, E.P., Wen, X., Xu, X., Bangarusamy, D.K., Wang, G., Rowland, O., Juenger, T., Bressan, R.A. & Jenks, M.A. (2012). Arabidopsis ECERIFERUM9 involvement in cuticle formation and maintenance of plant water status. Plant Physiol., 159, pp. 930-944. https://doi.org/10.1104/pp.112.198697
134. Kishchenko, O., Zhou, Y., Jatayev, S., Shavrukov, Y. & Borisjuk, N. (2020). Gene editing applications to modulate crop flowering time and seed dormancy. BIOTECH, 1, pp. 233-245. https://doi.org/10.1007/s42994-020-00032-z
135. Abe, F., Haque, E., Hisano, H., Tanaka, T., Kamiya, Y., Mikami, M., Kawaura, K., Endo, M., Onishi, K., Hayashi, T & Sato, K (2019) Genome-edited triple-recessive mutation alters seed dormancy in wheat. Cell Rep., 28, pp. 1362-1369. https://doi.org/10.1016/j.celrep.2019.06.090
136. Gupta, P.K., Balyan, H.S., Gahlaut, V., Saripalli, G., Pal, B., Basnet, B.R. & Joshi, A.K. (2019). Hybrid wheat: past, present and future. Theor. Appl. Genet., 132, pp. 2463-2483. https://doi.org/10.1007/s00122-019-03397-y
137. Tucker, E.J., Baumann, U., Kouidri, A., Suchecki, R., Baes, M., Garcia, M., Okada, T., Dong, C., Wu, Y., Sandhu, A., Singh, M., Langridge, P., Wolters, P., Albertsen, M.C., Cigan, A.M. & Whitford, R. (2017). Molecular identification of the wheat male fertility gene Ms1 and its prospects for hybrid breeding. Nat. Commun., 8, No. 869, pp. 1-10. https://doi.org/10.1038/s41467-017-00945-2
138. Okada, A., Arndell, T., Borisjuk, N., Sharma, N., Watson-Haigh, N.S., Tucker, E.J., Baumann, U., Langridge, P. & Whitford, R. (2019). CRISPR/Cas9-mediated knockout of Ms1 enables the rapid generation of male-sterile hexaploid wheat lines for use in hybrid seed production. Plant Biotechnol. J., 17, Iss. 10, pp. 1905-1913. https://doi.org/10.1111/pbi.13106
139. Wang, Z., Li, J., Chen, S., Heng, Y., Chen, Z., Yang, J., Zhou, K., Pei, J., He, H., Deng, X.W. & Ma, L. (2017). Poaceae-specific MS1 encodes a phospholipid-binding protein for male fertility in bread wheat. Proc. Natl. Acad. Sci. USA, 114, pp. 12614-12619. https://doi.org/10.1073/pnas.1715570114
140. Liu, C., Zhong, Y., Qi, X., Chen, M., Liu, Z., Chen, C., Tian, X., Li, J., Jiao, Y., Wang, D., Wang, Y., Li, M., Xin, M., Liu, W., Jin, W. & Chen, S. (2020). Extension of the in vivo haploid induction system from diploid maize to hexaploid wheat. Plant Biotechnol. J., 18, pp. 316-318. https://doi.org/10.1111/pbi.13218
141. Kelliher, T., Starr, D., Su, X., Tang, G., Chen, Z., Carter, J., Wittich, P.E., Dong, S., Green, J., Burch, E., McCuiston, J., Gu, W., Sun, Y., Strebe, T., Roberts, J., Bate, N.J. & Que, Q. (2019). One-step genome editing of elite crop germplasm during haploid induction. Nat. Biotechnol., 37, pp. 287-292. https://doi.org/10.1038/s41587-019-0038-x
142. Yao, L., Zhang, Y., Liu, C., Liu, Y., Wang, Y., Liang, D., Liu, J., Sahoo, G. & Kelliher, T. (2018). OsMATL mutation induces haploid seed formation in indica rice. Nat. Plants, 4, pp. 530-533. https://doi.org/10.1038/s41477-018-0193-y
143. Liu, H., Wang, K., Jia, Z., Gong, Q., Lin, Z., Du, L., Pei, X. & Ye, X. (2020). Efficient induction of haploid plants in wheat by editing of TaMTL using an optimized Agrobacterium-mediated CRISPR system. J. Exp. Bot., 71, pp. 1337-1349. https://doi.org/10.1093/jxb/erz529
144. Scheben, A., Wolter, F., Batley, J., Puchta, H. & Edwards, D. (2017). Towards CRISPR/Cas crops - bringing together genomics and genome editing. New Phytol., 216, No. 3, pp. 682-698. https://doi.org/10.1111/nph.14702
145. Zhang, Y., Malzahn, A.A., Sretenovic, S. & Qi, Y. (2019). The emerging and uncultivated potential of CRISPR technology in plant science. Nat. Plants, 5, pp. 778-794. https://doi.org/10.1038/s41477-019-0461-5
146. http://crdd.osdd.net/servers/crisprge/links.php
147. http://www.addgene.org/crispr/reference/
148. Zheng, Y., Zhang, N., Martin, G.B. & Fei, Z. (2019). Plant genome editing database (PGED): a call for submission of information about genome-edited plant mutants. Mol. Plant, 12, No. 2, pp. 127-129. https://doi.org/10.1016/j.molp.2019.01.001
149. Clough, S.J. & Bent, A.F. (1998). Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J., 16, pp. 735-743. https://doi.org/10.1046/j.1365-313x.1998.00343.x
150. Toda, E., Koiso, N., Takebayashi, A., Ichikawa, M., Kiba, T., Osakabe, K., Osakabe, Y., Sakakibara, H., Kato, N. & Okamoto, T. (2019). An efficient DNA- and selectable-marker-free genome-editing system using zygotes in rice. Nat. Plants., 5, No. 4, pp. 363-368. https://doi.org/10.1038/s41477-019-0386-z
151. Maryenti, T., Kato, N., Ichikawa, M. & Okamoto, T. (2019). Establishment of an in vitro fertilization system in wheat (Triticum aestivum L.). Plant Cell Physiol., 60, pp. 835-843. https://doi.org/10.1093/pcp/pcy250
152. Maher, M.F., Nasti, R.A., Vollbrecht, M., Starker, C.G., Clark, M.D. & Voytas, D.F. (2020). Plant gene editing through de novo induction of meristems. Nat Biotechnol., 38, No. 1, pp. 84-89. https://doi.org/10.1038/s41587-019-0337-2
153. Lowe, K., Wu, E., Wang, N., Hoerster, G., Hastings, C., Cho, M.J., Scelonge, C., Lenderts, B., Chamberlin, M., Cushatt, J., Wang, L., Ryan, L., Khan, T., Chow-Yiu, J., Hua, W., Yu, M., Banh, J., Bao, Z., Brink, K., Igo, E., Rudrappa, B., Shamseer, P.M., Bruce, W., Newman, L., Shen, B., Zheng, P., Bidney, D., Falco, C., Register, J., Zhao, Z.Y., Xu, D., Jones, T. & Gordon-Kamm, W. (2016). Morphogenic regulators Baby boom and Wuschel improve monocot transformation. Plant Cell., 28, No. 9, pp. 1998-2015. https://doi.org/10.1105/tpc.16.00124
154. Gleba, Y., Klimyuk, V. & Marillonnet, S. (2007). Viral vectors for the expression of proteins in plants. Curr. Opin. Biotechnol., 18, pp. 134-141. https://doi.org/10.1016/j.copbio.2007.03.002
155. Liu, H. & Zhang, B. (2020). Virus-based CRISPR/Cas9 genome editing in plants. Trends Gen., 36, pp. 810-813. https://doi.org/10.1016/j.tig.2020.08.002
156. Li, C., Zhang, R., Meng, X., Chen, S., Zong, Y., Lu, C., Qiu, J.-L., Chen, Y.-H., Li, J. & Gao, C. (2020). Targeted, random mutagenesis of plant genes with dual cytosine and adenine base editors. Nat. Biotechnol., 38, pp. 875-882. https://doi.org/10.1038/s41587-019-0393-7
157. Sun, Y., Jiao, G., Liu, Z., Zhang, X., Li J., Guo, X., Du, W., Du, J., Francis, F., Zhao, Y. & Xia, L. (2017). Generation of high-amylose rice through CRISPR/Cas9-mediated targeted mutagenesis of starch branching enzymes. Front. Plant Sci., 8, 298, pp. 1-15. https://doi.org/10.3389/fpls.2017.00298
158. Ledford, H. & Callaway, E. (2020). Pioneers of revolutionary CRISPR gene editing win chemistry Nobel. Nature, 586, pp. 346-347. https://doi.org/10.1038/d41586-020-02765-9