Фізіологія рослин і генетика 2019, том 51, № 3, 258-266, doi: https://doi.org/10.15407/frg2019.03.258

Екологічні нанотехнології: синтез наночастинок срібла з використанням екстрактів лікарських рослин

Чижик О.В., Решетніков В.Н., Кондрацька І.П.

Ключові слова: biologically active substances, callus cultures, in vitro cultures, medicinal plants, nanoparticles

Фізіологія рослин і генетика
2019, том 51, № 3, 258-266

Повний текст та додаткові матеріали

У вільному доступі: PDF  

Цитована література

1. Colvin, V.L, Schlamp, M.C. & Alivisatos, A.P. (1994). Light-emitting diodes made from cadmium selenide nanocrystals and a semiconducting polymer. Nature, 370 (6488), pp. 354-357. https://doi.org/10.1038/370354a0

2. Wangand, Y. & Herron, N. (1991). Nanometer-sized semiconductor clusters: materials synthesis, quantum size effects, and photophysical properties. J. Physical Chemis., 95 (2), pp. 525-532. https://doi.org/10.1021/j100155a009

3. Wang, Y. (1991). Nonlinear optical properties of nanometer sized semi-conductor clusters. Accounts of Chemical Research, 24, pp. 133-139. https://doi.org/10.1021/ar00005a002

4. Schmid,G. (1992). Large clusters and colloids. Metals in the embryonicstate. Chemical Reviews, 92 (8), pp. 1709-1727. https://doi.org/10.1021/cr00016a002

5. Hoffman, A.J. (1992). Q-sized CdS: synthesis, characterization, and efficiency of photoinitiation of polymerization of several vinylic monomers. J. Physical Chem., 96 (13), pp. 5546-5552. https://doi.org/10.1021/j100192a067

6. Mansur, H. S. Grieser, F., Marychurch, M.S., Biggs, S., Urquhart, R.S. & Furlong, D.N. (1995). Photoelectrochemical properties of "Q-state"CdS particles in arachidic acid Langmuir-Blodgett films. J. Chemical Society. Faraday Transactions, 91 (4), pp. 665-672. https://doi.org/10.1039/FT9959100665

7. Klaus-Joerger, T., Joerger, R., Olsson, E. & Granquist, C-G. (2001). Bacteria as workers in the living factory: metal-accumulating bacteria and their potential for materials science. Trends in Biotechnol., 19 (1), pp. 15-20. https://doi.org/10.1016/S0167-7799(00)01514-6

8. Makarov, V.V. (2014). "Green" Nanotechnologies: Synthesis of Metal Nanoparticles Using Plants. Acta nature, 6 (1), pp. 35-44.

9. Mittal, A. K., Chisti, Y. & Banerjee, U.C. (2013). Synthesis of metallic nanoparticles using plant extracts. J. Biotechnol. advances, 31, pp. 346-356. https://doi.org/10.1016/j.biotechadv.2013.01.003

10. Monaliben, Sh., Fawcett, D., Sharma, Sh., Tripathy, S.K. & Poinern, G.E.S. (2015). Green Synthesis of Metallic Nanoparticles via Biological Entities. Materials J., 8, pp. 7278-7308. https://doi.org/10.3390/ma8115377

11. Malabadi, R., Naik, S., Meti, N.T., Mulgund, G.S., Nataraja, K. & Kumar, S.V. (2012). Silver nanoparticles synthesized by in vitro derived plants and callus cultures of Clitoria ternatea; Evaluation of antimicrobial activity. Research in Biotechnol., 3 (5), pp. 26-38.

12. Egorova, E.M. (2011). Nanoparticles of metals in solutions: biochemical synthesis, properties and applications. (Extended abstract of Doctor thesis). Moscow [in Russian].

13. Monaliben, Sh., Fawcett, D., Sharma, Sh., Tripathy, S.K. & Poinern, G.E.S. (2015). Green Synthesis of Metallic Nanoparticles via Biological Entities. Materials J., 8, pp. 7278-7308. https://doi.org/10.3390/ma8115377

14. Rodriguez-Leon, Er. (2013). Synthesis of silver nanoparticles using reducing agents obtained from natural sources (Rumex hymenosepalus extracts). Nanoscale Res Lett, 8 (1), pp. 318. https://doi.org/10.1186/1556-276X-8-318

15. Lin, L. (2010). Nature factory of silver nanowires: Plant-mediated synthesis using broth of Cassia fistula leaf. 162 (2), pp. 852-858. https://doi.org/10.1016/j.cej.2010.06.023

16. Archna, H.R. (2016). Rewew on Green Synthesis of Silver nanoparticle, Characterisation and Optimisation Parameters. International J. Research in Enginee ring and Technol., 5(15), pp. 49-53. https://doi.org/10.15623/ijret.2016.0527010

17. Haverkamp, R.G. & Marshall, A.T. (2009). The mechanism of metal nanoparticle formation in plants: limits on accumulation. J. Nanoparticle Research, 11(6), pp. 1453-1463. https://doi.org/10.1007/s11051-008-9533-6

18. Marchiol, L., Mattiello, A., Poscic, F., Giordano, C. & Musetti, R. (2014). In vivo synthesis of nanomaterials in plants: location of silver nanoparticles and plant metabolism. Nanoscale Res Lett, 9 (1), pp. 101. https://doi.org/10.1186/1556-276X-9-101

19. Mostafa, M.H. (2014). Green synthesis of silver nanoparticles using olive leaf extract and its antibacterial activity. Arabian J. Chemistry, 7(6), pp. 1131-1139. https://doi.org/10.1016/j.arabjc.2013.04.007

20. Kumar, R. Choshal, G. & Goyal, M. (2017). A and Goyal M. Rapid Green Synthesis of Silver Nanoparticles (AgNPs) Using (Prunus persica) Plants extract: Exploring its Antimicrobial and Catalytic Activities. J. Nanomed Nanotechnol, 8 (4), pp. 4-8. https://doi.org/10.4172/2157-7439.1000452

21. Rodriguez-Leyn, E. (2013). Synthesis of silver nanoparticles using reducing agents obtained from natural sources (Rumex hymenosepalus extracts). Nanoscale Res. Lett., 8(1), p. 318. https://doi.org/10.1186/1556-276X-8-318

22. Murashige, T & Skoog, F. (1962). A Revised Medium for Rapid Growth and Bio Assays with Tobacco Tissue Cultures. Physiol. Plantarum, 15 (3), pp. 473-497. https://doi.org/10.1111/j.1399-3054.1962.tb08052.x

23. Horuzaya, V. (2008). State Pharmacopoeia of the Republic of Belarus. Minsk: Minsk State PTK polygraph named, 2, 381p. [in Russian].

24. Riedl, K.M. (2001). Tannin-protein complexes as radical scavengers and radical sinks. J. Agric. And Food Chem., 49 (10), pp. 4917-4923 [in Russian]. https://doi.org/10.1021/jf010683h

25. Baker, S., Rakshith, D., Kavitha, K.S., Santosh, P., Kavitha, H.U., Rao, Y. & Satish, S. (2013). Plants: Emerging as Nanofactories towards Facile Route in Synthesis of Nanoparticles. Bioimpacts, 3 (3), pp. 111-117.

26. Shankar S., Ahmad, A. & Sastry, M. (2003). Geranium leaf assisted biosynthesis of silver nanoparticles. Biotechno. Prog., pp. 1627-1631. https://doi.org/10.1021/bp034070w

27. Vanaja, M., Rajeshkumar, S., Paulkumar, K., Gnanajobitha, G., Malarkodi, C. & Annadurai, G. (2013). Kinetic study on green synthesis of silver nanoparticles using Coleus aromaticus leaf extract. Advances in Applied Sci. Res., 4 (3), pp. 50-55.

28. Aparajita, V. & Mohan, S. M. (2016). Controllable synthesis of silver nanoparticles using Neem leaves and their antimicrobial activity. J. Radiation Research and Applied Sci., 9, pp. 109-115. https://doi.org/10.1016/j.jrras.2015.11.001

29. Zia, F.N., Iqbal, G.M. & Mehboo, S. (2016). Green synthesis and characterization of silver nanoparticles using Cydonia oblong seed extract. Appl. Nanosci., 6(7), pp. 1023-1029. https://doi.org/10.1007/s13204-016-0517-z

30. Braroo, K., Sharma, A.K., Thakur, M., Kasu, Y.A., Singh, K. & Bhori, M. (2014). Colloidal Silver Nanoparticles from Ocimum sanctum: Synthesis, Separation and Their Implications on Pathogenic Microorganisms, Human Keratinocyte Cells, and Allium cepa Root Tips. J. Colloid Sci. and Biotechnol., 3, pp. 1-8. https://doi.org/10.1166/jcsb.2014.1095

31. Veerasamy, R., Zi Xin, T., Gunasagaran, S., Foo Wei Xiang, T., Chou Yang, E.F., Jeyakumar, N. & Dhanaraj, S.A. (2011). Biosynthesis of silver nanoparticles using mangosteen leaf extract and evaluation of their antimicrobial activities. J. Saudi Chem. Society, 15, pp.113-120. https://doi.org/10.1016/j.jscs.2010.06.004

32. Mock, J.J. (2002). Shape effects in plasmon resonance of individual colloidal silver nanoparticles. J. Chem. Physics, 116(15), pp. 6755-6759. https://doi.org/10.1063/1.1462610

33. Iravani, S. & Zolfaghari, B. (2013). Green Synthesis of Silver Nanoparticles Using Pinus eldarica Bark Extract. BioMed Res. Int., pp. 1-5. https://doi.org/10.1155/2013/639725

34. Roopan, S.M., Rohit, Madhumitha G., Rahuman, A.A., Kamaraj, C., Bharathi, A. & Surendra, T.V. (2013). Low-cost and eco-friendly phyto-synthesis of silver nanoparticles using Cocos nucifera coir extract and its larvicidal activity. Ind. Crop Prod., 43, pp. 631-635. https://doi.org/10.1016/j.indcrop.2012.08.013

35. Cruza, D., Fale, P.L., Mourato, A., Vaz, P.D., Serralherio, M.L. & Lino, A.R. (2010). Preparation and physicochemical characterization of Ag nanoparticles biosynthesized by Lippia citriodora (Lemon Verbena). Colloids and Surfaces B: Biointerfaces, 81(1), pp. 67-73. https://doi.org/10.1016/j.colsurfb.2010.06.025