Фізіологія рослин і генетика 2018, том 50, № 4, 299-321, doi: https://doi.org/10.15407/frg2018.04.299

РИЗОСФЕРНІ МІКРООРГАНІЗМИ ЯК ФАКТОР РЕГУЛЮВАННЯ ФОРМУВАННЯ БОБОВО-РИЗОБІАЛЬНОГО СИМБІОЗУ

Мельникова Н.М., Михалків Л.М., Омельчук С.В., Береговенко С.К.

  • Інститут фізіології рослин і генетики Національної академії наук України, Київ

В огляді узагальнено літературні дані про властивості ризосферних мікроорганізмів, що визначають їхній рістстимулювальний потенціал, а також регуляторний вплив на формування і функціонування бобово-ризобіального симбіозу. Здатність ризобактерій до мобілізації мінеральних елементів, азотфіксації, продукування ферментів та біологічно активних речовин, індукування системної стійкості, зм'якшення дії біотичних та абіотичних несприятливих чинників лежить в основі їх прямого й опосередкованого багатовекторного впливу на ріст і розвиток рослин, формування й функціонування мікробних популяцій ризосфери, а також родючість ґрунту — складових, необхідних для ефективної взаємодії мікро- та макросимбіонтів. Участь ризосферних мікроорганізмів у багатьох процесах, що відбуваються у прикореневій зоні, дає підставу розглядати мікробне угруповання, що утворюється поблизу кореневої системи бобових рослин, як чинник регулювання формування бобово-ризобіального симбіозу, перш за все на ранніх етапах. Розуміння значення окремих властивостей ризобактерій у розвитку симбіотичних взаємовідносин між бобовими рослинами й бульбочковими бактеріями, а також встановлення особливостей бульбочкоутворення, азотфіксації, формування біомаси й урожаю макроорганізму під впливом прикореневої мікрофлори дає можливість створювати поліфункціональні мікробні композиції спрямованої дії для використання у сільськогосподарському виробництві при вирощуванні бобових і зернобобових культур у контексті стійкого розвитку.

Ключові слова: бобові рослини, ризосферні мікроорганізми, ризобії, рістстимулювальні властивості, симбіоз

Фізіологія рослин і генетика
2018, том 50, № 4, 299-321

Повний текст та додаткові матеріали

У вільному доступі: PDF  

Цитована література

1. Brewin, N.J. (1991). Development of the legume root nodule. Annu. Rev. Cell Biol., 7, pp. 191-226. doi: https://doi:10.1146/annurev.cb.07.110191.001203 https://doi.org/10.1146/annurev.cb.07.110191.001203

2. Hadri, A.-E., Spaink, H.P., Bisseling, T. & Brewin, N.J. (1998). Diversity of root nodulation and rhizobial infection processes. In The Rhizobiaceae (pp. 347-360), Dordrecht: Kluwer. https://doi.org/10.1007/978-94-011-5060-6_18

3. Hirsch, A.M. (1992). Developmental biology of legume nodulation. New Phytol., 122, No. 2, pp. 211-237. doi: https://doi.org/10.1111/j.1469-8137.1992.tb04227.x https://doi.org/10.1111/j.1469-8137.1992.tb04227.x

5. Tu, J.C. (1981). Effect of salinity on rhizobium-root-hair interaction, nodulation and growth of soybean. Can. J. Plant Sci., 61, No. 2, pp. 231-239. doi: https:// doi.org/10.4141/cjps81-035 https://doi.org/10.4141/cjps81-035

6. Zahran, H.H. (1999). Rhizobium-legume symbiosis and nitrogen fixation under severe conditions and in an arid climate. Microbiol. Mol. Biol. Rev., 63, No. 4, pp. 968-989.

7. Brear, E.M., Day, D.A. & Smith, P.M.C. (2013). Iron: an essential micronutrient for the legume-rhizobium symbiosis. Front Plant Sci., 4, p. 359. doi: https:// doi.org/10.3389/fpls.2013.00359 https://doi.org/10.3389/fpls.2013.00359

8. Li, B., Li, Y.Y., Wu, H.M., Zhang, F.F., Li, C.J., Li, X.X., Lambers, H. & Li, L. (2016). Root exudates drive interspecific facilitation by enhancing nodulation and N2 fixation. Proc. Natl. Acad. Sci. USA, 113, No. 23, pp. 6496-6501. doi: https://doi: 10.1073/pnas.1523580113 https://doi.org/10.1073/pnas.1523580113

9. Mel'nikova, N.N. & Omel'chuk, S.V. (2009). Effect of legume seed exudates on the formation of Rhizobium-legume symbiosis. Appl. Biochem. Microbiol., 45, No. 3, pp. 297-302. doi: https://doi.org/10.1134/S0003683809030107 https://doi.org/10.1134/S0003683809030107

10. Srinivasan, M., Holl, F.B. & Petersen, D.J. (1996). Influence of indoleacetic-acid-producing Bacillus isolates on the nodulation of Phaseolus vulgaris by Rhizobium etli under gnotobiotic conditions. Can. J. Microbiol., 42, No. 10, pp. 1006-1014. doi: https:// doi.org/10.1139/m96-129 https://doi.org/10.1139/m96-129

11. Sindhu, S.S., Sunita Suneja, Goel, A.K., Parmar, N. & Dadarwal, K.R. (2002). Plant growth promoting effects of Pseudomonas sp. on co-inoculation with Mesorhizobium sp. cicer strain under sterile and «wilt sick» soil conditions. Appl. Soil Ecol., 19, No. 1, pp. 57-64. doi: https://doi.org/10.1016/S0929-1393(01)00176-7 https://doi.org/10.1016/S0929-1393(01)00176-7

12. Kimenju, J.W., Karanja, N.K. & Macharia, I. (1999). Plant parasitic nematodes associated with common bean in Kenya and the effect of meloidogyne infection on bean nodulation. Afr. Crop Sci. J., 7, No. 4, pp. 503-510. doi: https://doi:10.4314/acsj.v7i4.27744 https://doi.org/10.4314/acsj.v7i4.27744

13. Canarini, A., Merchant, A. & Dijkstra, F.A. (2016). Drought effects on Helianthus annuus and Glycine max metabolites: from phloem to root exudates. Rhizosphere, 2, pp. 85-97. doi: https://doi.org/10.1016/j.rhisph.2016.06.003 https://doi.org/10.1016/j.rhisph.2016.06.003

14. Amira, M.S. & Qados, Abdul. (2011). Effect of salt stress on plant growth and metabolism of bean plant Vicia faba (L.). J. Saudi Soc. Agric. Sci., 10, No. 1, pp. 7-15. doi: https://doi.org/10.1016/j.jssas.2010.06.002 https://doi.org/10.1016/j.jssas.2010.06.002

15. Abreu, I., Cerda, M.E., de Nanclares, M.P., Baena, I., Lloret, J., Bonilla, I., Bolanos, L. & Reguera, M. (2012). Boron deficiency affects rhizobia cell surface polysaccharides important for suppression of plant defense mechanisms during legume recognition and for development of nitrogen-fixing symbiosis. Plant Soil, 361, No. 1-2, pp. 385-395. doi: https://doi.org/10.1007/s11104-012-1229-0 https://doi.org/10.1007/s11104-012-1229-0

16. Moron, B., Soria-Diaz, M.E., Ault, J., Verroios, G., Noreen, S., Rodriguez-Navarro, D.N., Gill-Serrano, A., Thomas-Oates, J., Megias, M. & Sousa, C. (2005). Low pH changes the profile of nodulation factors produced by Rhizobium tropici CIAT899. Chem. Biol., 12, No. 9, pp. 1029-1040. doi: https://doi.org/10.1016/j.chembiol.2005.06.014 https://doi.org/10.1016/j.chembiol.2005.06.014

17. Bagnasco, P., De La Fuente, L., Gualtieri, G., Noya, F. & Arias, A. (1998). Fluorescent Pseudomonas spp. as biocontrol agents against forage legume root pathogenic fungi. Soil Biol. Biochem., 30, No. 10-11, pp. 1317-1322. doi: https:// doi.org/10.1016/S0038-0717(98)00003-0

18. Mel'nikova, N.N., Bulavenko, L.V., Kurdish, I.K., Titova, L.V. & Kots S.Ya. (2002). Formation and function of the legume-rhizobium symbiosis of soybean plants while introducing bacterial strains from the genera Azotobacter and Bacillus. Appl. Biochem. Microbiol., 38, No. 4, pp. 368-372. doi: https://doi.org/10.1023/A:1016291207590 https://doi.org/10.1023/A:1016291207590

19. Shabayev, P. (2015). Response of legumes to co-inoculation with nodule bacteria and plant growth promoting rhizobacteria. Int. J. Sci. Technol., 5, No. 9. Retrieved from https://pdfs.semanticscholar.org/ dbee/26ac0b956c4b3593e4b7515ab871dea9e3ad.pdf

20. Yadegari, M., Rahmani, H.A., Noormohammadi, G. & Ayneband, A. (2008). Evaluation of bean (Phaseolus vulgaris) seeds inoculation with Rhizobium phaseoli and plant growth promoting rhizobacteria on yield and yield components. Pak. J. Biol. Sci., 11, No. 15, pp. 1935-1939. doi: https://doi.org/10.3923/pjbs.2008.1935.1939 https://doi.org/10.3923/pjbs.2008.1935.1939

21. Holguin, G. & Bashan, Y. (1996). Nitrogen-fixation by Azospirillum brasilense Cd is promoted when co-cultured with a mangrove rhizosphere bacterium (Staphylococcus sp.). Soil Biol. Biochem., 28, No. 12, pp. 1651-1660. doi: https:// doi.org/10.1016/S0038-0717(96)00251-9 https://doi.org/10.1016/S0038-0717(96)00251-9

22. Glick, B.R. (2012). Plant growth-promoting bacteria: mechanisms and applications. Scientifica, 963401. doi: http://dx.doi.org/10.6064/2012/963401 https://doi.org/10.6064/2012/963401

23. Rashid, M.I., Mujawar, L.H., Shahzad, T., Almeelbi, T., Ismail, I.M.I. & Oves, M. (2016). Bacteria and fungi can contribute to nutrients bioavailability and aggregate formation in degraded soils. Microbiol. Res., 183, pp. 26-41. doi: https://doi.org/10.1016/j.micres.2015.11.007 https://doi.org/10.1016/j.micres.2015.11.007

24. White, P.J. & Brown, P.H. (2010). Plant nutrition for sustainable development and global health. Ann. Bot., 105, No. 7, pp. 1073-1080. doi: https://doi.org/10.1093/ aob/mcq085 https://doi.org/10.1093/aob/mcq085

25. Sharma, S.B., Sayyed, R.Z., Trivedi, M.H. & Gobi, T.A. (2013). Phosphate solubilizing microbes: sustainable approach for managing phosphorus deficiency in agricultural soils. SpringerPlus, 2, 587 p. doi: https://doi.org/10.1186/2193-1801-2-587 https://doi.org/10.1186/2193-1801-2-587

26. Meena, V.S., Maurya, B.R. & Verma, J.P. (2014). Does a rhizospheric microorganism enhance K+ availability in agricultural soils? Microbiol. Res., 169, No. 5-6, pp. 337-347. doi: https://doi.org/10.1016/j.micres.2013.09.003 https://doi.org/10.1016/j.micres.2013.09.003

27. Hooda, P.S. (Ed.) (2010). Trace elements in soils. Chichester: Wiley. https://doi.org/10.1002/9781444319477

28. Leghari, S.J., Wahocho, N.A., Laghari, G.M., Laghari, A.H., Bhabhan, G.M., Talpur, K.H., Bhutto, T.A., Wahocho, S.A. & Lashari, A.A. (2016). Role of nitrogen for plant growth and development: a review. Adv. Environ. Biol., 10, No. 9, pp. 209-218.

29. Terpolilli, J.J., O'Hara, G.W., Tiwari, R.P., Dilworth, M.J. & Howieson, J.G. (2008). The model legume Medicago truncatula A17 is poorly matched for N2 fixation with the sequenced microsymbiont Sinorhizobium meliloti 1021. New Phytol., 179, No. 1, pp. 62-66. doi: https://doi.org/10.1111/j.1469-8137.2008.02464.x https://doi.org/10.1111/j.1469-8137.2008.02464.x

30. Glyan'ko, A.K., Vasil'eva, G.G., Mitanova, N.B. & Ishchenko, A.A. (2009). The influence of mineral nitrogen on legume-rhizobium symbiosis. Biol. Bull. Russ. Acad. Sci., 36, No. 3, pp. 250-258. doi: https://doi.org/10.1134/S1062359009030054 https://doi.org/10.1134/S1062359009030054

31. Hayat, R., Ali, S., Amara, U., Khalid, R., & Ahmed, I. (2010). Soil beneficial bacteria and their role in plant growth promotion: a review. Ann. Microbiol., 60, pp. 579-598. doi: https://doi.org/10.1007/s13213-010-0117-1 https://doi.org/10.1007/s13213-010-0117-1

32. Franche, C., Lindstrцm, K. & Elmerich, C. (2009). Nitrogen-fixing bacteria associated with leguminous and non-leguminous plants. Plant Soil, 321, pp. 35-59. doi: https://doi.org/10.1007/s11104-008-9833-8 https://doi.org/10.1007/s11104-008-9833-8

33. Hayatsu, M., Tago, K. & Saito, M. (2008). Various players in the nitrogen cycle: diversity and functions of the microorganisms involved in nitrification and denitrification. Soil Sci. Plant Nutr., 54, No. 1, pp. 33-45. doi: https://doi.org/10.1111/j.1747-0765.2007.00195.x https://doi.org/10.1111/j.1747-0765.2007.00195.x

34. Abdolzadeh, A., Wang, X., Veneklaas, E.J. & Lambers, H. (2010). Effects of phosphorus supply on growth, phosphate concentration and cluster-root formation in three Lupinus species. Ann. Bot., 105, No. 3, pp. 365-374. doi: https://doi.org/10.1093/aob/mcp297 https://doi.org/10.1093/aob/mcp297

35. Theodorou, M.E. & Plaxton, W.C. (1993). Metabolic adaptations of plant respiration to nutritional phosphate deprivation. Plant Physiol., 101, No. 2, pp. 339-344. doi: https:// doi.org/10.1104/pp.101.2.339 https://doi.org/10.1104/pp.101.2.339

36. Patyka, V.P., Tikhonovich, I.A., Filip'ev, I.D., Gamajunova, V.V. & Andrusenko, I.I. (1993). Microorganisms and alternative agriculture. Kyiv: Urozhaj [in Ukrainian].

37. Al-Niemi, T.S. (2017). Phosphate role in the Rhizobium-legume symbiosis — A review. Int. J. Sci.: Basic and Appl. Res., 36, No. 8, pp. 178-191.

38. Mullen, M.D., Israel, D.W. & Wollum, A.G. (1988). Effects of Bradyrhizobium japonicum and soybean (Glycine max (L.) Merr.) phosphorus nutrition on nodulation and dinitrogen fixation. Appl. Environ. Microbiol., 54, No. 10, pp. 2387-2392.

39. Hu, H., Tang, C. & Rengel, Z. (2005). Role of phenolics and organic acids in phosphorus mobilization in calcareous and acidic soils. J. Plant Nutr., 28, No.8, pp. 1427-1439. doi: https://doi.org/10.1081/PLN-200067506 https://doi.org/10.1081/PLN-200067506

40. Smart, J.B., Dilworth, M.J. & Robson, A.D. (1984). Effect of phosphorus supply on phosphate uptake and alkaline phosphatase uptake and alkaline phosphatase activity in rhizobia. Arch. Microbiol., 140, No.2-3, pp. 281-286. doi: https://doi.org/10.1007/ BF00454943 https://doi.org/10.1007/BF00454943

41. Alikhani, H.A., Saleh-Rastin, N. & Antoun, H. (2006). Phosphate solubilization activity of rhizobia native to Iranian soils. Plant Soil., 287, pp. 35-41. doi: https://doi.org/10.1007/s11104-006-9059-6 https://doi.org/10.1007/s11104-006-9059-6

42. Li, H., Smith, S.E., Holloway, R.E., Zhu, Y. & Smith, F.A. (2006). Arbuscular mycorrhizal fungi contribute to phosphorus uptake by wheat grown in a phosphorus-fixing soil even in the absence of positive growth responses. New Phytol., 172, No. 3, pp. 536-543. doi: https://doi.org/10.1111/j.1469-8137.2006.01846.x https://doi.org/10.1111/j.1469-8137.2006.01846.x

43. Gupta, G., Parihar, S.S., Ahirwar, N.K., Snehi, S.K. & Singh, V. (2015). Plant growth promoting rhizobacteria (PGPR): current and future prospects for development of sustainable agriculture. J. Microb. Biochem. Technol., 7, pp. 96-102. doi: htpps://doi.org/10.4172/1948-5948.1000188

44. Guinazu, L.B., Andres, J.A., Del Papa, M.F., Pistorio, M. & Rosas, S.B. (2009). Response of alfalfa (Medicago sativa L.) to single and mixed inoculation with phosphate-solubilizing bacteria and Sinorhizobium meliloti. Biol. Fertil. Soils, 46, No.2, pp. 185-190. doi: https://doi.org/10.1007/s00374-009-0408-5 https://doi.org/10.1007/s00374-009-0408-5

45. Wang, X.-G., Zhao, X.-H., Jiang, C.-J., Li, C.-H., Cong, S., Wu, D., Chen,Y.-Q., Yu, H.-Q. & Wang, C.-Y. (2015). Effects of potassium deficiency on photosynthesis and photoprotection mechanisms in soybean (Glycine max (L.) Merr.). J. Integr. Agric., 14, No.5, pp. 856-863. doi: https://doi.org/10.1016/S2095-3119(14)60848-0 https://doi.org/10.1016/S2095-3119(14)60848-0

46. Wang, M., Zheng, Q., Shen, Q. & Guo, S. (2013). The critical role of potassium in plant stress response. Int. J. Mol. Sci., 14, No. 4, pp. P. 7370-7390. doi: https://doi.org/10.3390/ijms14047370 https://doi.org/10.3390/ijms14047370

47. Sangakkara, U.R., Hartwig, U.A. & Nosberger, J. (1996). Soil moisture and potassium affect the performance of symbiotic nitrogen fixation in faba bean and common bean. J. Plant Soil., 184, No. 1, pp. 123-130. doi: https://doi.org/10.1007/BF00029282 https://doi.org/10.1007/BF00029282

48. Weisany, W., Raei, Y. & Allahverdipoor, K.H. (2013). Role of some mineral nutrients in biological nitrogen fixation. Bull. Env. Pharmacol. Life Sci., 2, No. 4, pp. 77-84.

49. Sheng, X.F. (2005). Growth promotion and increased potassium uptake of cotton and rape by a potassium releasing strain of Bacillus edaphicus. Soil Biol. Biochem., 37, pp. 1918-1922. doi: https://doi.org/10.1016/j.soilbio.2005.02.026 https://doi.org/10.1016/j.soilbio.2005.02.026

50. Lian, B., Fu, P.Q., Mo, D.M. & Liu, C.Q. (2002). A comprehensive review of the mechanism of potassium release by silicate bacteria. Acta Mineral. Sinica., 22, pp. 179-183.

51. Jha, Y. (2017). Potassium mobilizing bacteria: enhance potassium intake in paddy to regulates membrane permeability and accumulate carbohydrates under salinity stress. Braz. J. Biol. Sci., 4, No. 8, pp. 333-344. doi: https://dx.doi.org/10.21472/bjbs.040812 https://doi.org/10.21472/bjbs.040812

52. Liu, D., Lian, B. & Dong, H. (2012). Isolation of Paenibacillus sp. and assessment of its potential for enhancing mineral weathering. Geomicrobiol. J., 29, No. 5, pp. 413-421. doi: https://doi.org/10.1080/01490451.2011.576602 https://doi.org/10.1080/01490451.2011.576602

53. Etesami, H., Emami, S. & Alikhani, H. (2017). Potassium solubilizing bacteria (KSB): mechanisms, promotion of plant growth, and future prospects — a review. J. Soil Sci. Plant Nutr., 17, No. 4, pp. 897-911. doi: http://dx.doi.org/10.4067/S0718-95162017000400005 https://doi.org/10.4067/S0718-95162017000400005

54. Ullman, W.J., Kirchman, D.L., Welch, S.A. & Vandevivere, P. (1996). Laboratory evidence by microbially mediated silicate mineral dissolution in nature. Chem. Geol., 132, pp. 11-17. doi: https://doi.org/10.1016/S0009-2541(96)00036-8 https://doi.org/10.1016/S0009-2541(96)00036-8

55. Ahmed, E., Holmstrom, S.J.M. (2014). Siderophores in environmental research: roles and application. Microb. Biotechnol., 7, No. 3, pp. 196-208. doi: https://doi.org/ 10.1111/1751-7915.12117 https://doi.org/10.1111/1751-7915.12117

56. Li, R-X., Cai, F., Pang, G., Shen, Q.-R., Li, R. & Chen, W. (2015). Solubilisation of phosphate and micronutrients by Trichoderma harzianum and its relationship with the promotion of tomato plant growth. PLoS One, 10, No. 6, p. 0130081. doi: https://doi.org/10.1371/journal.pone.0130081 https://doi.org/10.1371/journal.pone.0130081

57. Hansch, R. & Mendel, R.R. (2009). Physiological functions of mineral micronutrients (Cu, Zn, Mn, Fe, Ni, Mo, B, Cl). Curr. Opin. Plant Biol., 12, No. 3, pp. 259-266. doi: https://doi.org/10.1016/j.pbi.2009.05.006 https://doi.org/10.1016/j.pbi.2009.05.006

58. Bonilla, I. & Bolanos, L. (2009). Mineral nutrition for legume-rhizobia symbiosis: B, Ca, N, P, S, K, Fe, Mo, Co, and Ni: a review. In Organic farming, pest control and remediation of soil pollutants. Sustainable agriculture reviews (pp. 253-274), Dordrecht: Springer. https://doi.org/10.1007/978-1-4020-9654-9_13

59. Sharma, C.P. (2006). Plant Micronutrients. Enfield-Jersey-Plymouth: Science Publishers. https://doi.org/10.1201/9781482280425

60. Yu, X., Ai, C., Xin, L. & Zhou, G. (2011). The siderophoreproducing bacterium, Bacillus subtilis CAS15, has a biocontrol effect on Fusarium wilt and promotes the growth of pepper. Eur. J. Soil Biol., 47, pp. 138-145. doi: https://doi.org/10.1016/j.ejsobi.2010.11.001 https://doi.org/10.1016/j.ejsobi.2010.11.001

61. Fuhrmann, J. & Wollum, A.G. (1989). In vitro growth responses of Bradyrhizobium japonicum to soybean rhizosphere bacteria. Soil. Biol. Biochem., 21, No. 1, pp. 131-135. doi: https://doi.org/10.1016/0038-0717(89)90022-9 https://doi.org/10.1016/0038-0717(89)90022-9

62. Bashan, Y. (1990). Short exposure to Azospirillum brasilense Cd inoculation enhanced proton efflux of intact wheat roots. Can. J. Microbiol., 36, No. 6, pp. 419-425. doi: https://doi.org/10.1139/m90-073 https://doi.org/10.1139/m90-073

63. De-Bashan, L.E., Antoun, H. & Bashan, Y. (2008). Involvement of indol-3-acetic acid produced by the growth-promoting bacterium Azospirillum spp. in promoting growth of Chlorella vulgaris. J. Phycol., 44, No. 4, pp. 938-947. doi: https://doi.org/10.1111/j.1529-8817.2008.00533.x https://doi.org/10.1111/j.1529-8817.2008.00533.x

64. Fahad, S., Hussain, S., Bano, A., Saud, S., Hassan, S., Shan, D., Khan, F.A., Khan, F., Chen, Y., Wu, C., Tabassum, M.A., Chun, M.X., Afzal, M., Jan, A. & Jan, M.T. J. (2015). Potential role of phytohormones and plant growth-promoting rhizobacteria in abiotic stresses: consequences for changing environment. Environ. Sci. Pollut. Res., 22, No. 7, pp. 4907-4921. doi: https://doi.org/10.1007/s11356-014-3754-2 https://doi.org/10.1007/s11356-014-3754-2

65. Gray, W.M. (2004). Hormonal regulation of plant growth and development. PLoS Biol., 2, No. 9, p. 311. doi: https://doi.org/10.1371/journal.pbio.0020311 https://doi.org/10.1371/journal.pbio.0020311

66. Gururani, M.A., Mohanta, T.K. & Bae, H. (2015). Current understanding of the interplay between phytohormones and photosynthesis under environmental stress. Int. J. Mol. Sci., 16, No. 8, pp. 19055-19085. doi: https://doi.org/10.3390/ijms160819055 https://doi.org/10.3390/ijms160819055

67. Miransari, M. & Smith, D.L. (2014). Plant hormones and seed germination. Environ. Exp. Bot., 99, pp. 110-121. doi: https://doi.org/10.1016/j.envexpbot.2013.11.005 https://doi.org/10.1016/j.envexpbot.2013.11.005

68. Costacurta, A. & Vanderleyden, J. (1995). Synthesis of phytohormones by plant-associated bacteria. Crit. Rev. Microbiol., 21, No. 1, pp. 1-18. https://doi.org/10.3109/10408419509113531

69. Araujo, F.F., Henning, A.A. & Hungria, M. (2005). Phytohormones and antibiotics produced by Bacillus subtilis and their effects on seed pathogenic fungi and on soybean root development. World J. Microbiol. Biotechnol., 21, pp. 1639-1645. doi: https://doi.org/10.1007/s11274-005-3621-x https://doi.org/10.1007/s11274-005-3621-x

70. Ali, B., Sabri, A.N., Ljung, K. & Hasnain, S. (2009). Auxin production by plant associated bacteria: impact on endogenous IAA content and growth of Triticum aestivum L. Lett. Appl. Microbiol., 48, No. 5, pp. 542-547. doi: https://doi.org/10.1111/j.1472-765X.2009.02565.x https://doi.org/10.1111/j.1472-765X.2009.02565.x

71. Ferguson, B.J. & Mathesius, U. (2014). Phytohormone regulation of legume-rhizobia interactions. J. Chem. Ecol., 40, No. 7, pp. 770-790. doi: https://doi.org/ 10.1007/s10886-014-0472-7 https://doi.org/10.1007/s10886-014-0472-7

72. Bensmih, S. (2015). Hormonal control of lateral root and nodule development in legumes. Plants (Basel), 4, No. 3, pp. 523-547. doi: https://doi.org/10.3390/ plants4030523

73. Liu, H., Zhang, C., Yang, J., Yu, N. & Wang, E. (2018). Hormone modulation of legume-rhizobial symbiosis. J. Integr. Plant Biol., 60, No. 4, pp. 358-364. doi: https://doi.org/10.1111/jipb.12653 https://doi.org/10.1111/jipb.12653

74. Melnykova, N., Gryshchuk, O., Mykhalkiv, L., Mamenko, P., Kots, S. (2013). Plant growth promoting properties of bacteria isolated from the rhizosphere of soybean and pea. Natura Montenegrina, 12, No. 3-4, pp. 915-923.

75. Podleљбkovб, K., Fardoux, J., Patrel, D., Bonaldi, K., Novбk, O., Strnad, M., Giraud, E., Spнchal, L. & Nouwen, N. (2013). Rhizobial synthesized cytokinins contribute to but are not essential for the symbiotic interaction between photosynthetic Bradyrhizobia and Aeschynomene legumes. Mol. Plant-Microbe Int., 26, No. 10, pp. 1232-1238. doi: https://doi.org/10.1094/MPMI-03-13-0076-R https://doi.org/10.1094/MPMI-03-13-0076-R

76. Tserkovniak, L.S. & Kurdish, I.K. (2009). Phosphate-mobilizing bacteria Bacillus subtilis as phenolic producers. Appl. Biochem. Microbiol., 45, No. 3, pp. 311-317. doi: https://doi.org/10.1134/S0003683809030077 https://doi.org/10.1134/S0003683809030077

77. Sumayo, M.S., Son, J.-S. & Ghim, S.-Y. (2018). Exogenous application of phenylacetic acid promotes root hair growth and induces the systemic resistance of tobacco against bacterial soft-rot pathogen Pectobacterium carotovorum subsp. carotovorum. Funct. Plant Biol. doi: https://doi.org/10.1071/FP17332 https://doi.org/10.1071/FP17332

78. Kots, S. Ya., Beregovenko, S.K., Kirichenko, E.V. & Melnykova, N.N. (2007). Features of interaction between plants and nitrogen-fixing microorganisms. Kyiv: Naukova dumka [in Russian].

79. Souleimanov, A., Prithiviraj, B. & Smith, D.L. (2002). The major Nod factor of Bradyrhizobium japonicum promotes early growth of soybean and corn. J. Exp. Bot., 53, No. 376, pp. 1929-1934. doi: https://doi.org/10.1093/jxb/erf034 https://doi.org/10.1093/jxb/erf034

80. Palacios, O.A., Bashan, Y. & de-Bashan, L.E. (2014). Proven and potential involvement of vitamins in interactions of plants with plant growth-promoting bacteria — an overview. Biol. Fertil. Soils, 50, No. 3, pp. 415-432. doi: https://doi.org/10.1007/s00374-013-0894-3 https://doi.org/10.1007/s00374-013-0894-3

81. Dakora, F.D., Matiru, V.N. & Kanu, A.S. (2015). Rhizosphere ecology of lumichrome and riboflavin, two bacterial signal molecules eliciting developmental changes in plants. Front. Plant Sci., 6, p. 700. doi: https://doi.org/10.3389/fpls.2015.00700 https://doi.org/10.3389/fpls.2015.00700

82. Adetunji, A.T., Lewu, F.B., Mulidzi, R. & Ncube, B. (2017). The biological activities of b-glucosidase, phosphatase and urease as soil quality indicators: a review. J. Soil Sci. Plant Nutr., 17, No. 3, pp. 794-807. doi: http://dx.doi.org/10.4067/S0718-95162017000300018 https://doi.org/10.4067/S0718-95162017000300018

83. Ghisalberti, E.L. & Sivasithamparam, K. (1991). Antifungal antibiotics produced by Trichoderma spp. Soil Biol. Biochem., 23, No. 11, pp. 1011-1020. doi: https://doi.org/10.1016/0038-0717(91)90036-J https://doi.org/10.1016/0038-0717(91)90036-J

84. Sathya, A., Jayabharathi, R. & Gopalakrishnan, S. (2017). Plant growth-promoting actinobacteria: a new strategy for enhancing sustainable production and protection of grain legumes. 3 Biotech., 7, p. 102. doi: http://dx.doi.org/10.1007/s13205-017-0736-3 https://doi.org/10.1007/s13205-017-0736-3

85. Ramadan, E.M., Abdel Hafez, A.A., Hassan, E.A. & Saber, F.M. (2016). Plant growth promoting rhizobacteria and their potential for biocontrol of phytopathogens. Afr. J. Microbiol. Res., 10, No. 15, pp. 486-504. doi: http://dx.doi.org/10.5897/AJMR2015.7714 https://doi.org/10.5897/AJMR2015.7714

86. Tyuterev, S.L. (2015). Ecologically safe inducers of plant resistance to diseases and physiological stresses. Plant Protec. News, 1, No. 83, pp. 3-13. [in Russian].

87. Schmidt, R., Cordovez, V. de Boer, W., Raaijmakers, J. & Garbeva, P. (2015). Volatile affairs in microbial interactions. The ISME Journal, 9, pp. 2329-2335. doi: https://doi.org/doi:10.1038/ismej.2015.42 https://doi.org/10.1038/ismej.2015.42

88. Chao, W.-L. (1990). Antagonistic activity of Rhizobium spp. against beneficial and plant pathogenic fungi. Lett. Appl. Microbiol., 10, No. 5, pp. 213-215. doi: doi.org/10.1111/j.1472-765X.1990.tb01336.x https://doi.org/10.1111/j.1472-765X.1990.tb01336.x

89. El-Barougy, E., Awad, N.M., Turky, A.S. & Hamed, H.A. (2009). Antagonistic activity of selected strains rhizobacteria against Macrophomina phaseolina of soybean plants. J. Agric. Environ. Sci., 5, No. 3, pp. 337-347.

90. Arfaoui, A., Sifi, B., Boudabous, A., El Hadrami, I. & Cherif, M. (2006). Identification of Rhizobium isolates possessing antagonistic activity against Fusarium oxysporum f. sp. ciceris, the causal agent of Fusarium wilt of chickpea. J. Plant Pathol., 88, No. 1, pp. 67-75. doi: http://dx.doi.org/10.4454/jpp.v88i1.832

91. Rao, G.S., Rao Reddy, N.N. & Surekha, Ch. (2015). Induction of plant systemic resistance in legumes Cajanus cajan, Vigna radiata, Vigna mungo against plant pathogens Fusarium oxysporum and Alternaria alternata — a Trichoderma viride mediated reprogramming of plant defense mechanism. Int. J. Recent Sci. Res., 6, No. 5, pp. 4270-4280.

92. Choudhary, D.K., Prakash, A. & Johri, B.N. (2007). Induced systemic resistance (ISR) in plants: mechanism of action. Indian J. Microbiol., 47, No. 4, pp. 289-297. doi: http://dx.doi.org/10.1007/s12088-007-0054-2 https://doi.org/10.1007/s12088-007-0054-2

93. Nawrocka, J., Malolepsza, U., Szymczak, K. & Szczech, M. (2018). Involvement of metabolic components, volatile compounds, PR proteins, and mechanical strengthening in multilayer protection of cucumber plants against Rhizoctonia solani activated by Trichoderma atroviride TRS25. Protoplasma, 255, No. 1, pp. 359-373. doi: http://dx.doi.org/10.1007/s00709-017-1157-1 https://doi.org/10.1007/s00709-017-1157-1

94. Goudaa, S., Kerry, R.G., Das, G., Paramithiotis, S., Shin, H.S. & Patra, J.K. (2018). Revitalization of plant growth promoting rhizobacteria for sustainable development in agriculture. Microbiol. Res., 206, pp. 131-140. doi: http://dx.doi.org/10.1016/j.micres.2017.08.016 https://doi.org/10.1016/j.micres.2017.08.016

95. Rudrappa, T., Biedrzycki, M.L., Kunjeti, S.G., Donofrio, N.M., Czymmek, K.J., Pare, P.W. & Bais, H.P. (2010). The rhizobacterial elicitor acetoin induces systemic resistance in Arabidopsis thaliana. Commun. Integr. Biol., 3, No. 2, pp. 130-138. doi: http://dx.doi.org/10.4161/cib.3.2.10584 https://doi.org/10.4161/cib.3.2.10584

96. Roberson, E.B. & Firestone, M.K. (1992). Relationship between desiccation and exopolysaccharide production in a soil Pseudomonas sp. Appl. Environ. Microbiol., 58, No. 4, pp. 1289-1291.

97. Qurashi, A.W. & Sabri, A.N. (2012). Bacterial exopolysaccharide and biofilm formation stimulate chickpea growth and soil aggregation under salt stress. Braz. J. Microbiol., 43, No. 3, pp. 1183-1191. doi: http://dx.doi.org/10.1590/S1517-83822012000300046 https://doi.org/10.1590/S1517-83822012000300046

98. Ayangbenro, A.S. & Babalola, O.O. (2017). A new strategy for heavy metal polluted environments: a review of microbial biosorbents. Int. J. Environ. Res. Public Health., 14, No. 1, E94. doi: https://doi.org/10.3390/ijerph14010094 https://doi.org/10.3390/ijerph14010094

99. Kaushal, M. & Wani, S.P. (2016). Plant-growth-promoting rhizobacteria: drought stress alleviators to ameliorate crop production in drylands. Ann. Microbiol., 66, No. 1, pp. 35-42. doi: https://doi.org/10.1007/s13213-015-1112-3 https://doi.org/10.1007/s13213-015-1112-3

100. Suarez, R., Wong, A., Ramнrez, M., Barraza, A., Orozco Mdel, C., Cevallos, M.A., Lara, M., Hernandez, G. & Iturriaga, G. (2008). Improvement of drought tolerance and grain yield in common bean by overexpressing trehalose-6-phosphate synthase in rhizobia. Mol. Plant-Microbe Int., 21, No. 7, pp. 958-966. doi: https://doi.org/10.1094/ MPMI-21-7-0958 https://doi.org/10.1094/MPMI-21-7-0958

101. Brechenmacher, L., Lei, Z., Libault, M., Findley, S., Sugawara, M., Sadowsky, M.J., Sumner, L.W. & Stacey, G. (2010). Soybean metabolites regulated in root hairs in response to the symbiotic bacterium Bradyrhizobium japonicum. Plant Physiol., 153, pp. 1808-1822. doi: https://doi.org/10.1104/pp.110.157800

102. Madkour, M.A., Smith, L.T. & Smith, G.M. (1990). Preferential osmolyte accumulation: a mechanism of osmotic stress adaptation in diazotrophic bacteria. Appl. Environ. Microbiol., 56, No. 9, pp. 2876-2881.

103. Gamo, T. & Ahn, S.B. (1991). Growth-promoting Azospirillum spp. isolated from the roots of several non-gramineous crops in Japan. Soil Sci. Plant Nutr., 37, No. 3, pp. 455-461. doi: https://doi.org/10.1080/00380768.1991.10415058

104. McIntyre, H.J., Davies, H., Hore, T.A., Miller, S.H., Dufour, J.P. & Ronson, C.W. (2007). Trehalose biosynthesis in Rhizobium leguminosarum bv. trifolii and its role in desiccation tolerance. Appl. Environ. Microbiol., 73, No. 12, pp. 3984-3992. doi: https://doi.org/10.1128/AEM.00412-07

105. Rodrнguez-Salazar, J., Suбrez, R., Caballero-Mellado, J. & Iturriaga, G. (2009). Trehalose accumulation in Azospirillum brasilense improves drought tolerance and biomass in maize plants. FEMS Microbiol. Lett., 296, No. 1, pp. 52-59. doi: https://doi.org/10.1111/j.1574-6968.2009.01614.x

106. Cassan, F., Maiale, S., Masciarelli, O., Vidal, A., Luna, V. & Ruiz, O. (2009). Cadaverine production by Azospirillum brasilense and its possible role in plant growth promotion and osmotic stress mitigation. Eur. J. Soil Biol., 45, pp. 12-19. doi: https://doi.org/10.1016/j.ejsobi.2008.08.003

107. Goris, J., Kersters, K. & De Vos, P. (1998). Polyamines distribution among authentic Pseudomonads and Azotobacteraceae. Sys. Appl. Microbiol., 21, No. 2, pp. 285-290. doi: https://doi.org/10.1016/S0723-2020(98)80035-0

108. Lуpez-Gуmez, M., Cobos-Porras, L., Hidalgo-Castellanos, J. & Lluch, C. (2014). Occurrence of polyamines in root nodules of Phaseolus vulgaris in symbiosis with Rhizobium tropici in response to salt stress. Phytochems, 107, pp. 32-41. doi: https://doi.org/10.1016/j.phytochem.2014.08.017

109. Gill, S.S. & Tuteja, N. (2010). Polyamines and abiotic stress tolerance in plants. Plant Signal. Behav., 5, No. 1, pp. 26-33.

110. Xu, H., Griffith, M., Patten, C.L. & Glick, B.R. (1998). Isolation and characterization of an antifreeze protein with ice nucleation activity from the plant growth promoting rhizobacterium Pseudomonas putida GR12-2. Can. J. Microbiol., 44, No. 1, pp. 64-73. doi: https://doi.org/10.1139/w97-126

111. Sun, X., Griffith, M., Pasternak, J.J. & Glick, B.R. (1995). Low temperature growth, freezing survival, and production of antifreeze protein by the plant growth promoting rhizobacterium Pseudomonas putida GR12-2. Can. J. Microbiol., 41, No. 9, pp. 776-784. doi: https://doi.org/10.1139/m95-107

112. Iqbal, N., Khan, N.A., Ferrante, A., Trivellini, A., Francini, A. & Khan, M.I.R. (2017). Ethylene role in plant growth, development and senescence: interaction with other phytohormones. Front. Plant Sci., 8, p. 475. doi: https://doi.org/10.3389/ fpls.2017.00475

113. Stepanova, A.N., Yun, J., Likhacheva, A.V. & Alonso, J.M. (2007). Multilevel interactions between ethylene and auxin in Arabidopsis roots. Plant Cell., 19, No. 7, pp. 2169-2185. doi: https://doi.org/10.1105/tpc.107.052068

114. Zhu-Salzman, K., Salzman, R.A., Koiwa, H., Murdock, L.L., Bressan, R.A. & Hasegawa, P.M. (1998). Ethylene negatively regulates local expression of plant defense lectin genes. Physiol. Plant., 104, No. 3, pp. 365-372. doi: https://doi.org/10.1034/ j.1399-3054.1998.1040311.x

115. Guinel, F.C. (2015). Ethylene, a hormone at the center-stage of nodulation. Front. Plant Sci., 6, p. 1121. doi: https://doi.org/10.3389/fpls.2015.01121

116. Zahir, Z.A., Munir, A., Asghar, H.N., Shaharoona, B. & Arshad, M.J. (2008). Effectiveness of rhizobacteria containing ACC deaminase for growth promotion of peas (Pisum sativum) under drought conditions. Microbiol. Biotechnol., 18, No. 5, pp. 958-963.

117. Omer, A., Emara, H.M., Zaghloul, R.A., Abdel-Monem, M.O. & Dawwam, G.E. (2016). Potential of Azotobacter salinestris as plant growth promoting rhizobacteria under saline stress conditions. Res. J. Pharmac. Biol. Chem. Sci., 7, No. 6, pp. 2572-2583.

118. Kumar, K.V., Singh, N., Behl, H.M. & Srivastava, S. (2008). Influence of plant growth promoting bacteria and its mutant on heavy metal toxicity in Brassica juncea grown in fly ash amended soil. Chemosphere, 72, No. 4, pp. 678-683. doi: https://doi.org/10.1016/j.chemosphere.2008.03.025

119. Glick, B.R., Jacobson, C.B., Schwarse, M.M. K. & Pasternak, J.J. (1994). 1-Aminocyclopropane-1-carboxylic acid deaminase mutants of the plant growth promoting rhizobacterium Pseudomonas putida GR 12-2 do not stimulate canola root elongation. Can. J. Microbiol., 40, No. 11, pp. 911-915. doi: https://doi.org/10.1139/m94-146

120. Shaharoona, B., Arshad, M. & Zahir, Z.A. (2006). Effect of plant growth promoting rhizobacteria containing ACC-deaminase on maize (Zea mays L.) growth under axenic conditions and on nodulation in mung bean (Vigna radiata L.). Lett. Appl. Microbiol., 42, No. 2, pp. 155-159. doi: https://doi.org/10.1111/j.1472-765X.2005.01827.x

121. Glick, B. (2014). Bacteria with ACC deaminase can promote plant growth and help to feed the world. Microbiol. Res., 169, No. 1, pp. 30-39. doi: https://doi.org/10.1016/ j.micres.2013.09.009

122. Tapia-Hernandez, A., Mascaua-Esparza, M.A. & Caballero-Mellado, J. (1990). Production of bacteriocins and siderophore-like activity by Azospirillum brasilense. Microbios., 64, No. 259, pp. 73-83.

123. Hafeez, F.Y., Naeem, F.I., Naeem, R., Zaidi, A.H. & Malik, K.A. (2005). Symbiotic effectiveness and bacteriocin production by Rhizobium leguminosarum bv. viciae isolated from agriculture soils in Faisalabad. Environ. Exp. Bot., 54, No. 2, pp. 142-147. doi: https://doi.org/10.1016/j.envexpbot.2004.06.008

124. Bhuvaneswari, S., Madhavan, S. & Panneerselvam, A. (2015). Optimization of bacteriocin production by Bacillus subtilis BMP01 isolated from Solanum trilobatum L. Int. J. Curr. Microbiol. App. Sci., 4, No. 3, pp. 617-626.

125. Parret, A.H. A., Temmerman, K. & De Mot, R. (2005). Novel lectin-like bacteriocins of biocontrol strain Pseudomonas fluorescens Pf-5. Appl. Environ. Microbiol., 71, No. 9, pp. 5197-5207. doi: https://doi.org/10.1128/AEM.71.9.5197-5207.2005

126. Robleto, E.A., Scupham, A. & Triplett, E.W. (1997). Trifolitoxin production in Rhizobium etli strain CE3 increases competitiveness for rhizosphere colonization and root nodulation of Phaseolus vulgaris in soil. Mol. Plant Microbe Int., 10, No. 2, pp. 228-233. doi: https://doi.org/10.1094/MPMI.1997.10.2.228

127. Karpunina, L.V., Mel'nikova, U. Iu., Suslova, Iu. V., Mukhacheva, E.S. & Ignatov, V.V. (2003). The bactericidal activity of lectins from nitrogen-fixing bacilli. Microbiology, 72, No. 3, pp. 300-304. doi: https://doi.org/10.1023/A:1024295831688

128. Karpunina, L.V., Mel'nikova, U. Iu., Konnova, S.A. & Abros'kina, O.M. (2001). Role of the agglutinating proteins of bacilli and rhizobia in bacterial interaction. Microbiology, 70, No. 4, pp. 519-524. doi: https://doi.org/10.1023/A:1010438328580

129. Karpunina, L.V., Mel'nikova, U. Yu., Soboleva, E.F., Vishnevetskaya, O.A. & Nikitina, V.E. (1999). Investigation of the adhesive properties of Bacillus polymyxa cells: the role of bacillar lectins. Microbiology, 68, No. 4, pp. 387-389.

130. Karpunina, L.V., Savenkov, N.N., Vladimirova, M.V., Koltunova, E.F. & Nikitina, V.E. (1996). Agglutinins of Rhizobium leguminosarum and their role in interaction with plants. Biol. Bull., 23, No. 6, pp. 576-581 [in Russian].

131. Karpunina, L.V., Mel'nikova, U.Y. & Konnova, S.A. (2003). Biological role of lectins from the nitrogen-fixing Paenibacillus polymyxa strain 1460 during bacterial-plant-root interactions. Curr. Microbiol., 47, No. 5, pp. 376-378. doi: https://doi.org/10.1007/ s00284-002-3987-z

132. Karpunina, L.V., Smiyan, M.S. & Kosenko, L.V. (2004). The effect of the carbohydrate components of pea roots on the enzymatic activity of the surface agglutinins of Rhizobium leguminosarum bv. viciae 252. Microbiology, 73, No. 4, pp. 389-391.

133. Karpunina, L.V. & Soboleva, E.F. (2001). Effect of Rhizobium leguminosarum 252 agglutinins on the activity of certain enzymes in plant cells. Microbiology, 70, No. 3, pp. 295-298.

134. Alen'kina, S.A., Zharkova, V.R. & Nikitina, V.E. (2007). Stabilizing effect of Azospirillum lectins on beta-glucosidase activity. Appl. Biochem. Microbiol., 43, No. 6, pp. 583-586. doi: https://doi.org/10.1134/S0003683807060026

135. Hartmann, A., Rothballer, M., Hense, B.A. & Schrцder, P. (2014). Bacterial quorum sensing compounds are important modulators of microbe-plant interactions. Front. Plant Sci., 5, 131. doi: https://doi.org/10.3389/fpls.2014.00131

136. Mathesius, U., Mulders, S., Gao, M., Teplitski, M., Caetano-Anoliйs, G., Rolfe, B.G. & Bauer, W.D. (2003). Extensive and specific responses of a eukaryote to bacterial quorum sensing signals. Proc. Natl. Acad. Sci. USA, 100, No. 3, pp. 1444-1449. doi: https://doi.org/10.1073/pnas.262672599

137. Joseph, C.M. & Phillips, D.A. (2003). Metabolites from soil bacteria affect plant water relations. Plant Physiol. Biochem., 41, No. 2, pp. 189-192. doi: https://doi.org/10.1016/ S09819428(02)00021-9

138. Calatrava-Morales, N., McIntosh, M. & Soto, M.J. (2018). Regulation mediated by N-acyl homoserine lactone quorum sensing signals in the rhizobium-legume symbiosis. Genes, 5, p. 263. doi: https://doi.org/10.3390/genes9050263

139. Peterson, S.B., Dunn, A.K., Klimowicz, A.K. & Handelsman, J. (2006). Peptidoglycan from Bacillus cereus mediates commensalism with rhizosphere bacteria from the Cytophaga-Flavobacterium group. Appl. Environ. Microbiol., 72, No. 8, pp. 5421-5427. doi: https://doi.org/10.1128/AEM.02928-05

140. Huang, X.-F., Chaparro, J.M., Reardon, K.F., Zhang, R., Shen, Q. & Vivanco, J.M. (2014). Rhizosphere interactions: root exudates, microbes, and microbial communities. Botany, 92, pp. 267-275. doi: https://dx.doi.org/10.1139/cjb-2013-0225

141. De-la-Pena, C., Lei, Z., Watson, B.S., Summer, L.W. & Vivanco, J.M. (2008). Root-microbe communication through protein secretion. J. Biol. Chem., 283, No. 37, pp. 25247-25255. doi: https://doi.org/10.1074/jbc.M801967200

142. Bolanos-Vбsquez, M.C. & Werner, D. (1997). Effects of Rhizobium tropici, R. etli, and R. leguminosarum bv. phaseoli on nod gene-inducing flavonoids in root exudates of Phaseolus vulgaris. Mol. Plant Microbe Int., 10, No. 3, pp. 339-346. doi: https://doi.org/ 10.1094/MPMI.1997.10.3.339

143. Vargas, L.K., Lisboa, B.B., Giongo, A., Beneduzi, A. & Passaglia, L.M. P. (2010). Potential of rhizobia as plant growth-promoting rhizobacteria. In Microbes for legume improvement (pp. 137-155), Vienna: Springer. doi: https://doi.org/10.1007/978-3-211-99753-6_7

144. Vargas, L.K., Lisboa, B.B., Schlindwein, G., Granada, C., Giongo, A., Beneduzi, A. & Passaglia, L.M.P. (2009). Occurrence of plant growth-promoting traits in clover-nodulating rhizobia strains isolated from different soils in Rio Grande do Sul state. R. Bras. Ci. Solo, 33, No. 5, pp. 1227-1235. doi: http://dx.doi.org/10.1590/S0100-06832009000500016

145. Liste, H.H. (1993). Stimulation of symbiosis and growth of lucerne by combined inoculation with Rhizobium meliloti and Pseudomonas fluorescence. Zbl. Microbiol., 148, No. 3, pp. 163-176.

146. Tilak, K.V. B.R., Ranganayaki, N. & Manoharachari, C. (2006). Synergistic effects of plant-growth promoting rhizobacteria and Rhizobium on nodulation and nitrogen fixation by pigeonpea (Cajanus cajan). Eur. J. Soil Sci., 57, No. 1, pp. 67-71. doi: https://doi.org/10.1111/j.1365-2389.2006.00771.x

147. Itzigsohn, R., Kapulnik, Y., Okon, Y. & Dovrat, A. (1993). Physiological and morphological aspects of interactions between Rhizobium meliloti and alfalfa (Medicago sativa) in association with Azospirillum brasilense. Can. J. Microbiol., 39, No. 6, pp. 610-615. doi: https://doi.org/10.1139/m93-088

148. El-Gamal, M.S. (1992). Interactions between Azotobacter spp. and Rhizobium sesbani into the rhizosphere of Sesbania sesban (L.) Merrill plants and its efficiency on growth and symbiotic nitrogen fixation. Zbl. Mikrobiol., 147, No. 1-2, pp. 112-118.

149. Dashti, N., Zhang, F., Hynes, R. & Smith, D.L. (1997). Application of plant growth-promoting rhizobacteria to soybean [Glycine max (L.) Merrill] increases protein and dry matter yield under short-season conditions. Plant Soil., 188, No. 1, pp. 33-41. doi: https://doi.org/10.1023/A:1004295827311

150. Elkoca, E., Kantar, F. & Sahin, F. (2007). Influence of nitrogen fixing and phosphorus solubilizing bacteria on the nodulation, plant growth, and yield of chickpea. J. Plant Nutr., 31, No. 1, pp. 157-171. doi: https://doi.org/10.1080/01904160701742097

151. Khan, M.K., Sakamoto, K. & Yoshida, T. (1995). Dual inoculation of peanut with Glomus sp. and Bradyrhizobium sp. enhanced the symbiotic nitrogen fixation as assessed by 15N-technique. Soil Sci. Plant Nutr., 41, No. 4, pp. 769-779. doi: https://doi.org/ 10.1080/00380768.1995.10417027

152. Ghampawat, R.S. (1990). Effect of dual inoculation of Rhizobium and vesicular arbuscular mycorhizal fungi on Pisum sativum. Folia Microbiol., 35, No. 3, pp. 236-239. https://doi.org/10.1007/BF02820490

153. Delshadi, S., Ebrahimi, M. & Shirmohammadi, E. (2017). Influence of plant-growth-promoting bacteria on germination, growth and nutrients' uptake of Onobrychis sativa L. under drought stress. J. Plant Int., 12, No. 1, pp. 200-208. doi: https://doi.org/ 10.1080/17429145.2017.1316527

154. Demissie, S., Muleta, D. & Berecha, G. (2013). Effect of phosphate solubilizing bacteria on seed germination and seedling growth of faba bean (Vicia faba L.). Int. J. Agric. Res., 8, No. 3, pp. 123-136. doi: https://doi.org//10.3923/ijar.2013.123.136

155. Molla, A.H., Shamsuddin, Z.H., Halimi, M.S., Morziah, M. & Puteh, A.B. (2001). Potential for enhancement of root growth and nodulation of soybean coinoculated with Azospirillum and Bradyrhizobium in laboratory systems. Soil Biol. Biochem., 33, pp. 457-463. doi: https://doi.org/10.1016/S0038-0717(00)00186-3 https://doi.org/10.1016/S0038-0717(00)00186-3

156. Petersen, D.J., Srinivasan, M. & Chanway, C.P. (1996). Bacillus polymyxa stimulates increased Rhizobium etli populations and nodulation when co-resident in the rhizosphere of Phaseolus vulgaris. FEMS Microbiol. Lett., 142, No. 2-3, pp. 271-276. doi: https://doi.org/10.1111/j.1574-6968.1996.tb08442.x https://doi.org/10.1111/j.1574-6968.1996.tb08442.x

157. Li, D.M. & Alexander, M. (1990). Factors affecting co-inoculation with antibiotic — producing bacteria to enhance rhizobial colonization and nodulation. Plant Soil., 129, No. 2, pp. 195-201. doi: https://doi.org/10.1007/BF00032413 https://doi.org/10.1007/BF00032413

158. Camacho, M., Santamarнa, C., Temprano, F., Rodriguez-Navarro, D.N. & Daza, A. (2001). Co-inoculation with Bacillus sp. CECT 450 improves nodulation in Phaseolus vulgaris L. Can. J. Microbiol., 47, No. 11, pp. 1058-1062. doi: https://doi.org/10.1139/w01-107 https://doi.org/10.1139/w01-107

159. Stajkovic-Srbinovic, O., Delic, D., Nerandzic, B., Andjelovic, S., Sikiric, B., Kuzmanovic, D. & Rasulic, N. (2017). Alfalfa yield and nutrient uptake as influenced by co-inoculation with rhizobium and rhizobacteria. Rom. Biotech. Lett., 22, No. 4, pp. 12834-12841.

160. Mirza, B.S., Mirza, M.S., Bano, A. & Malik, K.A. (2007). Coinoculation of chickpea with Rhizobium isolates from roots and nodules and phytohormone-producing Enterobacter strains. Aust. J. Exp. Agric., 47, No. 8, pp. 1008-1015. doi: https://doi.org/10.1071/EA06151 https://doi.org/10.1071/EA06151

161. Bashan, J., Harrison, S.K. & Whitmoyer, R.E. (1990). Enhanced growth of wheat and soybean plants inoculated with Azospirillum brasilense is not necessarily due to general enhancement of mineral uptake. Appl. Environ. Microbiol., 56, No. 3, pp. 769-775.

162. Tajini, F., Drevon, J.-J., Lamouchi, L., Aouani, M.E. & Trabelsi, M. (2008). Response of common bean lines to inoculation: comparison between the Rhizobium tropici CIAT899 and the native Rhizobium etli 12a3 and their persistence in Tunisian soils. World J. Microbiol. Biotechnol., 24, No. 3, pp. 407-417. doi: https://doi.org/10.1007/ s11274-007-9490-8 https://doi.org/10.1007/s11274-007-9490-8

163. Mhamdi, R., Mrabet, M., Laguerre, G., Tiwari, R. & Aouani, M.E. (2005). Colonization of Phaseolus vulgaris nodules by Agrobacterium-like strains. Can. J. Microbiol., 51, No. 2, pp. 105-111. doi: https://doi.org/10.1139/w04-120 https://doi.org/10.1139/w04-120

164. van Jaarsveld, C.M., Smit, M.A. & Krьger, G.H. J. (2002). Interaction amongst soybean [Glycine max (L.) Merrill] genotype, soil type and inoculant strain with regard to N2 fixation. J. Agr. Crop Sci., 188, No. 3, pp. 206-211. doi: https://doi.org/10.1046/ j.1439-037X.2002.00561.x

165. Zhang, F., Dashti, N., Hynes, R.K. & Smith, D.L. (1996). Plant growth promoting rhizobacteria and soybean [Glycine max (L.) Merr.] nodulation and nitrogen fixation at suboptimal root zone temperatures. Ann. Bot., 77, No. 5, pp. 453-459. doi: https://doi.org/10.1006/anbo.1996.0055 https://doi.org/10.1006/anbo.1996.0055

166. Egamberdieva, D., Wirth, S., Jabborova, D., Rдsдnen, L.A. & Liao, H. (2017). Coordination between Bradyrhizobium and Pseudomonas alleviates salt stress in soybean through altering root system architecture. J. Plant Int., 12, No. 1, pp. 100-107. doi: https://doi.org/10.1080/17429145.2017.1294212 https://doi.org/10.1080/17429145.2017.1294212

167. Dashadi, M., Khosravi, H., Moezzi, A., Nadian, H., Heidari, M. & Radjabi, R. (2011). Co-inoculation of Rhizobium and Azotobacter on growth indices of faba bean under water stress in the green house condition. Adv. Stud. Biol., 3, No. 8, pp. 373-385. doi: https://doi.org/10.1081/E-EWS 120010336

168. Kumar, R. & Chandra, R. (2008). Influence of PGPR and PSB on Rhizobium leguminosarum bv. viciae strain competition and symbiotic performance in lentil. World J. Agric. Sci., 4, pp. 297-301.

169. Marinkovic, J., Bjelic, D., Tintor, B., Miladinovic, J. Dukic, V. & Dordevic, V. (2018). Effects of soybean co-inoculation with plant growth promoting rhizobacteria in field trial. Rom.Biotech. Lett., 23, No. 2, pp. 13401-13408.

170. Gharib, A.A., Shahen, M.M. & Ragab, A.A. (2009, November). Influence of Rhizobium inoculation combined with Azotobacter chroococcum and Bacillus megaterium var. phosphaticum on growth, nodulation, yield and quality of two snap been (Phaseolus vulgaris L.) cultivars. Proceedings of the 4th conference on Recent Technologies in Agriculture (pp. 650-662), Cairo.

171. Elkoca, E., Turan, M.M. & Donmez, M.F. (2010). Effects of single, dual and triple inoculations with Bacillus subtilis, Bacillus megaterium and Rhizobium leguminosarum bv. phaseoli on yield and yield parameters of common bean (Phaseolus vulgaris L. cv. Elkoca-05). J. Plant Nutr., 33, No. 14, pp. 2104-2119. doi: https://doi.org/10.1080/ 01904167.2010.519084