Фізіологія рослин і генетика 2025, том 57, № 5, 371-404, doi: https://doi.org/10.15407/frg2025.05.371

Біологічні гербіциди: екологічна альтернатива синтетичним гербіцидам

Стороженко В.В., Юхимук В.В.

  • Iнститут фізіології рослин і генетики Національної академії наук України  03022 Київ, вул. Васильківська, 31/17

Огляд присвячено ролі біогербіцидів у контролюванні бур’янів, залученні їх як альтернативи синтетичним гербіцидам, в тому числі для подолання резистентності до дії синтетичних гербіцидів. Розглядаються можливості їх сумісного застосування із синтетичними гербіцидами для захисту посівів від бур’янів. Наводиться короткий історичний нарис розвитку біогербіцидних технологій, розглядається сучасне поширення біогербіцидів у світі та проблеми їх застосування. Показано, що біогербіциди мають різноманітне природне походження. Джерелами отримання біогербіцидів можуть бути алелопатичні бактерії і рослини, гриби й мікотоксини, виділені з них. Окрема увага приділяється ефірним оліям, як речовинам з потенційною гербіцидною активністю. Розглядаються фізіологічні особливості впливу специфіч­них і неспецифічних біогербіцидів на бур’яни, їх селективність щодо окремих їх видів, так і культурних рослин, а також проблеми, пов’язані з цим. Обговорюються особливості пошуку рослинних видів-мішеней для різних типів і форм біогербіцидів. Описуються деякі ідентифіковані сполуки природного походження з гербіцидною активністю та зв’язок між їх хімічною структурою й фітотоксичністю. Розглянуто проблеми, пов’язані з виробництвом, економічною ефективністю застосування біогербіцидів в агропромисловому секторі та можливі шля­хи їх вирішення. Окремий розділ присвячено най­сучаснішим технологіям розробок нових біогербіцидів і синтетичних гербіцидів за допомогою біотехнологічних методів, а також залучення штучного інтелекту в ці процеси. Аналізуються їх потенційні переваги, пов’язані насамперед з істотним зменшенням строків ідентифікації гербіцидів природного походження, їх скринінгу та, в підсумку, часу розробки нових гербіцидів природного походження.

Ключові слова: бур’яни, резистентність, біогербіциди, синтетичні гербіциди, скринінг, мікогербіциди, алелопатія, бактеріальні гербіциди, ефіроолійні гербіциди

Фізіологія рослин і генетика
2025, том 57, № 5, 371-404

Повний текст та додаткові матеріали

У вільному доступі: PDF  

Цитована література

1. Chauhan, B.S. (2020). Grand challenges in weed management. Front. Agron., 1, 3. https://doi.org/10.3389/fagro.2019.00003

2. Llewellyn, R., Ronning, D., Clarke, M., Mayfield, A., Walker, S. & Ouzman, J. (2016). Impact of weeds in Australian grain production. Grains Research and Development Corporation, Canberra, ACT, Australia.

3. Gharde, Y., Singh, P.K., Dubey, R.P. & Gupta, P.K. (2018). Assessment of yield and economic losses in agriculture due to weeds in India. Crop Prot., 107, pp. 12-18. https://doi.org/10.1016/j.cropro.2018.01.007

4. Qu, R.Y., He, B., Yang, J.F., Lin, H.Y., Yang, W.C., Wu, Q.Y., Li, Q.X. & Yang, G.F. (2021). Where are the new herbicides? Pest Manag. Sci., 77(6), pp. 2620-2625. https://doi.org/10.1002/ps.6285

5. Heap, I. (2025 September) The international herbicide-resistant weed database. Retrieved from: www.weedscience.org

6. Schwartau, V.V. & Mykhalska, L.M. (2022). Herbicide-resistant weed biotypes in Ukraine. Reports of the National Academy of Sciences of Ukraine., 6, pp. 85-94. https://doi.org/10.15407/dopovidi2022.06.085

7. Poudyal, S. & Cregg, B.M. (2019). Irrigating nursery crops with recycled run-off: a review of the potential impact of pesticides on plant growth and physiology. HortTechnology, 29(6), pp. 716-729. https://doi.org/10.21273/HORTTECH04302-19

8. Baek, Y., Bobadilla, L.K., Giacomini, D.A., Montgomery, J.S., Murphy, B.P. & Tranel, P.J. (2021). Evolution of glyphosate-resistant weeds. In Knaak J.B. (Eds.) Reviews of environmental contamination and toxicology (pp. 1-30), Springer. https://doi.org/10.1007/398_2020_55

9. Gaines, T.A., Duke, S.O., Morran, S., Rigon, C.A., Tranel, P.J., Kтpper, A. & Dayan, F.E. (2020). Mechanisms of evolved herbicide resistance. J. Biol. Chem., 295(30), pp. 10307-10330. https://doi.org/10.1074/jbc.REV120.013572

10. Charudattan, R. (2001). Biological control of weeds by means of plant pathogens: significance for integrated weed management in modern agro-ecology. BioControl, 46(2), pp. 229-260. https://doi.org/10.1023/A:1011477531101

11. Oc«n-Torres, D., MartHnez-Burgos, W.J., Manzoki, M.C., Soccol, V.T., Neto, C.J.D. & Soccol, C.R. (2024). Microbial bioherbicides based on cell-free phytotoxic metabolites: analysis and perspectives on their application in weed control as an innovative sustainable solution. Plants, 13(14), 1996. https://doi.org/10.3390/plants13141996

12. Islam, A.M., Karim, S.M.R., Kheya, S.A. & Yeasmin, S. (2024). Unlocking the potential of bioherbicides for sustainable and environment friendly weed management. Heliyon, 10(16), e36088. https://doi.org/10.1016/j.heliyon.2024.e36088

13. Hasan, M., Ahmad-Hamdani, M.S., Rosli, A.M. & Hamdan, H. (2021). Bioherbicides: An eco-friendly tool for sustainable weed management. Plants, 10(6), 1212. https://doi.org/10.3390/plants10061212

14. Kremer, R.J. (2023). Bioherbicide development and commercialization: Challenges and benefits. Opender Koul (ed). In Development and Commercialization of Biopesticides (pp. 119-148), Academic Press. https://doi.org/10.1016/B978-0-323-95290-3.00016-9

15. El-Sayed, W. (2005). Biological control of weeds with pathogens: Current status and future trends/Biologische Schadpflanzenbek¬mpfung mit Pathogenen: Aktueller status und trends von morgen. Zeitschrift fтr Pflanzenkrankheiten und Pflanzenschutz/J. Plant Dis. Prot., 112(3), pp. 209-221.

16. Hintz, W. (2007). Development of Chondrostereum purpureum as a mycoherbicide for deciduous brush control. In Vincent, C., Goettel, M.S. & Lazarovits G. (Eds.), Biological control: A global perspective (pp. 284-290). CAB International. https://doi.org/10.1079/9781845932657.0284

17. Zeng, P. (2020, February). Bio-herbicides: Global development status and product inventory. AgroPages. Retrieved from: http://news.agropages.com/News/NewsDetail-34164.htm

18. Bailey, K.L. (2014). The bioherbicide approach to weed control using plant pathogens. In Integrated pest management (pp. 245-266). Academic Press. https://doi.org/10.1016/B978-0-12-398529-3.00014-2

19. Cordeau, S., Triolet, M., Wayman, S., Steinberg, C. & Guillemin, J.P. (2016). Bio­ herbicides: Dead in the water? A review of the existing products for integrated weed management. Crop Prot., 87, pp. 44-49. https://doi.org/10.1016/j.cropro.2016.04.016

20. Verdeguer, M., S«nchez-Moreiras, A.M. & Araniti, F. (2020a). Phytotoxic effects and mechanism of action of essential oils and terpenoids. Plants, 9(11), 1571. https://doi.org/10.3390/plants9111571

21. Winston, R.L., Schwarzl¬nder, M., Hinz, H.L., Day, M.D., Cock, M.J.W. & Julien, M.H. (2021). Biological control of weeds: a world catalogue of agents and their target weeds (Based on FHTET-2014-04). USDA forest service, forest health technology enterprise team. Https://www.ibiocontrol.org/catalog/

22. Kremer, R.J. (2005). The role of bioherbicides in weed management. Biopestic. Int., 1(3), 4, pp. 127-141.

23. Kremer, R.J. (2021). Disruption of the soil microbiota by agricultural pesticides. In Wilson, C.L. (Ed.). In Synthetic Pesticide Use in Africa (pp. 147-164). CRC Press. https://doi.org/10.1201/9781003007036-10

24. Auld, B.A., Hetherington, S.D. & Smith, H.E. (2003). Advances in bioherbicide formulation. Weed Biol. Manage., 3(2), pp. 61-67. https://doi.org/10.1046/j.1445-6664.2003.00086.x

25. Bailey, B.A., Hebbar, K.P., Strem, M., Lumsden, R.D., Darlington, L.C., Connick Jr, W.J. & Daigle, D.J. (1998). Formulations of Fusarium oxysporum f. sp. erythroxyli for biocontrol of Erythroxylum coca var. coca. Weed Sci., 46(6), pp. 682-689. https://doi.org/10.1017/S0043174500089712

26. Kempenaar, C. & Scheepens, P.C. (1999). Dutch case studies showing the success and limitations of biological weed control. The 1999 Brighton Conference on Weeds (pp. 297-302), Brighton.

27. Wheeler, G.S. & Center, T.D. (2001). Impact of the biological control agent Hydrellia pakistanae (Diptera: Ephydridae) on the submersed aquatic weed Hydrilla verticillata (Hydrocharitaceae). Biol. Control, 21(2), pp. 168-181. https://doi.org/10.1006/bcon.2001.0927

28. Scheepens, P.C., Mтller-Sch¬rer, H. & Kempenaar, C. (2001). Opportunities for biological weed control in Europe. BioControl, 46(2), pp. 127-138. https://doi.org/10.1023/A:1011445721800

29. Charudattan, R. (2005a). Ecological, practical, and political inputs into selection of weed targets: what makes a good biological control target?. Biol. Control, 35(3), pp. 183-196. https://doi.org/10.1016/j.biocontrol.2005.07.009

30. Duke, S.O., Twitty, A., Baker, C., Sands, D., Boddy, L., Travaini, M.L., Sosa, G., Polidore, A.L.A., Jhala, A.J., Kloeber, J.M., Jacq, X., Lieber, L., Varela, M.C., Lazzaro, M., Alessio, A.P., Ladner, C.C., Fourches, D., Bloch, I., Gal, M., Gressel, J., Putta, K., Phillip, Y., Shub, I., Ben-Chanoch, E. & Dayan, F.E. (2024). New approaches to herbicide and bioherbicide discovery. Weed Sci., 72(5), pp. 444-464. https://doi.org/10.1017/wsc.2024.54

31. Kremer, R.J. (2013). Interactions between the plants and microorganisms. Allelopathy J., 31(1), pp. 51-70.

32. Li, J. & Kremer, R.J. (2006). Growth response of weed and crop seedlings to deleterious rhizobacteria. Biol. Control, 39(1), pp. 58-65. https://doi.org/10.1016/j.biocontrol.2006.04.016

33. Phukan, J., Deka, J., Kurmi, K. & Kalita, S. (2021). Deleterious rhizobacteria as a potential bioherbicide - A review. Int. J. Agric. Environ. Sci., 8(2), pp. 1-5. https://doi.org/10.14445/23942568/IJAES-V8I2P101

34. Kremer, R.J. (2006). The role of allelopathic bacteria in weed management. In S. Inderjit (Ed.), Allelochemicals: Biological control of plant pathogens and diseases (pp. 143-155). Springer Netherlands. https://doi.org/10.1007/1-4020-4447-X_7

35. Abbas, T., Zahir, Z.A., Naveed, M. & Aslam, Z. (2017a). Biological control of broad-leaved dock infestation in wheat using plant antagonistic bacteria under field conditions. Environ. Sci. Pollut. Res., 24(17), pp. 14934-14944. https://doi.org/10.1007/s11356-017-9144-9

36. Kennedy, A.C. (2019). Deleterious rhizobacteria and weed biocontrol. In Ann C. Kennedy (Ed). In Ecological interactions and biological control (pp. 164-177), CRC Press. https://doi.org/10.1201/9780429041686-10

37. Vessey, J.K. (2003). Plant growth promoting rhizobacteria as biofertilizers. Plant Soil, 255(2), pp. 571-586. https://doi.org/10.1023/A:1026037216893

38. Grossmann, K. (2010). Auxin herbicides: current status of mechanism and mode of action. Pest Manag. Sci., 66(2), pp. 113-120. https://doi.org/10.1002/ps.1860

39. Grossmann, K. (2000). Mode of action of auxin herbicides: a new ending to a long, drawn out story. Trends Plant Sci., 5(12), pp. 506-508. https://doi.org/10.1016/S1360-1385(00)01791-X

40. Grossmann, K. (2003). Mediation of herbicide effects by hormone interactions. J. Plant Growth Regul., 22(1), pp. 109-122. https://doi.org/10.1007/s00344-003-0020-0

41. Shi, C., Luo, P., Du, Y.T., Chen, H., Huang, X., Cheng, T.H., Luo, A., Li, H.J., Yang, W.C., Zhao, P. & Sun, M.X. (2019). Maternal control of suspensor programmed cell death via gibberellin signaling. Nat. Commun., 10(1), 3484. https://doi.org/10.1038/s41467-019-11476-3

42. Gallagher, L.A. & Manoil, C. (2001). Pseudomonas aeruginosa PAO1 kills Caenorhabditis elegans by cyanide poisoning. J. Bacteriol., 183(21), pp. 6207-6214. https://doi.org/10.1128/JB.183.21.6207-6214.2001

43. Abbas, T., Zahir, Z.A. & Naveed, M. (2017b). Bioherbicidal activity of allelopathic bacteria against weeds associated with wheat and their effects on growth of wheat under axenic conditions. BioControl, 62(5), pp. 719-730. https://doi.org/10.1007/s10526-017-9836-6

44. Mustafa, A., Naveed, M., Saeed, Q., Ashraf, M.N., Hussain, A., Abbas, T., Kamran, M., Sun, N. & Minggang, X. (2019). Application potentials of plant growth promoting rhizobacteria and fungi as an alternative to conventional weed control methods. In M. Hasanuzzaman, M. Fujita, M.C. M.T. Filho, & T.A. R. Nogueira (Eds.). Sustainable crop production (pp. 1-23), Intech Open. https://doi.org/10.5772/intechopen.86339

45. Blumer, C. & Haas, D. (2000). Mechanism, regulation, and ecological role of bacterial cyanide biosynthesis. Arch. Microbiol., 173(3), pp. 170-177. https://doi.org/10.1007/s002039900127

46. Dar, A., Zahir, Z.A., Ahmad, M., Hussain, A., Jaffar, M.T. & Kremer, R.J. (2024). Bacterial allelopathy: an approach for biological control of weeds. J. Appl. Microbiol., 136(9), lxae219. https://doi.org/10.1093/jambio/lxae219

47. Mingzhi, L.I., Ling, X.U., Ziling, S.U.N. & Yongquan, L.I. (2007). Isolation and characterization of a phytotoxin from Xanthomonas campestris pv. retroflexus. Chin. J. Chem. Eng., 15(5), pp. 639-642. https://doi.org/10.1016/S1004-9541(07)60138-4

48. Li, J., Kremer, R.J. & Ross Jr, L.M. (2002). Electron microscopy of root colonization of Setaria viridis by deleterious rhizobacteria as affected by soil properties. Symbiosis, 32(1), pp. 1-14.

49. Kremer, R.J. & Kennedy, A.C. (1996). Rhizobacteria as biocontrol agents of weeds. Weed Technol., 10(3), pp. 601-609. https://doi.org/10.1017/S0890037X00040525

50. Kennedy, A.C. (2018). Selective soil bacteria to manage downy brome, jointed goatgrass, and medusahead and do no harm to other biota. Biol. Control, 123, pp. 18-27. https://doi.org/10.1016/j.biocontrol.2018.05.002

51. Radhakrishnan, R., Alqarawi, A.A. & Abd_Allah, E.F. (2018). Bioherbicides: Current knowledge on weed control mechanism. Ecotoxicol. Environ. Saf., 158, pp. 131-138. https://doi.org/10.1016/j.ecoenv.2018.04.018

52. Stubbs, T.L. & Kennedy, A.C. (2012). Microbial weed control and microbial herbicides. Herbicides: Environmental Impact Studies and Management Approaches (pp. 135-166), Rijeka: InTech

53. Kennedy, A.C. & Stubbs, T.L. (2007). Management effects on the incidence of jointed goatgrass inhibitory rhizobacteria. Biol. Control, 40(2), pp. 213-221. https://doi.org/10.1016/j.biocontrol.2006.10.006

54. Bo, A.B., Kim, J.D., Kim, Y.S., Sin, H.T., Kim, H.J., Khaitov, B., Young K., Ko, Y.K., Kee, W., Park, K.W. & Choi, J.S. (2019). Isolation, identification and characterization of Streptomyces metabolites as a potential bioherbicide. PLoS One, 14(9), e0222933. https://doi.org/10.1371/journal.pone.0222933

55. Abbas, T., Abbas, S., Abbas, U., Bashir, H., Sonia, A., Zahir, Z.A. & Naveed, M. (2024). Unveiling the bioherbicidal potential of weed suppressive bacteria to control growth of Echinocloa crusgalli in maize crop. Plant Environ., 5(02), pp. 33-43. https://doi.org/10.54219/plantenviron.05.02.2024.102

56. Verdugo-Navarrete, C., Maldonado-Mendoza, I.E., Castro-MartHnez, C., Leyva-Madrigal, K.Y. & MartHnez-Ђlvarez, J.C. (2021). Selection of rhizobacteria isolates with bioherbicide potential against Palmer amaranth (Amarathus palmeri S. Wats.). Braz. J. Microbiol., 52(3), pp. 1443-1450. https://doi.org/10.1007/s42770-021-00514-2

57. Li, W., Shen, S. & Chen, H. (2021). Bio-herbicidal potential of wheat rhizosphere bacteria on Avena fatua L. grass. Bioeng., 12(1), 516-526. https://doi.org/10.1080/21655979.2021.1877413

58. Bender, C.L., Rangaswamy, V. & Loper, J. (1999). Polyketide production by plant-associated pseudomonads. Ann. Rev. Phytopathol., 37(1), pp. 175-196. https://doi.org/10.1146/annurev.phyto.37.1.175

59. Caldwell, C.J., Hynes, R.K., Boyetchko, S.M. & Korber, D.R. (2012). Colonization and bioherbicidal activity on green foxtail by Pseudomonas fluorescens BRG100 in a pesta formulation. Can. J. Microbiol., 58(1), pp. 1-9. https://doi.org/10.1139/w11-109

60. Tranel, P.J., Gealy, D.R. & Kennedy, A.C. (1993). Inhibition of downy brome (Bromus tectorum) root growth by a phytotoxin from Pseudomonas fluorescens strain D7. Weed Technol., 7(1), 134-139. https://doi.org/10.1017/S0890037X00037003

61. Omer, Z.S., Jacobsson, K., Eberhard, T.H. & Johansson, L.K.H. (2010). Bacteria considered as biocontrol agents to control growth of white clover on golf courses. Acta Agric. Scand. BSoil Plant Sci., 60(3), pp. 193-198. https://doi.org/10.1080/09064710902773637

62. Gealy, D.R., Gurusiddaiah, S. & Ogg Jr, A.G. (1996). Isolation and characterization of metabolites from Pseudomonas syringae-strain 3366 and their phytotoxicity against certain weed and crop species. Weed Sci., 44(2), pp. 383-392. https://doi.org/10.1017/S0043174500094042

63. Kennedy, A.C. (2016). Pseudomonas fluorescens strains selectively suppress annual bluegrass (Poa annua L.). Biol. Control, 103, pp. 210-217. https://doi.org/10.1016/j.biocontrol.2016.09.012

64. Oluwaseun, A.C., Kola, O.J., Mishra, P., Singh, J.R., Singh, A.K., Cameotra, S.S. & Micheal, B.O. (2017). Characterization and optimization of a rhamnolipid from Pseudomonas aeruginosa C1501 with novel biosurfactant activities. Sustain. Chem. Pharm., 6, pp. 26-36. https://doi.org/10.1016/j.scp.2017.07.001

65. Robeson, D., Strobel, G., Matusumoto, G.K., Fisher, E.L., Chen, M.H. & Clardy, J. (1984). Alteichin: an unusual phytotoxin from Alternaria eichorniae, a fungal pathogen of water hyacinth. Experientia, 40(11), pp. 1248-1250 https://doi.org/10.1007/BF01946657

66. Kong, H., Blackwood, C., Buyer, J.S., Gulya Jr, T.J. & Lydon, J. (2005). The genetic characterization of Pseudomonas syringae pv. tagetis based on the 16S-23S rDNA intergenic spacer regions. Biol. Control, 32(3), pp. 356-362. https://doi.org/10.1016/j.biocontrol.2004.11.005

67. Lawrance, S., Varghese, S., Varghese, E.M. & Asok, A.K. (2019). Quinoline derivatives producing Pseudomonas aeruginosa H6 as an efficient bioherbicide for weed management. Biocatal. Agric. Biotechnol., 18, 101096 https://doi.org/10.1016/j.bcab.2019.101096

68. Aguila-LЩpez, J., Flores-Gonz«lez, M., S«nchez-Rivera, M., DHaz-Reyes, J., S«nchez-Gonz«lez, N. & S«nchez-RamHrez, J.F. (2025). Encapsulation and controlled release of Streptomyces sp. herbicidal metabolites for pre-plant weed germination control. Biocontrol Sci. Technol., 35(1), pp. 88-104. https://doi.org/10.1080/09583157.2024.2431597

69. Boyette, C.D. & Hoagland, R.E. (2013). Bioherbicidal potential of a strain of Xanthomonas spp. for control of common cocklebur (Xanthium strumarium). Biocontrol Sci. Technol., 23(2), pp. 183-196. https://doi.org/10.1080/09583157.2012.745485

70. Radhakrishnan, R., Park, J.M. & Lee, I.J. (2016). Enterobacter sp. I-3, a bio-herbicide inhibits gibberellins biosynthetic pathway and regulates abscisic acid and amino acids synthesis to control plant growth. Microbiol. Res., 193, pp. 132-139 https://doi.org/10.1016/j.micres.2016.10.004

71. Kennedy, A.C., Johnson, B.N. & Stubbs, T.L. (2001). Host range of deleterious rhizobacterium for biological control of downy brome. Weed Sci., 49(6), pp. 792-797. [0792:HROADR]2.0.CO;2 [0792:HROADR]2.0.CO;2

72. Bordin, E.R., Frumi Camargo, A., Stefanski, F.S., Scapini, T., Bonatto, C., Zanivan, J., Preczeski, K., Modkovski, T.A., Reichert, F.J., Mossi, A.J., Fongaro, G., Ramsdorf, W.A. & Treichel, H. (2021). Current production of bioherbicides: mechanisms of action and technical and scientific challenges to improve food and environmental security. Biocatal. Biotransform., 39(5), pp. 346-359. https://doi.org/10.1080/10242422.2020.1833864

73. Awasthi, D.P. & Mishra, N.K. (2020). Chapter-2 Myco-herbicides. In Vishuddha Nand (Ed). Research Trends in Crop and Weed (pp. 17-37).

74. Boyette, C.D. & Abbas, H.K. (1995). Weed control with mycoherbicides and phytotoxins: a nontraditional application of allelopathy. https://doi.org/10.1021/bk-1995-0582

75. Chakraborty, A. & Ray, P. (2021). Mycoherbicides for the noxious meddlesome: can Colletotrichum be a budding candidate?. Front. Microbiol., 12, 754048. https://doi.org/10.3389/fmicb.2021.754048

76. Xu, D., Xue, M., Shen, Z., Jia, X., Hou, X., Lai, D. & Zhou, L. (2021). Phytotoxic secondary metabolites from fungi. Toxins, 13(4), pp. 261. https://doi.org/10.3390/toxins13040261

77. Kumar, V., Singh, M., Sehrawat, N., Atri, N., Singh, R., Upadhyay, S.K., Kumar, S. & Yadav, M. (2021). Mycoherbicide Control Strategy: Concept, Constraints, and Advancements. Biopestic. Int., 17(1), pp. 29-40.

78. Dumas, M.T., Wood, J.E., Mitchell, E.G. & Boyonoski, N.W. (1997). Control of Stump Sprouting of Populus tremuloides and P. grandidentata by Inoculation with Chondrostereum purpureum. Biol. Control, 10(1), pp. 37-41. https://doi.org/10.1006/bcon.1997.0507

79. Galea, V.J. (2021). Use of stem implanted bioherbicide capsules to manage an infestation of Parkinsonia aculeata in northern Australia. Plants, 10(9), 1909. https://doi.org/10.3390/plants10091909

80. Paul, N.D., Ayres, P.G. & Hallett, S.G. (1993). Mycoherbicides and other biocontrol agents for Senecio spp. Pestic. Sci., 37(4), pp. 323-329. https://doi.org/10.1002/ps.2780370404

81. Taborda, Y.D.M. (2025). Caracterizac±o morfolЩgica, molecular e potencial fitopatogГnico de fungos associados as plantas daninhas Ipomoea nil (L.) Roth, Ipomoea hederifolia L. e Merremia aegyptia (L.) Urb., sob a estratѕgia bioherbicida. Te (Doutorado em Protecto de Plantas). Universidade Estadual Paulista (UNESP), Botucatu, Brazil.

82. Zhu, H., Li, H. & Ma, Y. (2025). Exploring the Biocontrol Potential of Fungus Alternaria gaisen GD-011 in the Tibetan Plateau. Plants, 14(3), 331. https://doi.org/10.3390/plants14030331

83. Chung, Y.R., Koo, S.J., Kim, H.T. & Cho, K.Y. (1998). Potential of an indigenous fungus, Plectosporium tabacinum, as a mycoherbicide for control of arrowhead (Sagittaria trifolia). Plant Dis., 82(6), pp. 657-660. https://doi.org/10.1094/PDIS.1998.82.6.657

84. Sotelo-CerЩn, N.D., Maldonado-Mendoza, I.E., Leyva-Madrigal, K.Y. & MartHnez-Ђlvarez, J.C. (2023). Isolation, selection, and identification of phytopathogenic fungi with bioherbicide potential for the control of field bindweed (Convolvulus arvensis L.). Weed Biol. Manag., 23(3-4), pp. 99-109. https://doi.org/10.1111/wbm.12275

85. Pes, M.P., Mazutti, M.A., Almeida, T.C., Curioletti, L.E., Melo, A.A., Guedes, J.V. & Kuhn, R.C. (2016). Bioherbicide based on Diaporthe sp. secondary metabolites in the control of three tough weeds. Afr. J. Agric. Res., 11(42), pp. 4242-4249. https://doi.org/10.5897/AJAR2016.11639

86. Gu, Q., Chu, S., Huang, Q., Chen, A., Li, L. & Li, R. (2023). Colletotrichum echinochloae: a potential bioherbicide agent for control of barnyardgrass (Echinochloa crus-galli (L.) Beauv.). Plants, 12(3), 421. https://doi.org/10.3390/plants12030421

87. Cignitas, E., Basbagci, G., Sulu, G. & Kitis, Y.E. (2024). Fusarium fujikuroi as a potential biocontrol agent of the parasitic weed Phelipanche aegyptiaca in tomato. J. Phytopathol., 172(3), e13344. https://doi.org/10.1111/jph.13344

88. Oloyede, A.R., Qosim, A.H.O., Atayese, A.O. & Badmos, A.O. (2025). Phytotoxic potential and safety of metabolites produced by rhizospheric fungi on the post-emergence of goat weed (Ageratum conyzoides L.) under greenhouse and field conditions. Arch. Phytopathol. Plant Prot., 58(3), pp. 167-181. https://doi.org/10.1080/03235408.2025.2466247

89. Gupta, N., Shanmugaiah, V., Roy, B. & Nighojkar, A. (2024). Phoma herbarum: A Potential Biocontrol Agent Against Weeds, that Promotes Wheat Growth. Curr. Agric. Res. J., 12(2). https://doi.org/10.12944/CARJ.12.2.22

90. Boyette, C.D., Hoagland, R.E. & Stetina, K.C. (2014). Biological control of the weed hemp sesbania (Sesbania exaltata) in rice (Oryza sativa) by the fungus Myrothecium verrucaria. Agronomy, 4(1), pp. 74-89. https://doi.org/10.3390/agronomy4010074

91. Larson, C., Chichinsky, D., Menalled, F. & Seipel, T. (2025). Integrating Puccinia punctiformis, a biological control agent, into Cirsium arvense management in semi-arid organic agriculture. Biol. Control, 202, 105724. https://doi.org/10.1016/j.biocontrol.2025.105724

92. Vogelgsang, Watson, Ditommaso & Hurle. (1998). Effect of the pre-emergence bioherbicide Phomopsis convolvulus on seedling and established plant growth of Convolvulus arvensis. Weed Res., 38(3), pp. 175-182. https://doi.org/10.1046/j.1365-3180.1998.00088.x

93. Srisuksam, C., Yodpanan, P., Suntivich, R., Tepboonrueng, P., Wattananukit, W., Jongsareejit, B. & Amnuaykanjanasin, A. (2022). The fungus Phoma multirostrata is a host-specific pathogen and a potential biocontrol agent for a broadleaf weed. Fungal Biol., 126(2), pp. 162-173. https://doi.org/10.1016/j.funbio.2021.11.008

94. Tang, Y., Chen, W., He, F., Liu, T., Hu, Q., Weng, Q. & Zhang, K. (2024). Herbicidal fungal strain isolated from soil in Xinjiang, China. Microbiology Spectrum, 12(12), e01589-24. https://doi.org/10.1128/spectrum.01589-24

95. Tan, M., Zhang, Y., Zhang, Y., Vurro, M. & Qiang, S. (2024). Effects of Bipolaris yamadae strain HXDC-1-2 as a bioherbicide against Echinochloa crus-galli in rice and dry fields. Pest Manag. Sci., 80(8), pp. 3786-3794. https://doi.org/10.1002/ps.8081

96. Fulcher, M.R. & Little, R.C. (2024). Development and application of the fungal plant pathogen Colletotrichum shisoi to control invasive Perilla frutescens. Biol. Control, 194, 105543. https://doi.org/10.1016/j.biocontrol.2024.105543

97. Rostami, A., Saremi, H. & Saremi, H. (2024). Using protoplast fusion to improve biocontrol ability of Fusarium oxysporum against Egyptian broomrapes (Phelipanche aegyptiaca). Australas. Plant Pathol., 53(1), pp. 89-101. https://doi.org/10.1007/s13313-023-00957-1

98. Dorigo, W., Lucieer, A., Podobnikar, T. & ‡arni, A. (2012). Mapping invasive Fallopia japonica by combined spectral, spatial, and temporal analysis of digital orthophotos. Int. J. Appl. Earth Obs. Geoinf., 19, pp. 185-195. https://doi.org/10.1016/j.jag.2012.05.004

99. Kurose, D., Seier, M.K. & Evans, H.C. (2024). Exploiting exotic pathogens as mycoherbicides against invasive alien weeds: Japanese knotweed as a case study. Pest Manag. Sci., 80(1), pp. 87-91. https://doi.org/10.1002/ps.7510

100. Siriphan, T., Unartngam, A., Imsabai, W., Lueangjaroenkit, P., Kosawang, C., JЭrgensen, H.J.L. & Unartngam, J. (2025). Host Specificity of the Bioherbicidal Fungal Strain Paramyrothecium eichhorniae TBRC10637 for Control of Water Hyacinth. Biology, 14(2), 199. https://doi.org/10.3390/biology14020199

101. Boyette, C.D., Hoagland, R.E. & Stetina, K.C. (2019). Extending the host range of the bioherbicidal fungus Colletotrichum gloeosporioides f. sp. aeschynomene. Biocontrol Sci. Technol., 29(7), pp. 720-726. https://doi.org/10.1080/09583157.2019.1581130

102. Vieira, B.S., Dias, L.V.S.A., Langoni, V.D. & Lopes, E.A. (2018). Liquid fermentation of Colletotrichum truncatum UFU 280, a potential mycoherbicide for beggartick. Australas. Plant Pathol., 47(3), pp. 277-283. https://doi.org/10.1007/s13313-018-0555-y

103. Meena, M. & Samal, S. (2019). Alternaria host-specific (HSTs) toxins: An overview of chemical characterization, target sites, regulation and their toxic effects. Toxicol. Rep., 6, pp. 745-758. https://doi.org/10.1016/j.toxrep.2019.06.021

104. Tsuge, T., Harimoto, Y., Akimitsu, K., Ohtani, K., Kodama, M., Akagi, Y., Egusa, M., Yamamoto, M. & Otani, H. (2013). Host-selective toxins produced by the plant pathogenic fungus Alternaria alternata. FEMS Microbiol. Rev., 37(1), pp. 44-66. https://doi.org/10.1111/j.1574-6976.2012.00350.x

105. Strange, R.N. (2007). Phytotoxins produced by microbial plant pathogens. Nat. Prod. Rep., 24(1), pp. 127-144. https://doi.org/10.1039/B513232K

106. Piyasena, K.N.P., Wickramarachchi, W.A.R.T., Kumar, N.S., Jayasinghe, L. & Fujimoto, Y. (2015). Two phytotoxic azaphilone derivatives from Chaetomium globosum, a fungal endophyte isolated from Amaranthus viridis leaves. Mycology, 6(3-4), pp. 158-160. https://doi.org/10.1080/21501203.2015.1089332

107. Ma, K.L., Wei, W.J., Li, H.Y., Song, Q.Y., Dong, S.H. & Gao, K. (2019). Meroterpenoids with diverse ring systems and dioxolanone-type secondary metabolites from Phyllosticta capitalensis and their phytotoxic activity. Tetrahedron, 75(33), pp. 4611-4619. https://doi.org/10.1016/j.tet.2019.07.003

108. Shuai, L.I., Jiang, D.H. & Zhang, Y.L. (2016). Isolation, identification, derivatization and phytotoxic activity of secondary metabolites produced by Cladosporium oxysporum DH14, a locust-associated fungus. J. Integr. Agric., 15(4), pp. 832-839. https://doi.org/10.1016/S2095-3119(15)61145-5

109. Li, H., Wei, J., Pan, S.Y., Gao, J.M. & Tian, J.M. (2014). Antifungal, phytotoxic and toxic metabolites produced by Penicillium purpurogenum. Nat. Prod. Res., 28(24), pp. 2358-2361. https://doi.org/10.1080/14786419.2014.940586

110. Mallik, M.A.B. (2001). Selective isolation and screening of soil microorganisms for metabolites with herbicidal potential. J. Crop Prod., 4(2), pp. 219-236. https://doi.org/10.1300/J144v04n02_07

111. Huang, R.H., Gou, J.Y., Zhao, D.L., Wang, D., Liu, J., Ma, G.Y., Li, Y.Q. & Zhang, C.S. (2018). Phytotoxicity and anti-phytopathogenic activities of marine-derived fungi and their secondary metabolites. RSC Adv., 8(66), pp. 37573-37580. https://doi.org/10.1039/C8RA08047J

112. Du, F.Y., Li, X.M., Sun, Z.C., Meng, L.H. & Wang, B.G. (2020). Secondary metabolites with agricultural antagonistic potentials from Beauveria felina, a marine-derived entomopathogenic fungus. J. Agric. Food Chem., 68(50), pp. 14824-14831. https://doi.org/10.1021/acs.jafc.0c05696

113. Masi, M., Aloi, F., Nocera, P., Cacciola, S.O., Surico, G. & Evidente, A. (2020). Phytotoxic metabolites isolated from Neufusicoccum batangarum, the causal agent of the scabby canker of cactus pear (Opuntia ficus-indica L.). Toxins, 12(2), 126. https://doi.org/10.3390/toxins12020126

114. Masi, M., Meyer, S., Clement, S., Pescitelli, G., Cimmino, A., Cristofaro, M. & Evidente, A. (2017). Chloromonilinic acids C and D, phytotoxic tetrasubstituted 3-chromanonacrylic acids isolated from Cochliobolus australiensis with potential herbicidal activity against buffelgrass (Cenchrus ciliaris). J. Nat. Prod., 80(10), pp. 2771-2777. https://doi.org/10.1021/acs.jnatprod.7b00583

115. Cimmino, A., Andolfi, A., Berestetskiy, A. & Evidente, A. (2008). Production of phytotoxins by Phoma exigua var. exigua, a potential mycoherbicide against perennial thistles. J. Agric. Food Chem., 56(15), pp. 6304-6309. https://doi.org/10.1021/jf8004178

116. Zhao, D.L., Han, X.B., Wang, M., Zeng, Y.T., Li, Y.Q., Ma, G.Y., Liu, J., Zheng, C.J., Wen, M.X., Zhang, Z.F., Zhang, P. & Zhang, C.S. (2020). Herbicidal and antifungal xanthone derivatives from the alga-derived fungus Aspergillus versicolor D5. J. Agric. Food Chem., 68(40), pp. 11207-11214. https://doi.org/10.1021/acs.jafc.0c04265

117. Evidente, A., Andolfi, A., Abouzeid, M.A., Vurro, M., Zonno, M.C. & Motta, A. (2004). Ascosonchine, the enol tautomer of 4-pyridylpyruvic acid with herbicidal activity produced by Ascochyta sonchi. Phytochem., 65(4), pp. 475-480. https://doi.org/10.1016/j.phytochem.2003.09.016

118. Pedras, M.S.C., Chumala, P.B., Jin, W., Islam, M.S. & Hauck, D.W. (2009). The phytopathogenic fungus Alternaria brassicicola: phytotoxin production and phytoalexin elicitation. Phytochem., 70(3), pp. 394-402. https://doi.org/10.1016/j.phytochem.2009.01.005

119. Moskaleн­ ko, M.P. (2022). Allelopathy. Sumy [in Ukrainian]

120. Khamare, Y., Chen, J. & Marble, S.C. (2022). Allelopathy and its application as a weed management tool: A review. Front. Plant Sci., 13, 1034649. https://doi.org/10.3389/fpls.2022.1034649

121. Bhadoria, P.B.S. (2011). Allelopathy: a natural way towards weed management. Am. J. Exp. Agric., 1(1), pp. 7-20. https://doi.org/10.9734/AJEA/2011/002

122. Farooq, M., Jabran, K., Cheema, Z.A., Wahid, A. & Siddique, K.H. (2011). The role of allelopathy in agricultural pest management. Pest Manag. Sci., 67(5), pp. 493-506. https://doi.org/10.1002/ps.2091

123. Peters, R.D., Sturz, A.V., Carter, M.R. & Sanderson, J.B. (2003). Developing disease-suppressive soils through crop rotation and tillage management practices. Soil Tillage Res., 72(2), pp. 181-192. https://doi.org/10.1016/S0167-1987(03)00087-4

124. Baumann, D.T., Bastiaans, L. & Kropff, M.J. (2002). Intercropping system optimization for yield, quality, and weed suppression combining mechanistic and descriptive models. Agron. J., 94 (4), pp. 734-742. https://doi.org/10.2134/agronj2002.7340

125. Saudy, H.S. (2015). Maize-cowpea intercropping as an ecological approach for nitrogen-use rationalization and weed suppression. Arch. Agron. Soil Sci. 61 (1), pp. 1-14. https://doi.org/10.1080/03650340.2014.920499

126. Vrignon-Brenas, S., Celette, F., Piquet-Pissaloux, A., Corre-Hellou, G. & David, C. (2018). Intercropping strategies of white clover with organic wheat to improve the trade-off between wheat yield, protein content and the provision of ecological services by white clover. Field Crops Res., 224, pp. 160-169. https://doi.org/10.1016/j.fcr.2018.05.009

127. Cheema, Z.A., Farooq, M. & Wahid, A. (Eds.). (2012). Allelopathy: current trends and future applications. Berlin: Springer Science & Business Media. https://doi.org/10.1007/978-3-642-30595-5

128. Khaliq, A., Matloob, A., Farooq, M., Mushtaq, M.N. & Khan, M.B. (2011). Effect of crop residues applied isolated or in combination on the germination and seedling growth of horse purslane (Trianthema portulacastrum). Planta Daninha, 29, pp. 121-128. https://doi.org/10.1590/S0100-83582011000100014

129. Czarnota, M.A., Paul, R.N., Weston, L.A. & Duke, S.O. (2003). Anatomy of sorgoleone-secreting root hairs of Sorghum species. Int. J. Plant Sci., 164(6), pp. 861-866. https://doi.org/10.1086/378661

130. Albouchi, F., Hassen, I., Casabianca, H. & Hosni, K. (2013). Phytochemicals, antioxidant, antimicrobial and phytotoxic activities of Ailanthus altissima (Mill.) swingle leaves. South Afr. J. Bot. 87, pp. 164-174. https://doi.org/10.1016/j.sajb.2013.04.003

131. Tsao, R., Romanchuk, F.E., Peterson, C.J. & Coats, J.R. (2002). Plant growth regulatory effect and insecticidal activity of the extracts of the tree of heaven (Ailanthus altissima L.). BMC Ecol., 2(1), 1. https://doi.org/10.1186/1472-6785-2-1

132. Azhar, M., Cheema, Z.A., Abdul Khaliq, A.K. & Anwar-ul-Hassan, A.U.H. (2010). Evaluating the potential of allelopathic plant water extracts in suppressing horse purslane growth. Int. J. Agric. Biol. 12(4), pp. 581-585.

133. Rehman, A., Cheema, Z.A., Khaliq, A., Arshad, M. & Mohsan, S. (2010). Application of sorghum, sunflower and rice water extract combinations helps in reducing herbicide dose for weed management in rice. Int. J. Agric. Biol. 12 (6), pp. 901-906.

134. Iqbal, J. & Cheema, Z.A. (2008). Purple nutsedge (Cyperus rotundus L.) management in cotton with combined application of sorgaab and s-metolachlor. Pak. J. Bot, 40(6), pp. 2383-2391.

135. Rudnyk-Ivashchenko, O.I., Borzykh, O.O., Mykhalska, L.M., Schwartau, V.V. (2024). Bioactivity of Juglans nigra fallen leaves. FTzTol. rosl. genet., 56(5), p. 441-450. [in Ukrainian]. https://doi.org/10.15407/frg2024.05.441

136. Anese, S., Jatob«, L.J., Grisi, P.U., Gualtieri, S.C.J., Santos, M.F.C. & Berlinck, R.G.D.S. (2015). Bioherbicidal activity of drimane sesquiterpenes from Drimys brasiliensis Miers roots. Ind. Crops Prod., 74, pp. 28-35. https://doi.org/10.1016/j.indcrop.2015.04.042

137. Tigre, R.C., Pereira, E.C., Da Silva, N.H., Vicente, C. & Legaz, M.E. (2015). Potential phenolic bioherbicides from Cladonia verticillaris produce ultrastructural changes in Lactuca sativa seedlings. S. Afr. J. Bot., 98, pp. 16-25. https://doi.org/10.1016/j.sajb.2015.02.002

138. Anwar, T., Qureshi, H., Mahnashi, M.H., Kabir, F., Parveen, N., Ahmed, D., Afzal, U., Batool, S., Awais, M., Alyami, S.A. & Alhaider, H.A. (2021). Bioherbicidal ability and weed management of allelopathic methyl esters from Lantana camara. Saudi J. Biol. Sci., 28(8), pp. 4365-4374. https://doi.org/10.1016/j.sjbs.2021.04.026

139. Mendes, I.D.S. & Rezende, M.O.O. (2014). Assessment of the allelopathic effect of leaf and seed extracts of Canavalia ensiformis as postemergent bioherbicides: A green alternative for sustainable agriculture. J. Environ. Sci. Health, B, 49(5), pp. 374-380. https://doi.org/10.1080/03601234.2014.882179

140. Roberts, J., Florentine, S., Fernando, W.D. & Tennakoon, K.U. (2022). Achievements, developments and future challenges in the field of bioherbicides for weed control: A global review. Plants, 11(17), 2242. https://doi.org/10.3390/plants11172242

141. Hossen, K., Das, K.R., Asato, Y., Teruya, T. & Kato-Noguchi, H. (2021). Allelopathic activity and characterization of allelopathic substances from Elaeocarpus floribundus Blume leaves for the development of bioherbicides. Agron., 12(1), 57. https://doi.org/10.3390/agronomy12010057

142. Hossen, K. & Kato-Noguchi, H. (2022). Evaluation of the allelopathic activity of albizia procera (Roxb.) benth. as a potential source of bioherbicide to control weeds. Int. J. Plant Biol., 13(4), pp. 523-534. https://doi.org/10.3390/ijpb13040042

143. Lopes, R.W.N., Marques Morais, E., Lacerda, J.J.D.J. & Arayjo, F.D.D.S. (2022). Bioherbicidal potential of plant species with allelopathic effects on the weed Bidens bipinnata L. Sci. Rep., 12(1), 13476. https://doi.org/10.1038/s41598-022-16203-5

144. Pytlarz, E. & Gala-Czekaj, D. (2022). Seed meals from allelopathic crops as a potential bio-based herbicide on herbicide-susceptible and-resistant biotypes of wild oat (Avena fatua L.). Agron., 12(12), 3083. https://doi.org/10.3390/agronomy12123083

145. Hasan, M., Mokhtar, A.S., Mahmud, K., Berahim, Z., Rosli, A.M., Hamdan, H., Mst. Motmainna & Ahmad-Hamdani, M.S. (2022). Physiological and biochemical responses of selected weed and crop species to the plant-based bioherbicide WeedLock. Sci. Rep., 12(1), 19602. https://doi.org/10.1038/s41598-022-24144-2

146. Rehman, R., Hanif, M.A., Mushtaq, Z., Mochona, B. & Qi, X. (2016). Biosynthetic factories of essential oils: The aromatic plants. Nat. Prod. Chem. Res, 4(4), 1000227. https://doi.org/10.4172/2329-6836.1000227

147. Aslam, F., Khaliq, A., Matloob, A., Tanveer, A., Hussain, S. & Zahir, Z.A. (2017). Allelopathy in agro-ecosystems: a critical review of wheat allelopathy-concepts and implications. Chemoecology, 27(1), pp. 1-24. https://doi.org/10.1007/s00049-016-0225-x

148. McLaren, D.A., Butler, K.L. & Bonilla, J. (2014, September). Effects of pine oil, sugar and covers on germination of serrated tussock and kangaroo grass in a pot trial. In Proceedings of the Nineteenth Australasian Weeds Conference (pp. 239-242), Hobart, Australia.

149. Angelini, L.G., Carpanese, G., Cioni, P.L., Morelli, I., Macchia, M. & Flamini, G. (2003). Essential oils from Mediterranean Lamiaceae as weed germination inhibitors. J. Agric. Food Chem., 51(21), pp. 6158-6164. https://doi.org/10.1021/jf0210728

150. Jouini, A., Verdeguer, M., Pinton, S., Araniti, F., Palazzolo, E., Badalucco, L. & Laudicina, V.A. (2020). Potential effects of essential oils extracted from Mediterranean aromatic plants on target weeds and soil microorganisms. Plants, 9(10), 1289. https://doi.org/10.3390/plants9101289

151. Nikolova, M.T. & Berkov, S.H. (2018). Use of essential oils as natural herbicides. Ecol. Balkanica, 10(2), pp. 259-265.

152. Ramezani, S., Saharkhiz, M.J., Ramezani, F. & Fotokian, M.H. (2008). Use of Essential Oils as Bioherbicides. J. Essent. Oil Bear. Plants, 11(3), pp. 319-327. https://doi.org/10.1080/0972060X.2008.10643636

153. Dudai, N., Poljakoff-Mayber, A., Mayer, A.M., Putievsky, E. & Lerner, H.R. (1999). Essential oils as allelochemicals and their potential use as bioherbicides. J. Chem. Ecol., 25(5), pp. 1079-1089. https://doi.org/10.1023/A:1020881825669

154. Elghobashy, R.M., El-Darier, S.M., Atia, A.M. & Zakaria, M. (2024). Allelopathic potential of aqueous extracts and essential oils of Rosmarinus officinalis L. and Thymus vulgaris L.J. Soil Sci. Plant Nutr., 24(1), pp. 700-715. https://doi.org/10.1007/s42729-023-01576-x

155. Singh, N., Singh, H.P., Batish, D.R., Kohli, R.K. & Yadav, S.S. (2020). Chemical characterization, phytotoxic, and cytotoxic activities of essential oil of Mentha longifolia. Environ. Sci. Pollut. Res., 27(12), pp. 13512-13523. https://doi.org/10.1007/s11356-020-07823-3

156. Mahdavikia, F. & Saharkhiz, M.J. (2015). Phytotoxic activity of essential oil and water extract of peppermint (Mentha' piperita L. CV. Mitcham). J. Appl. Res. Med. Aromat. Plants, 2(4), pp. 146-153. https://doi.org/10.1016/j.jarmap.2015.09.003

157. Bozok, F. & Ulukanli, Z. (2016). Volatiles from the aerial parts of east Mediterranean clary sage: Phytotoxic activity. J. Essent. Oil Bear. Plants, 19(5), pp. 1192-1198. https://doi.org/10.1080/0972060X.2015.1119066

158. Verdeguer, M., Torres-Pagan, N., MuФoz, M., Jouini, A., GarcHa-Plasencia, S., Chinchilla, P., Berbegal, M., Salamone, A., Agnello, S., Carrubba, A., Cabeiras-Freijanes, L., Regueira-Marcos, L., S«nchez-Moreiras, A.M. & Bl«zquez, M.A. (2020). Herbicidal activity of Thymbra capitata (L.) Cav. essential oil. Molecules, 25(12), 2832. https://doi.org/10.3390/molecules25122832

159. Kaab, S.B., Martin, M., Degand, H., Foncoux, B., Morsomme, P. & Jijakli, M.H. (2025). Label free quantitative proteomic analysis reveals the physiological and biochemical responses of Arabidopsis thaliana to cinnamon essential oil. Sci. Rep., 15(1), 6156. https://doi.org/10.1038/s41598-025-89368-4

160. Ben Kaab, S., Fern«ndez Pierna, J.A., Foncoux, B., CompAre, P., Baeten, V. & Jijakli, M.H. (2024). Biochemical and physiological responses of weeds to the application of a botanical herbicide based on cinnamon essential oil. Plants, 13(23), 3432. https://doi.org/10.3390/plants13233432

161. Miloudi, S., Abbad, I., Soulaimani, B., Ferradous, A., Abbad, A. & El Mouden, E.H. (2024). Optimization of herbicidal activity of essential oil mixtures from Satureja alpina, Thymus satureioides and Myrtus communis on seed germination and post-emergence growth of Amaranthus retroflexus L. Crop Prot., 180, 106642. https://doi.org/10.1016/j.cropro.2024.106642

162. Dutra, Q.P., Christ, J.A., Carrijo, T.T., de Assis Alves, T., de Assis Alves, T., Mendes, L.A. & Praca-Fontes, M.M. (2020). Phytocytotoxicity of volatile constituents of essential oils from Sparattanthelium Mart. species (Hernandiaceae). Sci. Rep., 10(1), 12213. https://doi.org/10.1038/s41598-020-69205-6

163. Wei, C., Zhou, S., Shi, K., Zhang, C. & Shao, H. (2020). Chemical profile and phytotoxic action of Onopordum acanthium essential oil. Sci. Rep., 10(1), 13568. https://doi.org/10.1038/s41598-020-70463-7

164. Synowiec, A., Kalemba, D., Drozdek, E. & Bocianowski, J. (2017). Phytotoxic potential of essential oils from temperate climate plants against the germination of selected weeds and crops. J. Pest Sci., 90(1), pp. 407-419. https://doi.org/10.1007/s10340-016-0759-2

165. Ribeiro, V.P., Bajsa-Hirschel, J., Bastos, J.K., Reichley, A., Duke, S.O. & Meepagala, K.M. (2024). Characterization of the Phytotoxic Potential of Seven Copaifera spp. Essential Oils: Analyzing Active Compounds through Gas Chromatography-Mass Spectrometry Molecular Networking. J. Agric. Food Chem., 72(33), pp. 18528-18536. https://doi.org/10.1021/acs.jafc.4c04586

166. Baranov«, B., Grulov«, D., Polito, F., Sedl«k, V., Kone№n«, M., Bla빫kov«, M.M., Amri, I., De Feo, V. & Por«№ov«, J. (2025). Artemisia herba-alba Essential Oil: Chemical Composition, Phytotoxic Activity and Environmental Safety. Plants, 14(2), pp. 242. https://doi.org/10.3390/plants14020242

167. Abd-ElGawad, A.M., Assaeed, A.M., Bonanomi, G., Dar, B.A., Abd Elkarim, A.S., El Gendy, A.E.N.G. & Elshamy, A.I. (2025). Oxygenated terpenoids-rich essential oil of Pergularia tomentosa exhibited herbicidal potentiality towards Dactyloctenium aegyptium and Bidens pilosa weeds. J. Essent. Oil Bear. Plants, 28(2), pp. 250-261. https://doi.org/10.1080/0972060X.2025.2483330

168. Kaab, S.B., Rebey, I.B., Hanafi, M., Berhal, C., Fauconnier, M.L., De Clerck, C., Ksouri, R. & Jijakli, H. (2019). Rosmarinus officinalis essential oil as an effective antifungal and herbicidal agent. Span. J. Agric. Res., 17(2), e1006-e1006. https://doi.org/10.5424/sjar/2019172-14043

169. Gressel, J. (2024). Four pillars are required to support a successful biocontrol fungus. Pest Manag. Sci., 80(1), pp. 35-39. https://doi.org/10.1002/ps.7417

170. King, R.R., Lawrence, C.H. & Gray, J.A. (2001). Herbicidal properties of the thaxtomin group of phytotoxins. J. Agric. Food Chem., 49(5), pp. 2298-2301. https://doi.org/10.1021/jf0012998

171. Sparks, T.C., Sparks, J.M. & Duke, S.O. (2023). Natural product-based crop protection compounds - origins and future prospects. J. Agric. Food Chem., 71(5), pp. 2259-2269. https://doi.org/10.1021/acs.jafc.2c06938

172. Hachisu, S. (2021). Strategies for discovering resistance-breaking, safe and sustainable commercial herbicides with novel modes of action and chemotypes. Pest Manag. Sci., 77(7), pp. 3042-3048. https://doi.org/10.1002/ps.6397

173. Bѕkѕs, M., Langley, D.R. & Crews, C.M. (2022). PROTAC targeted protein degraders: the past is prologue. Nat. Rev. Drug Discov., 21(3), pp. 181-200. https://doi.org/10.1038/s41573-021-00371-6

174. Viswa, C.A., Bleys, J., Leydon, E., Shah, B. & Zurkiya, D. (2024). Generative AI in the Pharmaceutical Industry: Moving from Hype to Reality. McKinsey & Company. 25p. https://www.mckinsey.com/industries/life-sciences/our-insights/generative-ai-in-the-pharmaceutical-industry-moving-from-hype-to-reality. Accessed: July, 2024.