Фізіологія рослин і генетика 2021, том 53, № 5, 371-386, doi: https://doi.org/10.15407/frg2021.05.371

Бактеріальні сигнальні молекули класу ацилгомосеринлактонів: вплив на ріст і стресостійкість рослин

Бабенко Л.М., Косаківська І.В., Войтенко Л.В., Романенко К.О.

  • Інститут ботаніки ім. М.Г. Холодного Національної академії наук України 01601 Київ, вул. Терещенківська, 2

В огляді проаналізовано й узагальнено новітні літературні дані щодо ролі ацилгомосеринлактонів (АГЛ) — сигнальних молекул бактеріального поход­ження — у регуляції росту і розвитку рослин, формуванні стресостійкості до біотичних і абіотичних стресів. АГЛ синхронізують індивідуальні клітинні геноми, забезпечують дистанційний сигналінг між бактеріями-колонізаторами фітосфери, що дає популяції змогу реагувати на зовнішні сигнали і встановлювати симбіотичні або антагоністичні відносини з рослиною-хазяїном. Регулювання функцій ризосфери — найбільш динамічного сайта взаємодії рослини й асоційованої з нею мікрофлори — за участю АГЛ набуває особливого значення при розробці нових біотехнологічних підходів, спрямованих на підвищення врожайності та стресостійкості аграрних культур. Останні дослідження продемонстру­вали прямі (спрямовані на рослини) і непрямі (спрямовані на мікрофлору ризосфери) ефекти AГЛ. Доведено, що AГЛ-праймування індукує посилення росту рослин, підвищення вмісту фотосинтетичних пігментів, зміни балансу ендо­генних фітогормонів, впливає на формування механізмів захисту, змінює архітектоніку коренів, впливає на продихову провідність, відкладання калози тощо. Оскільки АГЛ відповідають вимогам інтенсивного органічного землеробства, їх розглядають як перспективні екологічні фітостимулятори і фітомодулятори, що здатні підвищити кількість і якість сільськогосподарської продукції.

Ключові слова: ацилгомосеринлактони, quorum sensing, АГЛ-сигналінг, праймування, стійкість, біотехнологія

Фізіологія рослин і генетика
2021, том 53, № 5, 371-386

Повний текст та додаткові матеріали

У вільному доступі: PDF  

Цитована література

1. Janni, M., Gulli, M., Maestri, E., Marmiroli, M., Valliyodan, B., Nguyen, H.T. & Marmiroli, N. (2020). Molecular and genetic bases of heat responses in crop plants and breeding for increased resilience and productivity. Exp. Bot., 71, No. 13, pp. 3780-3802. https://doi.org/10.1093/jxb/eraa034

2. Lorenz, R., Stalhandske, Z. & Fischer, E.M. (2019). Detection of a climate change signal in extreme heat, heat stress, and cold in Europe from observations. Geophys. Res. Lett., 46, pp. 8363-8374. https://doi.org/10.1029/2019GL082062

3. Wahid, A., Gelani, S., Ashraf, M. & Foolad, M.R. (2007). Heat tolerance in plants: An overview. Environ. Exp. Bot., 61, pp. 199-223. https://doi.org/10.1016/j.envexpbot.2007.05.011

4. Hsu, J.S., Powell, J. & Adler, P.B. (2012). Sensitivity of mean annual primary production to precipitation. Global Change Biol., 18, No. 7, pp. 2246-2255. https://doi.org/10.1111/j.1365-2486.2012.02687.x

5. Morgun, V.V. & Kiriziy, D.A. (2012). Prospects and modern strategies of wheat physiological traits improvement for increasing productivity. Fiziologia i biokhimiya kult. rastenij, 44, No. 6, pp. 463-483 [in Ukrainian].

6. Sharma, A., Kumar, V., Shahzad, B., Tanveer, M., Sidhu, G.P.S., Handa, N., Kohli, S.K., Yadav, P., Bali, A.S., Parihar, R.D., Dar, O.I., Singh, K., Jasrotia, S., Bakshi, P., Ramakrishnan, M., Kumar, S., Bhardwaj, R. & Thukral, A.K. (2019). Worldwide pesticide usage and its impacts on ecosystem. SN Appl. Sci., 1, p. 1446. https://doi.org/10.1007/s42452-019-1485-1

7. Stamenkovic, S., Beskoski, V., Karabegovic, I., Lazic, M. & Nikolic, N. (2018). Microbial fertilizers: a comprehensive review of current findings and future perspectives. Span J. Agric. Res., 16, No. 1, e09R01. https://doi.org/10.5424/sjar/2018161-12117

8. Gupta, G., Kumar, A. & Verma, N. (2019). Bacterial homoserine lactones as nanocomposite fertilizer and defense regulator for chickpeas. Environ. Sci. Nano, 6, No. 4, pp. 1-20. https://doi.org/10.1039/C9EN00199A

9. Moshynets, O.V., Babenko, L.M., Rogalsky, S.P., Iungin, O.S., Foster, J., Kosakivska, I.V., Potters, G. & Spiers, A.J. (2019). Priming winter wheat seeds with thebacterial quorum sensing signal N-hexanoyl-L-homoserine lactone (C6-HSL) shows potential to improve plant growth and seed yield. PLoS One, 14, No. 2, e0209460. https://doi.org/10.1371/journal.pone.0209460

10. Babenko, L.M., Romanenko, K.O., Iungin, O.S. & Kosakivska, I.V. (2021). Acyl homoserine lactones for crop production and stress tolerance of agricultural plants. Sel'skokhozyaistvennaya Biologiya [Agricultural Biology], 56, No. 1, pp. 3-19. https://doi.org/10.15389/agrobiology.2021.1.3eng

11. Tsygankova, V., Shysha, E., Andrusevich, Y., Galkin, A., Iutynska, G., Yemets, A. & Blume, Y. (2016). Using of new microbial biostimulants for obtaining in vitro new lines of Triticum aestivum L. cells resistant to nematode H. avenae. Eur. J. Biotec. Biosci., 4, No. 4, pp. 41-53.

12. Shrestha, A., Grimm, M., Ojiro, I., Krumwiede, J. & Schikora, A. (2020). Impact of quorum sensing molecules on plant growth and immune system. Front Microbiol., 11, pp. 1-11. https://doi.org/10.3389/fmicb.2020.01545

13. Palmer, A.G., Senechal, A.C., Mukherjee, A., Ane, J.-M. & Blackwell, H.E. (2014). Plant responses to bacterial N-acyl-L-homoserine lactones are dependent on enzymatic degradation to L-homoserine. ACS Chem. Biol., 9, pp.1834-1845. https://doi.org/10.1021/cb500191a

14. Sarkar, R., Mondal, S., Vera, R., Chakraborty, S., Varik, R., Roy, P., Kumar, A., Yadav, K.K., Choudhury, J., Chaudhary, S.K., Samanta, S.K., Karmakar, S., Das, S., Mukherjee, R.K., Mukherjee, J. & Sen, T. (2015). Antimicrobial properties of Kalanchoe biossfeldiana: a focus on drug resistance with particular reference to quorum sensing-mediated bacterial biofilm formation. J. Pharm. Pharmacol., 67, No. 7, pp. 951-962. https://doi.org/10.1111/jphp.12397

15. Moshynets, O.V. & Kosakivska, I.V. (2010). Phytosphere ecology: plant-microbial interactions. 1. structure functional characteristic of rhizo-, endo- and phyllosphere. Visn. Hark. nac. agrar. univ., Ser. Biol., 2, No. 20, pp. 19-35 [in Ukrainian].

16. Babenko, L.M., Moshynets, O.V., Shcherbatiuk, M.M. & Kosakivska, I.V. Bacterial acyl homoserine lactones in plant priming biotechnology: achievements and prospects of use in agricultural production. Fiziol. rast. genet., 48, No. 6, pp. 463-474 [in Ukrainian]. https://doi.org/10.15407/frg2016.06.463

17. Lareen, A., Burton, F. & Schafer, P. (2016). Plant root-microbe communication in shaping root microbiomes. Plant Mol. Biol., 90, No. 6, pp. 575-587. https://doi.org/10.1007/s11103-015-0417-8

18. Shrestha, A. & Schikora, A. (2020). AHL-priming for enhanced resistance as a tool in sustainable agriculture. FEMS Microbiol Ecol., 96, 12, pp. 226. https://doi.org/10.1093/femsec/fiaa226

19. Ding, L., Cao, J., Duan, Y., Li, J., Yang, Y., Yang, G. & Zhou, Y. (2016). Proteomic and physiological responses of Arabidopsis thaliana exposed to salinity stress and N-acyl-homoserine lactone. Physiol. Plant. 158, pp. 414-434. https://doi.org/10.1111/ppl.12476

20. Schikora, A., Schenk, S.T. & Hartmann, A. (2016). Beneficial effects of bacteria-plant communication based on quorum sensing molecules of the N-acyl homoserine lactone group. Plant Mol. Biol., 90, pp. 605-612. https://doi.org/10.1007/s11103-016-0457-8

21. Babenko, L.M., Moshynets, O.V., Rogalsky, S.P., Shcherbatiuk, N.N., Suslova, O.S. & Kosakivska, I.V. (2017). Effects of presowing N-hexanoyl-L-homoserine lactone priming on formation of rhizosphere microflora and harvest structure of Triticum aestivum L. Visn. Hark. nac. agrar. univ., Ser. Biol., 1, pp. 106-118 [in Russian]. https://doi.org/10.35550/vbio2017.01.106

22. Basu, S., Rabara, R. & Negi, S. (2017). Towards a better greener future - an alternative strategy using biofertilizers. I: Plant growth promoting bacteria. Plant Gene, 12, pp. 43-49. https://doi.org/10.1016/j.plgene.2017.07.004

23. Kosakivska, I.V., Babenko, L.M., Romanenko, K.O. & Futorna, O.A. (2020). Effects of exogenous bacterial quorum sensing signal molecule (messenger) N-hexanoyl-L-homoserine lactone (C6-HSL) on morphological and physiological responses of winter wheat under simulated acid rain. Dopov. Nac. Akad. nauk Ukr., 8, pp. 92-100. https://doi.org/10.15407/dopovidi2020.08.092

24. Pomini, A.M., Araujo, W.L. & Marsaioli, A.J. (2006). Structural elucidation and biological activity of acyl-homoserine lactones from the phytopathogen Pantoea ananatis Serrano 1928. J. Chem. Ecol., 32 pp. 1769-1778. https://doi.org/10.1007/s10886-006-9108-x

25. Mathesius, U., Mulders, S., Gao, M., Teplitski, M., Caetano - Anolles, G., Rolfe, B.G. & Bauer, W.D. (2003). Extensive and specific responses of a eukaryote to bacterial quorum-sensing signals. Proc. Natl. Acad. Sci USA, 100, No. 3, pp. 1444-1449. https://doi.org/10.1073/pnas.262672599

26. Miao, C., Liu, F., Zhao, Q., Jia, Z. & Song, S. (2012). A proteomic analysis of Arabidopsis thaliana seedling responses to 3-oxo-octanoyl-homoserine lactone, a bacterial quorum-sensing signal. Biochem. Biophys. Res. Commun., 427, No. 2, pp. 293-298. https://doi.org/10.1016/j.bbrc.2012.09.044

27. Song, S., Jia, Z., Xu, J., Zhang, Z. & Bian, Z. (2011). N-butyryl-homoserine lactone, a bacterial quorum-sensing signaling molecule, induces intracellular calcium elevation in Arabidopsis root cells. Biochem. Biophys. Res. Commun., 414, No. 2, pp. 355-360. https://doi.org/10.1016/j.bbrc.2011.09.076

28. von Rad, U., Klein, I., Dobrev, P.I., Kottova, J., Zazimalova, E., Fekete, A., Hartmann, A., Schmitt-Kopplin, P. & Durner, J. (2008). Response of Arabidopsis thaliana to N-hexanoyl-DL-homoserine-lactone, a bacterial quorum sensing molecule produced in the rhizosphere. Planta, 229, No. 1, pp. 73-85. https://doi.org/10.1007/s00425-008-0811-4

29. Liu, F., Bian, Z., Jia, Z., Zhao, Q. & Song, S. (2012). The GCR1 and GPA1 participate in promotion of Arabidopsis primary root elongation induced by N-acyl-homoserine lactones, the bacterial quorum-sensing signals. Mol. Plant-Microbe Interact., 25, No. 5, pp. 677-683. https://doi.org/10.1094/MPMI-10-11-0274

30. Sieper, T., Forczek, S., Matucha, M., Kramer, P., Hartmann, A. & Schroder, P. (2014). N-acyl-homoserine lactone uptake and systemic transport in barley rest upon active parts of the plant. New Phytol., 201, No. 2, pp. 545-555. https://doi.org/10.1111/nph.12519

31. Ortiz-Castro, R.A., Martinez-Trujillo, M.I. & Lypez-Bucio, J.O. (2008). N-acyl-L-homoserine lactones: a class of bacterial quorum-sensing signals alter post-embryonic root development in Arabidopsis thaliana. Plant Cell Environ., 31, No. 10 pp. 1497-1509. https://doi.org/10.1111/j.1365-3040.2008.01863.x

32. Schenk, S.T., Stein, E., Kogel, K.H. & Schikora, A. (2012). Arabidopsis growth and defense are modulated by bacterial quorum sensing molecules. Plant Signal Behav., 7, pp. 178-181. https://doi.org/10.4161/psb.18789

33. Shrestha, A., Elhady, A., Adss, S., Wehner, G., Bottcher, C. & Heuer, H. (2019). Genetic differences in barley govern the responsiveness to N-acyl-homoserine lactone. Phytobiomes J., 3, pp. 191-202. https://doi.org/10.1094/PBIOMES-03-19-0015-R

34. Bulgarelli, D., Rott, M., Schlaeppi, K., van Themaat, E.V.L., Ahmadinejad, N., Assenza, F., Rauf, P., Huettel, B., Reinhardt, R., Schmelzer, E., Peplies, J., Gloeckner, F.O., Amann, R., Eickhorst, T. & Schulze-Lefert, P. (2012). Revealing structure and assembly cues for Arabidopsis root-inhabiting bacterial microbiota. Nature, 488, No. 7409, pp. 91-95. https://doi.org/10.1038/nature11336

35. Jiang, J., Wu, S., Wang, J. & Feng, Y. (2015). AHL-type quorum sensing and its regulation on symplasmata formation in Pantoea agglomerans YS19. J. Basic Microbiol., 55, pp. 607-616. https://doi.org/10.1002/jobm.201400472

36. Conrath, U., Pieterse, C.M. & Mauch-Mani, B. (2002). Priming in plant-pathogen interactions. Trends Plant Sci., 7, No. 5, pp. 210-216. https://doi.org/10.1016/S1360-1385(02)02244-6

37. Schenk, S.T., Hernandez-Reyes, C., Samans, B., Stein, E., Neumann, C., Schikora, M., Reichelt, M., Mithofer, A., Becker, A., Kogel, K.-H. & Schikora, A. (2014). N-acyl-homoserine lactone primes plants for cell wall reinforcement and induces resistance to bacterial pathogens via the salicylic acid/oxylipin pathway. Plant Cell, 26, No. 6, pp. 2708-2723. https://doi.org/10.1105/tpc.114.126763

38. Srivastava, A.K., Kumar, J.S. & Suprasanna, P. (2021). Seed 'primeomics': plants memorize their germination under stress. Biol. Rev., 96, No. 5, pp. 1723-1743. https://doi.org/10.1111/brv.12722

39. Martinez-Medina, A., Flors, V., Heil, M., Mauch-Mani, B., Pieterse, C.M.J., Pozo, M.J., Ton, J., van Dam, N.M. & Conrath, U. (2016). Recognizing plant defense priming. Trends Plant Sci., 21, pp. 818-822. https://doi.org/10.1016/j.tplants.2016.07.009

40. Mauch-Mani, B., Baccelli, I., Luna, E. & Flors, V. (2017). Defense priming: an adaptive part of induced resistance. Annu. Rev. Plant Biol., 68, pp. 485-512. https://doi.org/10.1146/annurev-arplant-042916-041132

41. Ton, J., Jakab, G., Toquin, V., Flors, V., Iavicoli, A., Maeder, M.N., Metraux, J.-P. & Mauch-Mani, B. (2005). Dissecting the beta-aminobutyric acid induced priming phenomenon in Arabidopsis. Plant Cell, 17, pp. 987-999. https://doi.org/10.1105/tpc.104.029728

42. Beckers, G.J., Jaskiewicz, M. & Liu, Y. (2009). Mitogen-activated protein kinases 3 and 63 are required for full priming of stress responses in Arabidopsis thaliana. Plant Cell, 21, pp. 944-953. https://doi.org/10.1105/tpc.108.062158

43. Jaskiewicz, M., Conrath, U. & Peterhansel, C. (2011). Chromatin modification acts as a memory for systemic acquired resistance in the plant stress response. EMBO Rep., 12, No. 1, pp. 50-55. https://doi.org/10.1038/embor.2010.186

44. Luna, E., Bruce, T.J., Roberts, M.R., Flors, V. & Ton, J. (2012). Next-generation systemic acquired resistance. Plant Physiol., 158, pp. 844-853. https://doi.org/10.1104/pp.111.187468

45. Rasmann, S., De Vos, M., Casteel, C.L., Tian, D., Halitschke, R., Sun, J.Y., Agrawal, A.A., Felton, G.W. & Jander, G. (2012). Herbivory in the previous generation primes plants for enhanced insect resistance. Plant Physiol., 158, pp. 854-863. https://doi.org/10.1104/pp.111.187831

46. Slaughter, A., Daniel, X., Flors, V., Luna, E., Hohn, B. & MauchMani, B. (2012). Descendants of primed Arabidopsis plants exhibit resistance to biotic stress. Plant Physiol., 158, pp. 835-843. https://doi.org/10.1104/pp.111.191593

47. Elshakh, A.S.A., Anjum, S.I., Qiu, W., Almoneafy, A.A., Li, W., Yang, Z., Cui, Z.-Q., Li, B., Sun, G.-C. & Xie, G.-L. (2016). Controlling and defence-related mechanisms of Bacillus strains against bacterial leaf blight of rice. J. Phytopathol., 164, No. 7-8, pp. 534-546. https://doi.org/10.1111/jph.12479

48. Babenko, L.M., Shcherbatiuk, M.M. & Kosakivska, I.V. (2021, July). Effects of pre-sawing treatment with DL-N-hexanoil-L-homoserine lactone on physiological and biochemical characteristics of winter wheat. Challenges, threats and developments in biology, agriculture, ecology, geography, geology and chemistry: International scientific conference (pp. 29-33), Lublin: Publishing House «Baltija Publishing». https://doi.org/10.30525/978-9934-26-111-4-6

49. Slewinski, T.L. (2012). Non-structural carbohydrate partitioning in grass stems: a target to increase yield stability, stress tolerance, and biofuel production. J. Exp. Bot., 63, No. 13, pp. 4647-4670. https://doi.org/10.1093/jxb/ers124

50. Babenko, L.M., Smirnov, O.E., Romanenko, K.O., Trunova, O. K. & Kosakivska, I.V. (2019). Phenolic compounds in plants: biogenesis and functions. Ukr. Biochem J., 91, No. 3, pp. 5-18. https://doi.org/10.15407/ubj91.03.005

51. Zhao, Q., Li, M., Jia, Z., Liu, F., Ma, H., Huang, Y. & Song, S. (2016). AtMYB44 positively regulates the enhanced elongation of primary roots induced by N-3-oxo-hexanoyl-homoserine lactone in Arabidopsis thaliana. Mol. Plant-Microbe Interact., 29, No. 10, pp. 774-785. https://doi.org/10.1094/MPMI-03-16-0063-R

52. Pang, Y., Liu, X., Ma, Y., Chernin, L., Berg, G. & Gao, K. (2008). Induction of systemic resistance, root colonisation and biocontrol activities of the rhizospheric strain of Serratia plymuthica are dependent on N-acyl-homoserine lactones. Eur. J. Plant Pathol., 124, No. 2, pp. 261-268. https://doi.org/10.1007/s10658-008-9411-1

53. Timmusk, S., Grantcharova, N. & Wagner, E.G.H. (2005). Paenibacillus polymyxa invades plant roots and forms biofilms. Appl. Environ. Microbiol., 71, No. 11, pp. 7292-7300. https://doi.org/10.1128/AEM.71.11.7292-7300.2005

54. Gahoi, P., Omar, R.A., Verma, N. & Gupta, G.S. (2021). Rhizobacteria and acylated homoserine lactone-based nanobiofertilizer to improve growth and pathogen defense in Cicer arietinum and Triticum aestivum plants. ACS Agric. Sci. Technol., 1, No. 3, pp. 240-252. https://doi.org/10.1021/acsagscitech.1c00039

55. Wehner, G., Schikora, A., Ordon, F. & Will, F. (2021). Priming negatively affects feeding behavior and aphid biomass of Rhopalosiphum padi on barley. J. Pest Sci., 94, pp. 1237-1247. https://doi.org/10.1007/s10340-021-01329-8

56. Upadhyay, S.K., Singh, J.S., Saxena, A.K. & Singh, D.P. (2012). Impact of PGPR inoculation on growth and antioxidant status of wheat under saline conditions. Plant Biol., 14, No. 4, pp. 605-611. https://doi.org/10.1111/j.1438-8677.2011.00533.x

57. Wehner, G., Kopalmke, D., Richter, K., Kecke, S., Schikora, A. & Ordon, F. (2019). Priming is a suitable strategy to enhance resistance towards leaf rust in barley. Phytobiomes J., 3, No. 1, pp. 2471-2906. https://doi.org/10.1094/PBIOMES-09-18-0041-R

58. Hartmann, A., Klink, S. & Rothballer, M. (2021). Plant growth promotion and induction of systemic tolerance to drought and salt stress of plants by quorum sensing auto-inducers of the N-acyl-homoserine lactone type: recent developments. Front. Plant Sci., 12, p. 683546. https://doi.org/10.3389/fpls.2021.683546

59. Khan, M., Bhargava, P. & Goel, R. (2019). Quorum sensing molecules of Rhizobacteria: a trigger for developing systemic resistance in plants. In: Sayyed, R., Arora, N. & Reddy, M. (Eds.) Plant Growth Promoting Rhizobacteria for Sustainable Stress Management. Microorganisms for Sustainability (pp. 117-138), Singapore: Springer. https://doi.org/10.1007/978-981-13-6536-2_7

60. Ostapchuk, M.O., Polyshchuk, Y.S., Mazur, A.V. & Palamarchuk, V.D. (2016). Using of biological products - perspective direction of improvement agrotechnologies. Agriculture and Forestry, 3, pp. 32-43 [in Ukrainian].

61. Barriuso, J., Ramos Solano, B., Fray, R.G., Camara, M., Hartmann, A. & Manero, F.J.G. (2008). Transgenic tomato plants alter quorum sensing in plant growth-promoting rhizobacteria. Plant Biotechnol. J., 6, pp. 442-452. https://doi.org/10.1111/j.1467-7652.2008.00331.x

62. Schuhegger, R., Ihring, A., Gantner, S., Bahnweg, G., Knappe, C., Vogg, G., Hutzler, P., Schmid, M., van Breusegem, F., Ebarl, L., Hartmann, A. & Langebartels, C. (2006). Induction of systemic resistance in tomato by N-acyl-L-homoserine lactone-producing rhizosphere bacteria. Plant Cell Environ., 29, pp. 909-918. https://doi.org/10.1111/j.1365-3040.2005.01471.x

63. Pazarlar, S., Cetinkaya, N., Bor, M. & Kara, R.S. (2020). N-acyl homoserine lactone-mediated modulation of plant growth and defense against Pseudoperonospora cubensis in cucumber. J. Exp. Bot., 71, No. 20, pp. 6638-6654. https://doi.org/10.1093/jxb/eraa384

64. Rankl, S., Gunse, B., Sieper, T., Schmid, C., Poschenrieder, C. & Schroder, P. (2016). Microbial homoserine lactones (AHLs) are effectors of root morphological changes in barley. Plant Sci., 253, pp. 130-140. https://doi.org/10.1016/j.plantsci.2016.09.014

65. Gotz, C., Fekete, A., Gebefuegi, I., Forczek, T., Fuksova, K., Li, X., Englmann, M., Gryndler, M., Hartmann, A., Matucha, M., Schmitt-Kopplin, P. & Schroder, P. (2007). Uptake, degradation and chiral discrimination of N-acyl-D/L-homoserine lactones by barley (Hordeum vulgaro) and yam bean (Pachyrhizus erosus) plants. Anal. Bioanal. Chem., 389, No. 5, pp. 1447-1457. https://doi.org/10.1007/s00216-007-1579-2

66. Heidel, A.J., Barazani, O. & Baldwin, I.T. (2009). Interaction between herbivore defense and microbial signaling: bacterial quorum-sensing compounds weaken JA-mediated herbivore resistance in Nicotiana attenuata. Chemoecology, 20, pp. 149-154. https://doi.org/10.1007/s00049-009-0031-9

67. Zhao, Q., Zhang, C., Jia, Z., Huang, Y., Li, H. & Song, S. (2015). Involvement of calmodulin in regulation of primary root elongation by N-3-oxo-hexanoyl homoserine lactone in Arabidopsis thaliana. Front Plant Sci., 5, p. 807. https://doi.org/10.3389/fpls.2014.00807

68. Zhao, Q., Yang, X.Y., Li, Y., Liu, F., Cao, X.Y., Jia, Z.H. & Song, S.-S. (2020). N-3-oxo-hexanoyl-homoserine lactone, a bacterial quorum sensing signal, enhances salt tolerance in Arabidopsis and wheat. Bot. Stud., 61, p. 8. https://doi.org/10.1186/s40529-020-00283-5

69. Han, S., Li, D., Trost, E., Mayer, K.F., Vlot, A.C., Heller, W., Schmid, M., Hartmann, A. & Rothballer, M. (2016). Systemic responses of barley to the 3-hydroxy-decanoyl-homoserine lactone producing plant beneficial endophyte Acidovorax radicis N 35. Front. Plant. Sci., 7, p. 1868. https://doi.org/10.3389/fpls.2016.01868

70. Zarkani, A.A., Stein, E., Rohrich, C.R., Schikora, M., Evguenieva-Hackenberg, E., Degenkolb, T., Vilcinskas, A., Klug, G., Kogel, K.H. & Schikora, A. (2013). Homoserine lactones influence the reaction of plants to rhizobia. Int. J. Mol. Sci., 14, No. 8, pp. 17122-17146. https://doi.org/10.3390/ijms140817122

71. Schikora, A., Schenk, S. T., Stein, E., Molitor, A., Zuccaro, A. & Kogel, K.-H. (2011). N-acyl-homoserine lactone confers resistance toward biotrophic and hemibiotrophic pathogens via altered activation of AtMPK6. Plant Physiol., 157, No. 3, pp. 1407-1418. https://doi.org/10.1104/pp.111.180604

72. Hernandez-Reyes, C., Schenk, S.T., Neumann, C., Kogel, K.H. & Schikora, A. (2014). N-acyl-homoserine lactones-producing bacteria protect plants against plant and human pathogens. Microb. Biotechnol., 7, No. 6, pp. 580-588. https://doi.org/10.1111/1751-7915.12177

73. Veliz-Vallejos, D.F., van Noorden, G.E., Yuan, M. & Mathesius, U. (2014). A Sinorhizobium meliloti - specific N-acyl-homoserine lactone quorum-sensing signal increases nodule numbers in Medicago truncatula independent of autoregulation. Front. Plant Sci., 5, p. 551. https://doi.org/10.3389/fpls.2014.00551

74. Pakdaman, N. & Mostajeran, A. (2018). Phosphate limitation alters Medicago-Sinorhizobium signaling: flavonoid synthesis and ahl production. Russ. J. Plant Physiol., 65, No. 2, pp. 251-259. https://doi.org/10.1134/S1021443718020176