The peculiarities of the accumulation of dry matter, biologically active substances, mineral substances, and changes in the chlorophyll fluorescence induction intensity in three different species of plants of the Brassicaceae family (Camelina sativa Сrantz f. annua, cv. Peremoha, Brassica carinata A. Braun (SF-selected form) and Brassica napus f. annua DC., cv. Rimal) under the use of silicon-containing compounds were investigated. The most favorable effect of silicon-containing compounds was established in Brassica napus f. annua DC., cv. Rimal, for the rest of the species the use of these compounds caused sensitivity to environmental stress factors, which was reflected in a sharp difference in the accumulation of several biologically active substances in the above-ground mass during the growing season. In all stu-died samples, in general, the improvement of the photosynthetic apparatus was noted, along with the maximum manifestation for plants of B. napus f. annua DC., cv. Rimal under the use of microfertilizers.
Keywords: Camelina sativa (L.) Сrantz., Brassica carinata A. Braun, Brassica napus DC., genotype, resistance, physiological and biochemical state
Full text and supplemented materials
Free full text: PDFReferences
1. Craswell, E. (2021). Fertilizers and nitrate pollution of surface and ground water: an increasingly pervasive global problem. SN Appl. Sci., 3 (4), 518. https://doi.org/10.1007/s42452-021-04521-8
2. Ren, K., Xu, M., Li, R., Zheng, L., Liu, S., Reis, S. & Gu, B. (2022). Optimizing nitrogen fertilizer use for more grain and less pollution. J. Clean. Prod., 360, 132180. https://doi.org/10.1016/j.jclepro.2022.132180
3. Chen, Y., Hu, S., Guo, Z., Cui, T., Zhang, L., Lu, C. & Jin, Y. (2021). Effect of balanced nutrient fertilizer: A case study in Pinggu District, Beijing, China. Sci. Total Environ., 754, 142069. https://doi.org/10.1016/j.scitotenv.2020.142069
4. Astaneh, N., Bazrafshan, F., Zare, M., Amiri, B. & Bahrani, A. (2021). Nano-fertilizer prevents environmental pollution and improves physiological traits of wheat grown under drought stress conditions. Scientia Agropecuaria, 12 (1), pp. 41-47. https://doi.org/10.17268/sci.agropecu.2021.005
5. Tao, W., Zeng, S., Yan, K., Alwahibi, M.S. & Shao, F. (2024). Effects of Boron and Zinc Micro-Fertilizer on Growth and Quality of Jujube Trees (Ziziphus jujuba) in the Desert Area. Agronomy, 14 (4), 741. https://doi.org/10.3390/agronomy14040741
6. Astiari, N.K.A., Sulistiawati, N.P.A., Mahardika, I.B.K. & Rai, I.N. (2019). Overcoming the Failure of Fruit-set and Fruit Drop of Siam Orange on Off-season Period Through Application of Mycorrhizal Inoculants and ZNSO4 Micro Fertilizer Dosage. International J. of Life Sci., 3 (3), pp. 16-24. https://doi.org/10.29332/ijls.v3n3.358
7. Hanhur, V.V., Kocherha, А.А., Pypko, О.S. & Len, O.I. (2021). The effectiveness of microfertilizers for seed treatment and foliar applications of winter wheat crops. Bul. of Poltava State Agrarian Acad., 2, pp. 46-51. https://doi.org/10.31210/visnyk2021.02.05
8. Gorash, O., Klymyshena, R., Zinchenko, O. & Strilets, O. (2021). Influence of foliar fertilization with micro-fertilizers on physiological grain quality of spring malting barley. Ukr. J. of Ecol., 11 (5), pp. 15-20. https://doi.org/10.15421/2021_205
9. Xiong, Y.N., Han, D., Wang, F.Z., Ma, X.H., Jin, Y.N., Chen, B. ... & Xu, Z.C. (2019). Effects of Micro-fertilizer Combined with Small-Molecule Organic Matter on Growth and Quality of Flue-cured Tobacco. Biotechnology Bulletin, 35 (2), pp. 29-38.
10. Raza, A., Hafeez, M.B., Zahra, N., Shaukat, K., Umbreen, S., Tabassum, J. & Hasanuzzaman, M. (2020). The Plant Family Brassicaceae: Introduction, Biology, And Importance. In: Hasanuzzaman, M. (eds) The Plant Family Brassicaceae. Springer, Singapore, pp. 1-43. https://doi.org/10.1007/978-981-15-6345-4_1
11. Jabeen, N. (2020). Agricultural, Economic and Societal Importance of Brassicaceae Plants. In: Hasanuzzaman, M. (eds) The Plant Family Brassicaceae. Springer, Singapore, pp. 45-128. https://doi.org/10.1007/978-981-15-6345-4_2
12. Sydor, M., Kurasiak-Popowska, D., Stuper-Szablewska, K. & RogoziХski, T. (2022). Camelina sativa. Status quo and future perspectives. Ind. Crops Prod., 187, 115531. https://doi.org/10.1016/j.indcrop.2022.115531
13. Seepaul, R., Kumar, S., Iboyi, J.E., Bashyal, M., Stansly, T.L., Bennett, R. ... & Wright, D.L. (2021). Brassica carinata: Biology and agronomy as a biofuel crop. Gcb Bioenergy, 13 (4), pp. 582-599. https://doi.org/10.1111/gcbb.12804
14. Blume, R.Y., Lantukh, G.V., Levchuk, I.V., Lukashevych, K.M., Rakhmetov, D.B. & Blume, Y.B. (2020). Evaluation of potential biodiesel feedstocks: camelina, turnip rape, oil radish and tyfon. The Open Agric. J., 14 (1). https://doi.org/10.2174/1874331502014010299
15. Raboanatahiry, N., Li, H., Yu, L. & Li, M. (2021). Rapeseed (Brassica napus): Processing, utilization, and genetic improvement. Agronomy, 11 (9), 1776. https://doi.org/10.3390/agronomy11091776
16. Salehi, B., Quispe, C., Butnariu, M., Sarac, I., Marmouzi, I., Kamle, M. ... & Martorell, M. (2021). Phytotherapy and food applications from Brassica genus. Phytotherapy research, 35 (7), pp. 3590-3609. https://doi.org/10.1002/ptr.7048
17. Ayadi, J., Debouba, M., Rahmani, R. & Bouajila, J. (2022). Brassica genus seeds: A review on phytochemical screening and pharmacological properties. Molecules, 27 (18), 6008. https://doi.org/10.3390/molecules27186008
18. Mandrich, L. & Caputo, E. (2020). Brassicaceae-derived anticancer agents: Towards a green approach to beat cancer. Nutrients, 12 (3), 868. https://doi.org/10.3390/nu12030868
19. Alberghini, B., Zanetti, F., Corso, M., Boutet, S., Lepiniec, L., Vecchi, A. & Monti, A. (2022). Camelina [Camelina sativa (L.) Crantz] seeds as a multi-purpose feedstock for bio-based applications. Ind. Crops Prod., 182, 114944. https://doi.org/10.1016/j.indcrop.2022.114944
20. Hagos, R., Shaibu, A.S., Zhang, L., Cai, X., Liang, J., Wu, J. ... & Wang, X. (2020). Ethiopian mustard (Brassica carinata A. Braun) as an alternative energy source and sustainable crop. Sustainability, 12 (18), 7492. https://doi.org/10.3390/su12187492
21. Raj, S.P., Solomon, P.R., Thangaraj, B. (2022). Brassicaceae. In: Biodiesel from Flowering Plants. Springer, Singapore. https://doi.org/10.1007/978-981-16-4775-8_8
22. Teimoori, N., Ghobadi, M., Kahrizi, D. (2023). Improving the growth characteristics and grain production of Camelina (Camelina sativa L.) under salinity stress by silicon foliar application. Agrotech. Ind. Crops., 3 (1), pp. 1-13. https://doi.org/10.22126/ atic.2023.8681.1081
23. Bashyal, M., Mulvaney, M.J., Lee, D., Wilson, C., Iboyi, J.E., Leon, R.G., Boote, K.J. (2021). Brassica carinata biomass, yield, and seed chemical composition response to nitrogen rates and timing on southern Coastal Plain soils in the United States. GCB Bioenergy, 13 (8), pp. 1275-1289. https://doi.org/10.1111/gcbb.12846
24. Seepaul, R., Marois, J., Small I.M., George, S., Wright, D.L. (2019). Carinata Dry Matter Accumulation and Nutrient Uptake Responses to Nitrogen Fertilization. Agronomy J., 111 (4), pp. 2038-2046. https://doi.org/10.2134/agronj2018.10.0678
25. Bano, K., Kumar, B., Alyemeni, M.N., Ahmad, P. (2022). Exogenously-sourced salicylic acid imparts resilience towards arsenic stress by modulating photosynthesis, antioxidant potential and arsenic sequestration in Brassica napus plants. Antioxidants, 11 (10), 2010. https://doi.org/10.3390/antiox11102010
26. Ahmad, Z., Waraich, E. A., Barutcular, C., Alharby, H., Bamagoos, A., Kizilgeci, F., El Sabagh, A. (2020). Enhancing drought tolerance in Camelina sativa L. and canola (Brassica napus L.) through application of selenium. Pak. J. Bot., 52 (6), pp. 1927-1939. https://doi.org/10.30848/PJB2020-6(31)
27. Mezgebe, A., Azerefegne, F. (2021). Effect of water stress on glucosinolate content of Brassica carinata and performance of Brevicoryne brassicae and Myzus persicae. Int. J. Trop. Insect Sci., 41, pp. 953-960. https://doi.org/10.1007/s42690-020-00340-3
28. Kumar, A., Yadav, S., Ahlawat, N., Yadav, J. (2020). Biochemical basis of resistance to mustard aphid lipaphis erysimi (Kaltenbach). Indian J. of Entomology, 82 (4), pp. 875-879. https://doi.org/10.5958/0974-8172.2021.00027.4
29. Jamshidi Zinab, A., Hasanloo, T., Naji, A.M., Delangiz, N., Farhangi-Abriz, S., Asgari Lajayer, B., Farooq, M. (2023). Physiological and biochemical evaluation of commercial oilseed rape (Brassica napus L.) cultivars under drought stress. Gesunde Pflanzen, 75 (4), pp. 847-860. https://doi.org/10.1007/s10343-022-00755-7
30. Ahmad, Z., Anjum, S., Skalicky, M., Waraich, E.A., Muhammad Sabir Tariq, R., Ayub, M.A., El Sabagh, A. (2021). Selenium alleviates the adverse effect of drought in oilseed crops camelina (Camelina sativa L.) and canola (Brassica napus L.). Molecules, 26 (6), 1699. https://doi.org/10.3390/molecules26061699
31. Hailemariam, G.A. & Wudineh, T.A. (2020). Effect of cooking methods on ascorbic acid destruction of green leafy vegetables. J. of Food Quality, 2020 (1), 8908670. https://doi.org/10.1155/2020/8908670
32. Mondor, M., Hern«ndez-Ђlvarez, A.J. (2022). Camelina sativa composition, attributes, and applications: A review. European J. Lipid Sci. Tech., 124 (3), 2100035. https://doi.org/10.1002/ejlt.202100035
33. Juodka, R., NainienЕ, R., JuлkienЕ, V., Juлka, R., Leikus, R., KadыienЕ, G., Stankevi№ienЕ, D. (2022). Camelina (Camelina sativa (L.) Crantz) as Feedstuffs in Meat Type Poultry Diet: A Source of Protein and n-3 Fatty Acids. Animals, 12 (3), 295. https://doi.org/10.3390/ani12030295
34. Kazemi, S., Rafati Alashti, M. & Hosseini, S.J. (2021). Response of biochemical and physiological properties of camellia (Camelina sativa L.) to foliar application of calcium and silicon nanoparticles. Silicon, 14, pp. 6817-6828. https://doi.org/10.1007/s12633-021-01464-y
35. Mohdaly, A.A.A., Ramadan, M.F. (2022). Characteristics, composition and functional properties of seeds, seed cake and seed oil from different Brassica carinata genotypes. Food Bioscience, 48, 100752. https://doi.org/10.1016/j.fbio.2020.100752
36. Gagour, J., Ahmed, M.N., Bouzid, H.A., Oubannin, S., Bijla, L., Ibourki, M., Gharby, S. (2022). Proximate composition, physicochemical, and lipids profiling and elemental profiling of rapeseed (Brassica napus L.) and sunflower (Helianthus annuus L.) grown in Morocco. Evidence-based Complementary and Alternative Medicine, 2022 (1), 3505943. https://doi.org/10.1155/2022/3505943
37. Seliutina, O.V., Holoborodko, K.K., Pakhomov, O.Y. & Dubyna, A.O. (2021). Assessment of leaf damage degree in Aesculus hippocastanum L. during the growing season in the conditions of Dnipro city. Ecology and Noospherology, 32 (2), pp. 82-86. https://doi.org/10.15421/032114
38. Rohacek, K., Bartak, M. (1999). Technique of the modulated chlorophyll fluorescence: basic concepts, useful parameters, and some applications. Photosynthetica, 37 (3), pp. 339-363. https://doi.org/10.1023/A:1007172424619
39. Hrusha, V.М. (2015). Analysis of data measured by portable fluorometer «floratest». Computer Systems and Networks, 14, pp. 109-116.
40. Maxwell, К., Johnson, G.N. (2000). Chlorophyll fluorescence-apractical guide. J. Exp. Bot., 51 (345), pp. 659-668. https://doi.org/10.1093/jexbot/51.345.659
41. Mazura, M.Y., Miroshnyk, N.V. & Teslenko, I.K. (2021). Diagnosis of the functional state of the photosynthetic apparatus Taraxacum officinale (L.) Weber ex F. H. Wigg. by the method of chlorophyll fluorescence induction. J. of Native and Alien Plant Studies, (1), pp. 201-206. https://doi.org/10.37555/2707-3114.1.2021.247688