Fiziol. rast. genet. 2024, vol. 56, no. 6, 463-481, doi: https://doi.org/10.15407/frg2024.06.463

The 20—22 kD family proteins role in the subcellular structures protection under the action of abiotic stressors

Bondarenko O.Y., Shevchenko V.V.

  • Institute of Plant Physiology and Genetics, National Academy of Sciences of Ukraine 31/17 Vasylkivska St., Kyiv, 03022, Ukraine

The review considers the molecular and functional features of the group of proteins with a molecular weight of 20—22 kD and their role in the regulation and protection of molecular intracellular processes under the influence of stress factors. Among them is the 20 kD chaperonin (Hsp20), which is a cofactor of the physiological folding of the main proteins of photosystems under the influence of moisture, temperature, light and cold stress on plant organisms. Another representative of this group is the heat shock protein Cpn20, or chloroplast chaperonin, which is currently defined as a protein that ensures the correct folding of other proteins, and in some cases their assembly into oligomeric structures. The functional role of water-soluble chlorophyll-proteins (WSCP), drought-induced proteins (BnD22) is also considered. It is assumed that they perform a protective function under conditions of environmental restrictions. Some of them are induced under abiotic stress conditions. WSCP have a potential function of inhibiting serine and/or cysteine proteases, BnD22 affects the chlorophyll photostability. The role of these proteins as one of the mechanisms of resistance of cellular processes to extreme environmental factors is revealed.

Keywords: molecular chaperones, heat shock proteins, water-soluble chlorophyll-proteins, photosynthesis, subcellular structures, abiotic stressor

Fiziol. rast. genet.
2024, vol. 56, no. 6, 463-481

Full text and supplemented materials

Free full text: PDF  

References

1. Goharrizi, K.J., Baghizadeh, A., Kalantar, M. & Fatehi, F. (2020). Combined effects of salinity and drought on physiological and biochemical characteristics of pistachio rootstocks. Sci. Hortic., 261, 108970. https://doi.org/10.1016/j.scienta.2019.108970

2. Goharrizi, K.J., Moosavi, S.S., Amirmahani, F., Salehi, F. & Nazari, M. (2020). Assessment of changes in growth traits, oxidative stress parameters, and enzymatic and non-enzymatic antioxidant defense mechanisms in Lepidium draba plant under osmotic stress induced by polyethylene glycol. Protoplasma, 257, pp. 459-473. https://doi.org/10.1007/s00709-019-01457-0

3. Goharrizi, K.J., Wilde, H.D., Amirmahani, F., Moemeni, M.M., Zaboli, M., Nazari, M., Moosavi, S.S. & Jamalvandi, M. (2018). Selection and validation of reference genes for normalization of qRT-PCR gene expression in wheat (Triticum durum L.) under drought and salt stresses. J. Genet, 97, pp. 1433-1444. https://doi.org/10.1007/s12041-018-1042-5

4. Nazari, M., Moosavi, S.S. & Maleki, M. (2018). Morpho-physiological and proteomic responses of Aegilops tauschii to imposed moisture stress. Plant Physiol. Biochem., 132, pp. 445-452. https://doi.org/10.1016/j.plaphy.2018.09.031

5. Wang, F.Z., Wang, Q.B., Kwon, S.Y., Kwak, S.S. & Su, W.A. (2005). Enhanced drought tolerance of transgenic rice plants expressing a pea manganese superoxide dismutase. J. Plant. Physiol., 162, pp. 465-472. https://doi.org/10.1016/j.jplph.2004.09.009

6. Brenchley, R., Spannagl, M., Pfeifer, M., Barker, L.A. G. D'Amore, R., Allen, A.M., McKenzie, N., Kramer, M., Kerhornou, A., Bolser, D., Kay, S., Waite, D., Trick, M., Bancroft, I., Gu, Y., Huo, N., Luo, M.-C., Sehgal, S., Gill, B., Kianian, S., Anderson, O., Kersey, P., Dvorak, J., McCombie, W.R., Hall, A., Mayer, K.F.X., Edwards, K.J., Bevan, M.W. & Hall, H. (2012). Analysis of the bread wheat genome using whole-genome shotgun sequencing. Nature, 491, pp. 705-710. https://doi:10.1038/nature11650 https://doi.org/10.1038/nature11650

7. Hameed, A., Bibi, N., Akhter, J. & Iqbal, N. (2011). Differential changes in antioxidants, proteases, and lipid peroxidation in flag leaves of wheat genotypes under different levels of water deficit conditions. Plant Physiol. Biochem., 49 (2), pp. 178-185. https://doi.org/10.1016/j.plaphy.2010.11.009

8. Nazari, M., Goharrizi, K.J., Moosavi, S.S. & Maleki, M. (2019). Expression changes in the TaNAC2 and TaNAC69-1 transcription factors in drought stress tolerant and susceptible accessions of Triticum boeoticum. Plant Genet. Resour., 17 (6), pp. 471-479. https://doi.org/10.1017/S1479262119000303

9. Nazari, M., Moosavi, S.S., Maleki, M. & Goharrizi, K.J. (2020). Chloroplastic acyl carrier protein synthase I and chloroplastic 20 kDa chaperonin proteins are involved in wheat (Triticum aestivum) in response to moisture stress. J. Plant Interact., 15 (1), pp. 180-187. https: doi.org/10.1080/17429145.2020.1758812 https://doi.org/10.1080/17429145.2020.1758812

10. Morgun, V.V., Stasik, O.O., Kirizy, D.A. & Sokolovska-Sergienko, O.G. (2019). Effect of drought on photosynthetic apparatus, activity of antioxidant enzymes, and productivity of modern winter wheat varieties. Reg. Mech. Bios., 10, pp. 16-25. https://doi.org/10.15421/021903

11. Kamal, A.H.M., Kim, K.H., Shin, K.H., Choi, J.S., Baik, B.K., Tsujimoto, H. & Woo, S.H. (2010). Abiotic stress responsive proteins of wheat grain determined using proteomics technique. Aust. J. Crop. Sci., 4 (3), pp. 196-208.

12. Pascal, A.A., Liu, Z., Broess, K., van Oort, B., Wang, C., van Amerongen, H., Horton, P., Robert, B., Chang, W. & Ruban, A. (2005). Molecular basis of photoprotection and control of photosynthetic light-harvesting. Nature., 436, pp. 134-137. https://doi.org/10.1038/nature03795

13. Belgio, E., Kapitonova, E., Chmeliov, J., Duffy, C.D.P., Ungerer, P., Valkunas, L. & Ruban, A.V. (2014). Economic photoprotection in photosystem II that retains a complete light-harvesting system with slow energy traps. Nat. Commun., 5 (1), 4433. https://doi.org/10.1038/ncomms5433

14. Scholes, G.D., Fleming, G.R., Olaya-Castro, A. & van Grondelle, R. (2011). Lessons from nature about solar light harvesting. Nat. Chem., 3, pp. 763-774. https://doi.org/10.1038/nchem.1145

15. Croce, R. & van Amerongen, H. (2020). Light harvesting in oxygenic photosynthesis: structural biology meets spectroscopy. Science, 369. https://doi.org/10.1126/science.aay2058

16. Gao, S., Pinnola, A., Zhou, L., Zheng, Z., Li, Z., Bassi, R. & Wang, G. (2022). Light-harvesting complex stress-related proteins play crucial roles in the acclimation of Physcomitrella patens under fluctuating light conditions. Photosynth. Res., 151 (1), pp. 1-10. https://doi.org/10.1007/s11120-021-00874-8

17. Navakoudis, E., Stergiannakos, T. & Daskalakis, V. (2023). A perspective on the major light-harvesting complex dynamics under the effect of pH, salts, and the photoprotective PsbS protein. Photosynth. Res., 156 (1), pp. 163-177. https://doi.org/10.1007/s11120-022-00935-6

18. Ramachandran, P., Augstein, F., Mazumdar, S., Van Nguyen, T., Minina, E.A., Melnyk, C.W. & Carlsbecker, A. (2021). Abscisic acid signaling activates distinct VND transcription factors to promote xylem differentiation in Arabidopsis. Curr. Biol., 31 (14), pp. 3153-3161. https://doi.org/10.1016/j.cub.2021.04.057

19. Wang, W., Ma, Y., Zhou, Y., Li, L., Xu, D., Luo, S., Zhuang, W., Zhang, W. & Xie, Y. (2023). Physiological and proteomic analyses of Malus crabapples exposed to long-term warming and short-term heat shock treatments reveal the response characteristics of photosynthetic apparatus. Sci. Hortic., 308, 111565. https://doi.org/10.1016/j.scienta.2022.111565

20. Giovagnetti, V. & Ruban, A.V. (2018). The evolution of the photoprotective antenna proteins in oxygenic photosynthetic eukaryotes. Biochem. Soc. Trans., 46 (5), pp. 1263-1277. https://doi.org/10.1042/BST20170304

21. Ghatak, A., Chaturvedi, P. & Weckwerth, W. (2017). Cereal crop proteomics: systemic analysis of crop drought stress responses towards marker-assisted selection breeding. Front. Plant. Sci., 8 (757). https://doi.org/10.3389/fpls.2017.00757

22. Ngara, R. & Ndimba, B.K. (2014). Understanding the complex nature of salinity and drought-stress response in cereals using proteomics technologies. Proteomics, 14, pp. 611-621. https://doi.org/10.1002/pmic.201300351

23. Pain, R. (1987). Protein folding for pleasure and for profit. Trends Biochem. Sci., 12, pp. 309-312. https://doi.org/10.1016/0968-0004(87)90148-4

24. Laskey, R.A., Honda, B.M., Mills, A.P. & Finch, J.T. (1978). Nucleosomes are assembled by an acidic protein which binds histones and transfers them to DNA. Nature, 275, 4160-4200. https://doi.org/10.1038/275416a0

25. Ellis, J. (1987). Proteins as molecular chaperones. Nature, 328, pp. 378-379. https://doi.org/10.1038/328378a0

26. Ellis, R.J., van der Vies, S. & Alldrick, S. (1990). Molecular chaperones and chloroplast biogenesis. Curr. Res. Photosynth., 3, pp. 2577-2584. https://doi.org/10.1007/978-94-009-0511-5_582

27. Creighton, T.E. (1984). Proteins. Structures and molecular properties. New York: W.H. Freeman and Company.

28. Becker, J. & Craig, E.A. (1994). Heat-shock proteins as molecular chaperones. Eur. J. Biochem., 219, pp. 11-23. https://doi.org/10.1111/j.1432-1033.1994.tb19910.x

29. Smirnoff, N. (1998). Plant resistance to environmental stress. Curr. Opin. Biotechnol., 9, pp. 214-219. https://doi.org/10.1016/S0958-1669(98)80118-3

30. Yadav, R., Juneja, S. & Kumar, S. (2021). Cross priming with drought improves heat-tolerance in chickpea (Cicer arietinum L.) by stimulating small heat shock proteins and antioxidative defense. Environ. Sustain., 4, pp. 171-182. https://doi.org/10.1007/s42398-020-00156-4

31. Cui, F., Taier, G.X. & Wang, K.W. (2021). Genome-wideaAnalysis of the HSP20 gene family and expression patterns of HSP20 genes in response to abiotic stresses in cynodon transvaalensis. Front Genet., 12. https://doi.org/10.3389/fgene.2021.732812

32. Hu, C., Yang, J., Qi, Z., Wu, H., Wang, B., Zou, F., Mei, H., Liu, J., Wang, W. & Liu, Q. (2020). Heat shock proteins: Biological functions, pathological roles, and therapeutic opportunities. Med. Comm., 3 (3), 161. https://doi.org/10.1002/mco2.161

33. Bai, C., Guo, P., Zhao, Q., Lv, Z., Zhang, S., Gao, F., Gao, L., Wang, Y., Tian, Z., Wang, J., Yang, F. & Liu, C. (2015). Protomer roles in chloroplast chaperonin assembly and function. Mol. Plant, 8 (10), pp. 1478-1492. https://doi.org/10.1016/j.molp.2015.06.002

34. MЭller, A.L., Kehlet, S.N., Siebuhr, A.S., Gudmann, N.S & Karsdal, M.A. (2024). Collagen chaperones. Biochemistry of collagens, laminins and elastin (Third Edition), structure, function and biomarkers, pp. 351-369. https://doi.org/10.1016/B978-0-443-15617-5.00040-8

35. Wang, W., Vinocur, B., Shoseyov, O. & Altman, A. (2004). Role of plant heat-shock proteins and molecular chaperones in the abiotic stress response. Trends Plant Sci., 9, pp. 244-252. https://doi.org/10.1016/j.tplants.2004.03.006

36. Waters, E.R. (2013). The evolution, function, structure, and expression of the plant sHSPs. J. Exp. Bot., 64, pp. 391-403. https://doi.org/10.1093/jxb/ers355

37. Cashikar, A.G., Duennwald, M. & Lindquist, S.L. (2005). A chaperone pathway in protein disaggregation. Hsp26 alters the nature of protein aggregates to facilitate reactivation by Hsp104. J. Biol. Chem., 280 (25), pp. 23869-23875. https://doi.org/10.1074/jbc.M502854200

38. Haslbeck, M. & Vierling, E. (2015). A first line of stress defense: small heat shock proteins and their function in protein homeostasis. J. Mol. Biol., 427 (7), pp. 1537-1548. https://doi.org/10.1016/j.jmb.2015.02.002

39. Kriehuber, T., Rattei, T., Weinmaier, T., Bepperling, A., Haslbeck, M. & Buchner J. (2010). Independent evolution of the core domain and its flanking sequences in small heat shock proteins. FASEB J., 24, pp. 3633-3642. https://doi.org/10.1096/fj.10-156992

40. Scharf, K.D., Siddique, M. & Vierling, E. (2001). The expanding family of Arabidopsis thaliana small heat stress proteins and a new family of proteins containing alpha-crystallin domains (Acd proteins). Cell Stress Chaperones, 6, pp. 225-237. https://doi.org/10.1379/1466-1268(2001)006<0225:TEFOAT>2.0.CO;2

41. Basha, E., O'Neill, H. & Vierling, E. (2012). Small heat shock proteins and a-crystallins: dynamic proteins with flexible functions. Trends Biochem. Sci., 37, pp. 106-117. https://doi.org/10.1016/j.tibs.2011.11.005

42. Siddique, M., Gernhard, S., Von Koskull-Doring, P., Vierling, E. & Scharf, K.D. (2008). The plant sHSP superfamily: five new members in Arabidopsis thaliana with unexpected properties. Cell Stress Chaperones, 13, pp. 183-197. https://doi.org/10.1007/s12192-008-0032-6

43. Ma, C., Haslbeck, M., Babujee, L., Jahn, O. & Reumann, S. (2006). Identification and characterization of a stress-inducible and a constitutive small heat-shock protein targeted to the matrix of plant peroxisomes. Plant Physiol., 141, pp. 47-60. https://doi.org/10.1104/pp.105.073841

44. Horwich, A.L., Fenton, W.A., Chapman, E. & Farr, G.W. (2007). Two families of chaperonin: physiology and mechanism. Annu Rev. Cell Dev. Biol., 23, pp. 115-145. https://doi.org/10.1146/annurev.cellbio.23.090506.123555

45. Kuo, W.Y., Huang, C.H., Liu, A.C., Cheng, C.P., Li, S.H., Chang, W.C. & Jinn, T.L. (2013). CHAPERONIN 20 mediates iron superoxide dismutase (FeSOD) activity independent of its co-chaperonin role in Arabidopsis chloroplasts. New Phytol., 197 (1), pp. 99-110. https://doi.org/10.1111/j.1469-8137.2012.04369.x

46. Zhang, X.F., Jiang, T., Wu, Z., Du, S.Y., Yu, Y.T., Jiang, S.C. & Zhang, D.P. (2013). Cochaperonin CPN20 negatively regulates abscisic acid signaling in Arabidopsis. Plant Mol. Biol., 83, pp. 205-218. https://doi.org/10.1007/s11103-013-0082-8

47. Cui, F., Taier, G.X. & Wang, K.W. (2021). Genome-Wide Analysis of the HSP20 gene family and expression patterns of HSP20 genes in response to abiotic stresses in Cynodon transvaalensis. Front. Genet., 12. https://doi.org/10.3389/fgene.2021.732812

48. Ouyang, Y., Chen, J., Xie, W., Wang, L. & Zhang, Q. (2009). Comprehensive sequence and expression profile analysis of Hsp20 gene family in rice. Plant Mol. Biol., 70, pp. 341-357. https://doi.org/10.1007/s11103-009-9477-y

49. Lopes-Caitar, V.S., Carvalho, M.D., Darben, L.M., Kuwahara, M.K., Nepomuceno, A.L., Dias, W.P., Abdelnoor, R.V. & Marcelino-Guimar±es, F.C. (2013). Genome-wide analysis of the Hsp 20 gene family in soybean: comprehensive sequence, genomic organization and expression profile analysis under abiotic and biotic stresses. BMC Genomics, 14 (577). https://doi.org/10.1186/1471-2164-14-577

50. Muthusamy, S.K., Dalal, M., Chinnusamy, V. & Bansal, K. C. (2017). Genome-wide identification and analysis of biotic and abiotic stress regulation of small heat shock protein (HSP20) family genes in bread wheat. J. Plant Physiol., 211, pp. 100-113. https://doi.org/10.1016/j.jplph.2017.01.004

51. Zhao, P., Wang, D., Wang, R., Kong, N., Zhang, C., Yang, C., Wu, W., Ma, H. & Chen, Q. (2018). Genome-wide analysis of the potato Hsp20 gene family: identification, genomic organization and expression profiles in response to heat stress. BMC Genomics, 19. https://doi.org/10.1186/s12864-018-4443-1

52. Yao, F., Song, C., Wang, H., Song, S., Jiao, J., Wang, M., Zheng, X. & Bai, T. (2020). Genome-wide characterization of the HSP20 gene family identifies potential members involved in temperature stress response in apple. Front. Genet., 11, 609184. https://doi.org/10.3389/fgene.2020.609184

53. Hemmingsen, S.M., Woolford, C., van der Vies, S.M., Tilly, K., Dennis, D.T., Georgopoulos, C.P., Hendrix, R.W. & Ellis, R.J. (1988). Homologous plant and bacterial proteins chaperone oligomeric protein assembly. Nature, 333 (6171), pp. 330-334. https://doi.org/10.1038/333330a0

54. Martel, R., Cloney, L.P., Pelcher, L.E. & Hemmingsen, S.M. (1990). Destroys the composition of plastid chaperonin-60: alpha and beta polypeptide-encoding genes are highly divergent. Gene (Amst.), 94 (2), pp. 181-187. https://doi.org/10.1016/0378-1119(90)90385-5

55. Bertsch, U., Soll, J., Seetharam, R. & Viitanen, P.V. (1992). Identification, characterization, and DNA sequence of a functional «double» groES-like chaperonin from chloroplasts of higher plants. Proc. Natl. Acad. Sci. USA, 89, pp. 8696-8700. https://doi.org/10.1073/pnas.89.18.8696

56. Baneyx, F., Bertsch, U., Kalbach, C.E., van der Vies, S.M., Soll, J. & Gatenby, A.A. (1995). Spinach chloroplast cpn21 co-chaperonin possesses two functional domains fused together in a toroidal structure and exhibits nucleotide-dependent binding to plastid chaperonin 60. J. Biol. Chem., 270 (18), pp. 10695-10702. https://doi.org/10.1074/jbc.270.18.10695

57. Andersson, J., Wentworth, M., Walters, R.G., Howard, C.A., Ruban, A.V. & Argos, P.J. (1990). An investigation of oligopeptides linking domains in protein tertiary structures and possible candidates for general gene fusion. Mol. Biol., 211, pp. 943-958. https://doi.org/10.1016/0022-2836(90)90085-Z

58. McLachlan, A.D. (1987). Gene Duplication and the Origin of Repetitive Protein Structures. Cold Spring Harbor Symp. Quant. Biol., 52, pp. 411-420. https://doi.org/10.1101/SQB.1987.052.01.048

59. Liang, H., Sandberg, W.S. & Terwilliger, T.C. (1993). Genetic fusion of subunits of a dimeric protein significantly increases its stability and folding speed. Proc. Natl. Acad. Sci. USA, 90, pp. 7010-7014. https://doi.org/10.1073/pnas.90.15.7010

60. Tang, J., James, M.N.G., Hsu, I.N., Jenkins, J.A. & Blundell, T.L. (1978). Structural evidence for gene duplication in the evolution of the acid proteases. Nature, 27, pp. 618-621. https://doi.org/10.1038/271618a0

61. Jaenicke, R. (1991). Protein stability and molecular adaptation to extreme conditons. Biochemistry, 202 (3), pp. 3147-3161. https://doi.org/10.1111/j.1432-1033.1991.tb16426.x

62. Dikaios, I., Schiphorst, C., Dall'Osto, L., Alboresi, A., Bassi, R. & Pinnola, A. (2019). Functional analysis of LHCSR1, a protein catalyzing NPQ in mosses, by heterologous expression in Arabidopsis thaliana Photosynth Res., 142 (3), pp. 249-264. https://doi.org/10.1007/s11120-019-00656-3

63. Pinnola, A. (2019). The rise and fall of Light-Harvesting Complex Stress-Related proteins as photoprotection agents during evolution. J. Exp. Bot., 70 (20), pp. 5527-5535. https://doi.org/10.1093/jxb/erz317

64. Horigome, D., Satoh, H., Itoh, N., Mitsunaga, K., Oonishi, I., Nakagawa, A. & Uchida, A. (2007). Structural mechanism and photoprotective function of water-soluble chlorophyll-binding protein. J. Biol. Chem., 282 (9), pp. 6525-6531. https://doi.org/10.1074/jbc.M609458200

65. Schmidt, K., Fufezan, C., Krieger-Liszkay, A., Satoh, H. & Paulsen, H. (2003). Recombinant water-soluble chlorophyll protein from Brassica oleracea var. Botrys binds various chlorophyll derivatives. Biochemistry, 42, pp. 7427-7433. https://doi.org/10.1021/bi034207r

66. Nishio, N. & Satoh, H. (1997). A water-soluble chlorophyll protein in cauliflower may be identical to BnD22, a drought-induced, 22-kilodalton protein in rapeseed. Plant Physiol., 115 (2). pp. 841-846. https://doi.org/10.1104/pp.115.2.841

67. Takamiya, K.I., Tsuchiya, T. & Ohta, H. (2000). Degradation pathway(s) of chlorophyll: what has gene cloning revealed? Trends Plant Sci., 5 (10), pp. 426-431. https://doi.org/10.1016/S1360-1385(00)01735-0

68. Matile, P., Schellenberg, M. & Vicentini, F. (1997). Localization of chlorophyllase in the chloroplast envelope. Planta, 1, pp. 96-99. https://doi.org/10.1007/BF01258685

69. Satoh, H., Uchida, A., Nakayama, K. & Okada, M. (2001). Water soluble chlorophyll protein in Brassicaceae plants is a stress-induced chlorophyll-binding protein. Plant Cell Physiol. 42, pp. 906-911. https://doi.org/10.1093/pcp/pce117

70. Liu, Z., Yan, H., Wang, K., Kuang, T., Zhang, J., Gui, L., An, X. & Chang, W. (2004). Crystal structure of spinach major light-harvesting complex at 2.72 Ѓ resolution. Nature, 428, pp. 287-292. https://doi.org/10.1038/nature02373

71. Jordan, P., Fromme, P., Witt, H.T., Klukas, O., Saenger, W. & Krauss, N. (2001). Tree-dimensional structure of cyanobacterial photosystem I at 2.5 Ѓ resolution. Nature, 411 (6840), pp. 909-917. https://doi.org/10.1038/35082000

72. Balaban, T.S., Fromme, P., Holzwarth, A.R., Krauss, N. & Prokhorenko, V.I. (2002). Relevance of the diasterotopic ligation of magnesium atoms of chlorophylls in photosystem I. Biochim. Biophys. Acta, 1556, pp. 197-207. https://doi.org/10.1016/S0005-2728(02)00363-8

73. Oba, T. & Tamiaki, H. (2002). Which side of the p-macrocycle plane of (bacterio)chlorophylls is favored for binding of the fifth ligand? Photosynth. Res., 74, pp. 1-10. https://doi.org/10.1023/A:1020816128794

74. Drzewiecka-Matuszek, A., Skalna, A., Karocki, A., Stochel, G. & Fiedor, L. (2005). Effects of heavy central metal on the ground and excited states of chlorophyll. J. Biol. Inorg. Chem., 10, pp. 453-462. https://doi.org/10.1007/s00775-005-0652-6

75. Satoh, H., Nakayama, K. & Okada, M. (1998). Molecular cloning and functional expression of a water-soluble chlorophyll protein, a putative carrier of chlorophyll molecules in cauliflower. Biol. Chem., 273 (46), pp. 30568-30575. https://doi.org/10.1074/jbc.273.46.30568

76. Zhong, D. & Zewail, A.H. (2001). Femtosecond dynamics of flavoproteins: Charge separation and recombination in riboflavine (vitamin B2)-binding protein and in glucose oxidase enzyme. Proc. Natl. Acad. Sci. USA, 98, pp. 11867-11872. https://doi.org/10.1073/pnas.211440398

77. Dashdorj, N., Zhang, H., Kim, H., Yan, J., Cramer, W.A. & Savikhin, S. (2005). A single chlorophyll a molecule in the cytochrome b 6 f complex: unusual optical properties protect the complex from singlet oxygen. Biophys. J., 88, pp. 4178-4187. https://doi.org/10.1529/biophysj.104.058693

78. Peterman, E.J.G., Wenk, S.O., Pullerits, T., Pelsson, L.O., Grondelle, R.V., Dekker, J.P., RШgner, M. & Amerongen, H.V. (1998). Fluorescence and absorption spectroscopes of the shelly fluorescent chlorophyll and cytochrome bshf of Synchocystis P6803. Biophys. J., 75, pp. 389-398. https://doi.org/10.1016/S0006-3495(98)77523-X

79. Beddard, G.S. & Porter, G. (1976). The sub-nanosecond regime in photosynthesis. Nature, 260, pp. 366-367. https://doi.org/10.1038/260366a0

80. Hughes, J.L., Razeghifard, R., Logue, M., Oakley, A., Wydrzynski, T. & Krausz, E. (2006). Homologous plant and bacterial proteins Chaperone oligomeric assembly of proteins. J. Am. Chem. Soc., 128 (11), pp. 3649-3658. https://doi.org/10.1021/ja056576b

81. Dall'Osto, L., Cazzaniga, S., Bressan, M., Pale№ek, D., ¦idek, K., Niyogi, K.K., Fleming, G.R., Zigmantas, D. & Bassi, R. (2017). Two mechanisms for dissipation of excess light in monomeric and trimeric light-harvesting complexes. Nat. Plants, 3 (5), 17033. https://doi:10.1038/nplants.2017.33 https://doi.org/10.1038/nplants.2017.33

82. Sacharz, J., Giovagnetti, V., Ungerer, P., Mastroianni, G. & Ruban, A.V. (2017). The xanthophyll cycle affects reversible interactions between PsbS and light-harvesting complex II to control non-photochemical quenching. Nat. Plants, 3, 16225. https://doi.org/10.1038/nplants.2016.225

83. Duffy, C.D.P., Valkunas, L. & Ruban, A.V. (2013). Light-harvesting processes in the dynamic photosynthetic antenna. Phys. Chem. Chem. Phys., 43, pp. 18752-18770. https://doi.org/10.1039/c3cp51878g

84. Wilson, S. & Ruban, A.V. (2020). Rethinking the influence of chloroplast movements on non-photochemical quenching and photoprotection. Plant Physiol., 183 (3), pp. 1213-1223. https://doi.org/10.1104/pp.20.00549

85. Li, Y.-F., Zhou, W., Blankenship, R.E. & Allen, J.P. (1997). Crystal structure of the bacteriochlorophyll a protein from Chlorobium tepidum. J. Mol. Biol., 271, pp. 456-471. https://doi.org/10.1006/jmbi.1997.1189

86. Johnson, M.P. & Ruban, A.V. (2011). Restoration of rapidly reversible photoprotective energy dissipation in the absence of PsbS protein by enhanced DpH. J. Biol. Chem., 286 (22), pp. 19973-19981. https://doi.org/10.1074/jbc.M111.237255

87. Johnson, M.P., Goral, T.K., Duffy, C.D.P., Brain, A.P.R, Mullineaux, C.W. & Ruban, A.V. (2011). Photoprotective energy dissipation involves the reorganization of photosystem II light-harvesting complexes in the grana membranes of spinach chloroplasts. Plant Cell, 23 (4), pp. 1468-1479. https://doi.org/10.1105/tpc.110.081646

88. Goral, T.K., Johnson, M.P. Duffy, S.P., Brain, A.P.R., Ruban, A.V. & Mullineaux, C.W. (2012). Light antenna composition controls the macrostructure and dynamics of thylakoid membranes in Arabidopsis. Plant J., 69 (2), pp. 289-301. https://doi.org/10.1111/j.1365-313X.2011.04790.x

89. Wentworth, M., Ruban, A.V. & Horton, P. (2003). Thermodynamic investigation into the mechanism of the chlorophyll fluorescence quenching in isolated photosystem II light-harvesting complexes. J. Biol. Chem., 278, pp. 21845-21850. https://doi.org/10.1074/jbc.M302586200

90. Ruban, A.V., Johnson, M.P. & Duffy, C.D.P. (2012). The photoprotective molecular switch in the photosystem II antenna. Biochim. Biophys. Acta, 1817, pp. 167-181. https://doi.org/10.1016/j.bbabio.2011.04.007

91. Ruban, A.V. (2016). Non-photochemical quenching of chlorophyll fluorescence quenching: the mechanism and effective protection of plants from fotodamage. Plant Physiol., 170 (4), pp. 1903-1916. https://doi.org/10.1104/pp.15.01935

92. Ruban, A.V. (2018). Light harvesting control in plants. FEBS Lett, 592, pp. 3030-3039. https://doi.org/10.1002/1873-3468.13111

93. Daskalakis, V. & Papadatos, S. (2017). The Photosystem II Subunit S under Stress. Biophysical J., 113 (11), pp. 2364-2372. https://doi.org/10.1016/j.bpj.2017.09.034

94. Steen, C.J., Morris, J.M., Short, A.H., Niyogi, K.K. & Fleming, G.R. (2020). Complex roles of PsbS and xanthophylls in the regulation of nonphotochemical quenching in arabidopsis thaliana under fluctuating light. J. Phys. Chem. B, 124 (46), pp. 10311-10325. https://doi.org/10.1021/acs.jpcb.0c06265

95. Takahashi, S., Yanai, H., Nakamaru, Y., Uchida, A., Nakayama, K. & Satoh, H. (2012). Molecular cloning, characterization and analysis of the intracellular localization of a water soluble chlorophyll binding protein from brussels sprouts (Brassica oleracea var. gemmifera). Plant Cell Physiol., 53, pp. 879-891. https://doi.org/10.1093/pcp/pcs031

96. Takahashi, S., Yanai, H., Oka-Takayama, Y., Zanma-Sohtome, A., Fujiyama, K., Uchida, A., Nakayama, K. & Satoh, H. (2013). Molecular cloning, characterization and analysis of the intracellular localization of a water soluble chlorophyll- binding protein (WSCP) from Virginia pepperweed (Lepidium virginicum), a unique WSCP that preferentially binds chlorophyll b in vitro. Planta, 238, pp. 1065-1080. https://doi.org/10.1007/s00425-013-1952-7

97. Allen, J.F. & Forsberg, J. (2001).Molecular recognition in thylakoid structure and function. Trends Plant Sci., 6, pp. 317-326. https://doi.org/10.1016/S1360-1385(01)02010-6

98. Zarter, C.R., Adams, W.W., Ebbert, V., Cuthbertson, D.J., Adamska, I. & Demmig-Adams, B. (2006). Winter down-regulation of intrinsic photosynthetic capacity coupled with up-regulation of Elip-like proteins and persistent energy dissipation in a subalpine forest New Phytol., 172, pp. 272-282. https://doi.org/10.1111/j.1469-8137.2006.01815.x

99. Bouargalne, Y., RaguѕnAs-Nicol, C., Guilbaud, F., Cheron, A., Clouet, V., Deleu, C. & Le Cahѕrec, F. (2022). New insights into chlorophyll-WSCP (water-soluble chlorophyll proteins) interactions: The case study of BnD22 (Brassica napus drought-induced 22 kDa) Plant Physiol. Biochem., 181, pp. 71-80. https://doi.org/10.1016/j.plaphy.2022.03.023

100. Prabahar, V., Afriat-Jurnou, L., Paluy, I., Peleg, Y. & Noy, D. (2020). New homologues of Brassicaceae water-soluble chlorophyll proteins shed light on chlorophyll binding, spectral tuning, and molecular evolution. FEBS J., 287, pp. 991-1004. https://doi.org/10.1111/febs.15068

101. Downing, W.L., Mauxion, F., Fauvarque, M-O, Reviron, M-P, De Vienne, D., Vartanian, N. & Giraudat, J. (1992). A Brassica napus transcript encoding a protein related to the Kunitz protease inhibitor family accumulates upon water stress in leaves, not in seeds. Plant J., 2, pp. 685-693. https://doi.org/10.1046/j.1365-313X.1992.t01-11-00999.x

102. Desclos, M., Dubousset, L., Etienne, P., Le Cahѕrec, F., Satoh, H., Bonnefoy, J., Ourry, A. & Avice, J-C. (2008). A proteomic profiling approach to reveal a novel role of Brassica napus Drought 22 kD/ water-soluble chlorophyll binding protein in young leaves during nitrogen remobilization induced by stressful conditions. Plant Physiol., 147, pp. 1830-1844. https://doi.org/10.1104/pp.108.116905

103. Boex-Fontvieille, E., Rustgi, S., Reinbothe, S. & Reinbothe, C. (2015). A Kunitz-type protease inhibitor regulates programmed cell death during fower development in Arabidopsis thaliana. J. Exp. Bot., 66, pp. 6119-6135. https://doi.org/10.1093/jxb/erv327

104. Halls, C.E., Rogers, S.W., Oufattole, M. Ostergard, O., Svensson, B. & Rogers, J.C. (2006). A Kunitz-type cysteine protease inhibitor from cauliflower and Arabidopsis. Plant Sci., 170 (6), pp. 1102-1110. https://doi.org/10.1016/j.plantsci.2006.01.018

105. Boex-Fontvieille, E., Rustgi, S., von Wettstein, D., Reinbothe, S. & Reinbothe, C. (2015). Water-soluble chlorophyll protein is involved in herbivore resistance activation during greening of Arabidopsis thaliana. Proc. Natl. Acad. Sci. USA, 112 (23), pp. 7303-7308. https://doi.org/10.1073/pnas.1507714112

106. Rustgi, S., Boex-Fontvieille, E., Reinbothe, C., von Wettstein, D. & Reinbothe, S. (2017). Serpin1 and WSCP differentially regulate the activity of the cysteine protease RD21 during plantdevelopment in Arabidopsis thaliana. Proc. Natl. Acad. Sci. USA, 114, pp. 2212-2217. https://doi.org/10.1073/pnas.1621496114

107. Agostini, A., Palm, D.M., Schmitt, F.J., Albertini, M., Di, V.M., Paulsen, H. & Carbonera, D. (2017). An unusual role for the phytyl chains in the photoprotection of the chlorophylls bound to water-soluble chlorophyll-binding proteins. Sci. Rep., 7, pp. 1-13. https://doi.org/10.1038/s41598-017-07874-6

108. Palm, D.M., Agostini, A., Pohland, A.C., Werwie, M., Jaenicke, E. & Paulsen, H. (2019). Stability of water woluble chlorophyll protein (WSCP) depends on phytyl conformation. ACS Omega, 4, pp. 7971-7979. https://doi.org/10.1021/acsomega.9b00054

109. Lemke, O. & GШtze, J.P. (2019). On the stability of the water-soluble chlorophyll-binding protein (WSCP) studied by molecular dynamics simulations. J. Phys. Chem. B., 123 (50), pp. 10594-10604. https://doi.org/10.1021/acs.jpcb.9b07915

110. Palm, D.M., Agostini, A., Tenzer, S., Gloeckle, B.M., Werwie, M., Carbonera, D. & Paulsen, H. (2017). Water-soluble chlorophyll protein (WSCP) stably binds two or four chlorophylls. Biochem., 56, pp. 1726-1736. https://doi.org/10.1021/acs.biochem.7b00075