Fiziol. rast. genet. 2024, vol. 56, no. 4, 311-332, doi: https://doi.org/10.15407/frg2024.04.311

Dynamics of the content of carbohydrates and mineral nutrition elements in organs of eggplant plants under the influence of retardants

Rogach V.V.1, Kuryata V.H.1, Rogach T.I.1, Stasіk O.O.2, Kiriziy D.A.2, Sytnyk C.K.2

  1. Mykhailo Kotsiubynskyi Vinnytsia State Pedagogical University  32 Ostrozhsky St., Vinnytsia, 21100, Ukraine
  2. Institute of Plant Physiology and Genetics, National Academy of Sciences of Ukraine  31/17 Vasylkivska Str., Kyiv, 03022, Ukraine

The peculiarities of the growth processes, the formation of leaf apparatus and redistribution of various forms of carbohydrates, nitrogen, phosphorus and potassium in the vegetative organs and fruits of the Almaz variety of eggplant were studied. It was found that gibberellin inhibitors with different mechanisms of action — tebuconazole (EW-250) and chlormequat chloride (ССС-750) (blockers of gibberellin synthesis) and esphon (2-chloroethylphosphonic acid, 2-CEPA) (inhibitor of the physiological action of the hormone) — reduced the growth parameters of plants. The most significant inhibitory effect (27 %) was observed with the use of 2-CEPA. Gibberellin synthesis inhibitors — EW-250 and ССС-750 increased the number of leaves on the plant, their area and fresh weight of leaves, while 2-CEPA decreased these indices. Under the action of EW-250 and СС-750 the chlorophyll content in eggplant leaves increased significantly, while the use of 2-CEPA resulted only in a tendency to increase. All gibberellin inhibitors increased the accumulation of carbohydrates in roots at the beginning and in the middle of the reproductive period and intensified their efflux at the end. In contrast to 2-CEPA, EW-250 and ССС-750 increased the accumulation of carbohydrates in fruits and the efflux of various forms of nitrogen from roots and stems, as well as their accumulation in leaves. Inhibitors of gibberellin synthesis — EW-250 and СС-750 increased the remobilization of phosphorus and especially potassium from the roots to the shoots of plants. Under the action of all three gibberellin inhibitors, potassium accumulated more in stems, and phosphorus accumulated more in leaves. The investigated retardants increased the CO2 assimilation rate. Under the action of EW-250 and СС-750, the maximum quantum efficiency of PSII, the effective quantum efficiency of PSII, and the electron transport rate significantly increased (or such a trend was noted), while treatment of plants with 2-CEPA decreased the parameters of photochemical activity of PSII. Retardants EW-250 and ССС-750 enhanced the productivity of eggplant plants due to the increase in the number of fruits per plant and the average weight of fruits, which led to an increase in productivity by 43 and 40 %, respectively. Under the action of 2-CEPA, the yield of the crop had a tendency to decrease. The obtained data indicate that gibberellin synthesis inhibitors EW-250 and ССС-750 can be effectively used to enhance the productivity of eggplant plants.

Keywords: Solanum melongena L., gibberellin inhibitors, leaf apparatus, source-sink relations, carbohydrates, nitrogen, phosphorus, potassium, photosynthesis, productivity

Fiziol. rast. genet.
2024, vol. 56, no. 4, 311-332

Full text and supplemented materials

Free full text: PDF  

References

1.   Mohoroviє, Р., Vaughan-Hirsch, J., Ceusters, J. & Vande Poel, B. (2023). The role of ethylene in photosynthate partitioning and source-sink modulation in crops. In: Khan, N.A., Ferrante, А. & Munne-Bosch, S. (Eds.). The Plant Hormone Ethylene (pр. 23-39), New York: Academic Press. https://doi.org/10.1016/B978-0-323-85846-5.00010-2

 2. Singh, S.K., Nath, V., Marboh, E.S. & Sharma, S. (2017). Source-sink relationship in litchi verses mango: a concept. Int. J. Curr. Microbiol. Appl. Sci., 6 (3), рр. 500-509. https://doi.org/10.20546/ijcmas.2017.603.058500

 3. Kiriziy, D.A. (2004). Photosynthesis and plant growth in the aspect of source-sink relationships. Kyiv: Logos [in Russian].

 4. Kim, S.-K., Han, C.-M., Shin, J.-H. & Kwon, T.-Y. (2018). Effects of paclobutrazol and prohexadione-ca on seed yield, and content of oils and gibberellin in flax grown in a greenhouse. Kor. J. Crop Sci., 63 (3), рр. 265-271. https://doi.org/10.7740/ KJCS.2018.63.3.265

 5. Mohanta, H.C., Hossain, M.M., Islam, M.S., Salam, M.A. & Saha, S.R. (2015). Effect of plant growth regulators on seed yield of carrot. Ann. Bangl. Agricult., 19, рр. 23-31.

 6. Kuriata, V.H. (2009). Retardants as modifiers of the hormonal status of plants. In: Fiziolohiia roslyn: problemy ta perspektyvy rozvytku. V.1. (pp. 565-587). Kyiv: Logos [in Ukrainian].

 7. Rogach, V.V., Kuryata, V.G., Kosakivska, I.V., Voitenko, L.V., Shcherbatyuk, M.M. & Rogach, T.I. (2022). Morphogenesis, pigment content, phytohormones and yield of tomatoes under the action of gibberellin and tebuconazole. Bio. Diver., 30 (2), pp. 150-156. https://doi.org/10.15421/012215

 8. Rogach, V.V., Kuryata, V.G., Kosakivska, I.V., Voitenko, L.V., Shcherbatiuk, M.M. & Rogach, T.I. (2021). Morphogenesis, pig-ment content, phytohormones and productivity of sweet pepper under the action of gibberellin and tebuconazole. Regul. Mech. Bio., 12 (2), pp. 294-301. https://doi.org/10.15421/022139

 9. Rogach, V.V., Voytenko, L.V., Shcherbatiuk, M.M., Kosakivska, I.V. & Rogach, T.I. (2020). Morphogenesis, pigment content, phytohormones and productivity of eggplants under the action of gibberellin and tebuconazole. Reg. Mech. Bio., 11 (1), pp. 116-122. https://doi.org/10.15421/022017

10. Wang, Y., Gu, W., Xie, T., Li, L., Sun, Y., Zhang, H., Li, J. & Wei, S. (2016). Mixed compound of DCPTA and CCC increases maize yield by improving plant morphology and up-regulating photosynthetic capacity and antioxidants. PLoS One, 11, No. 2, e0149404. https://doi.org/10.1371/journal.pone.0149404

11. Hua, S., Zhang, Y., Yu, H., Lin, B., Ding, H., Zhang, D., Renand, Y. & Fang, Z. (2014). Paclobutrazol application effects on plant height seed yield and carbohydrate metabolism in canola. Int. J. Agricult. Biol., 16 (3), рр. 471-479.

12. Ouzounidou, G., Ilias, I., Giannakoula, A. & Papadopoulou, P. (2010). Comparative study on the effects of various plant growth regulators on growth, quality and physiology of Capsicum annuum L. Pak. J. Bot., 42, No. 2, рр. 805-814.

13. Wang, H.S. & Sun, H.M. (2012). The research on plant growth retardants improving drought resistance of Solanum integrifolium Poir. Chin. Agricult. Sci. Bulletin, 28, No. 7, рр. 126-132. https://doi.org/10.11924/j.issn.1000-6850.2011-3423

14. Miroshnichenko, I.M., Makoveychuk, T.I., Mykhalska, L.М. & Sсhwartau, V.V. (2017). Changes in the elemental composition of winter wheat plants caused by the action of Megafol and retardants. Reg. Mech. Bio., 8, No. 3, рр. 403-409 [in Ukrainian]. https://doi.org/10.15421/021762

15. Matysiak, K. & Kaczmarek, S. (2013). Effect of chlorocholine chloride and triazoles — tebuconazole and flusilazole on winter oilseed rape (Brassica napus var. oleifera L.) in response to the application term and sowing density. J. Plant Protect. Res., 53 (1), рр. 79-88. https://doi.org/10.2478/jppr-2013-0012

16. Tidemann, B.D., O’Donovan, J.T., Izydorczyk, M., Turkington, T.K., Oatway, L., Beres, B., Mohr, R., May, W.E., Harker, K.N., Johnson, E.N. & de Gooijer, H. (2020). Effects of plant growth regulator applications on malting barley in western Canada. Can. J. Plant Sci., 100 (6), рр. 653-665. https://doi.org/10.1139/cjps-2019-0200

17. Albuquerque, T.C.S., Mouco, M.A.D.C. & Neto, A.А.A. (2008). Plant growth regulators on macronutrients in It«lia grapes. Bragantia, 67 (3), рр. 553-561. https://doi.org/10.1590/S0006-87052008000300001

18. Mazher, A.A.M., Abdel-Aziz, N.G., El-Maadawy, E.I., Nasr, A.A. & El-Sayed, S.M. (2014). Effect of gibberellic acid and paclobutrazol on growth and chemical composition of Schefflera arboricola plants. Middle East J. Agricult. Res., 3 (4), рр. 782-792.

19. Narvariya, S.S. & Singh, C.P. (2018). Cultar (P333) a boon for mango production — a review. Int. J. Curr. Microbiol. Appl. Sci., 7 (2), рр. 1552-1562. https://doi.org/ 10.20546/ijcmas.2018.702.187

20. Kazakov, E.A. (2000). Methodological bases of the experiment on plant physiology. Kyiv: Phytosociocenter [in Ukrainian].

21. Wellburn, A.R. (1994). The spectral determination of chlorophylls a and b, as well as total carotenoids, using various solvents with spectrophotometers of different resolution. Plant Physiol., 144, pp. 307-313. https://doi.org/10.1016/S0176-1617(11)81192-2

22. Pochinok, Kh.N. (1976). Metody biokhimicheskogo analiza rasteniy. Kyiv: Nauk. dumka [in Russian].

23. Busch, F.A., Ainsworth, E.A., Amtmann, A., Cavanagh, A.P., Driever, S.M., Ferguson, J.N., Kromdijk, J., Lawson, T., Leakey, A.D.B, Matthews, J.S.A., Meacham-Hensold, K., Vath, R.L., Vialet-Chabrand, S., Walker, B.J. & Papanatsiou, M. (2024). A guide to photosynthetic gas exchange measurements: Fundamental principles, best practice and potential pitfalls. Plant, Cell & Environm., 47, pp. 1-21. https://doi.org/10.1111/ pce.14815

24. Brestic, M. & Zivcak, M. (2013). PSII fluorescence techniques for measurement of drought and high temperature stress signal in crop plants: protocols and applications. In: Rout, G., Das, A. (Eds.). Mol. Stress Physiol. Plants. Springer, India, pp. 87-131. https://doi.org/10.1007/978-81-322-0807-5_4

25. Mekhed, O.B. & Tkachenko, O.V. (2020). Matematychni metody v biolohii: metodychni rekomendatsii dlia studentiv pryrodnychykh spetsialnostei. Chernihiv: NUChK [in Ukrainian].

26. Gomathinayagam, M., Jaleel, C.A., Lakshmanan, G.М.A. & Panneerselvam, R. (2007). Changes in carbohydrate metabolism by triazole growth regulators in cassava (Manihot esculenta Crantz); effects on tuber production and quality. Comptes Rendus Biol., 330 (9), рр. 644-655. https://doi.org/10.1016/j.crvi.2007.06.002

27. Zheng, R., Wu, Y. & Xia, Y. (2012). Chlorocholine chloride and paclobutrazol treatments promote carbohydrate accumulation in bulbs of Lilium Oriental hybrids «Sorbonne». J. Zhejiang Un-ty. Sci. B (Biomed. & Biotechnol.), 13(2), pp. 136-144. https://doi.org/10.1631/jzus.B1000425

28. Zheng, M., Deng, Y., Zhou, Y., Liu, R., Liu, Y., Wang, H., Zhu, W., Zhou, Z. & Diao, J. (2023). Multifaceted effects of difenoconazole in tomato fruit ripening: Physiology, flavour and nutritional quality. Plant Physiol. Biochemistry, 4, рр. 223-235. https://doi.org/10.1016/j.plaphy.2022.11.015

29. Setia, R.C., Kaur, P., Setia, N. & Anuradha. (1996). Influence of paclobutrazol on growth and development of fruit in Brassica juncea (L.) Czern and Coss. Plant Growth Reg., 20 (3), рр. 307-316. https://doi.org/10.1007/BF00043323

30. Bhutia, S.O., Choudhury, A.G. & Hasan, M.A. (2017). Paclobutrazol in improving productivity and quality of litchi. Int. J. Curr. Microbiol. Appl. Sci., 6, No. 8, pp. 1622-1629. https://doi.org/10.20546/ijcmas.2017.608.195

31. Singh, B., Singh, S. & Sandhu, S. (2012). Effect of growth retardants on vegetative growth, flowering and fruiting of litchi cv. Calcuttia. HortFlora Res. Spectrum, 1 (1), рр. 29-33.

32. Rogach, V.V., Kravets, O.О., Buinaya, O.I. & Kuryata, V.G. (2018). Dynamics of accumulation and redistribution of different forms of carbohydrates and nitrogen in organs of tomato plants under the action of retardants. Reg. Mech. Bio., 9, No. 2, pp. 293-299 [in Ukrainian]. https://doi.org/10.15421/021843

33. Kumari, S. (2017). Effect of Kinetin (6-FAP) and Cycocel (CCC) on growth, metabolism and cellular organelles in Pearl Millet (Pennisetum glaucum) under water stress. Int. J. Curr. Microbiol. Appl. Sci., 6, No. 8, рр. 2711-2719. https://doi.org/10.20546/ijcmas.2017.608.325

34. Rogach, V.V., Stasik, О.О., Kiriziy, D.A., Sytnyk, S.K., Kuryata, V.G. & Rogach, T.I. (2023). The effects of growth regulators on the photosynthetic apparatus of the sweet pepper (Capsicum annuum L.) in relation to the productivity. Plant Physiol. Genet., 55, No. 1, рр. 25-45. https://doi.org/10.15407/frg2023.01.025 [in Ukrainian]

35. Rohach, V.V., Kuryata, V.G., Kiriziy, D.A., Sytnyk, S.K., Grabyk, I.H., Kaitanyuk, O.V., Tarasyuk, M.V. & Rohach, T.I. (2023). Effect of antigibberellins on morphogenesis, photosynthetic apparatus, productivity and their residual content in tomato fruits. Bio. Diver., 31 (2), рр. 191-201. https://doi.org/10.15421/012320

36. Stasik, O.O. (2014). Photorespiration: Metabolism and the Physiological Role. In Modern Photosynthetic Problems. V. 2 (pp. 505-535), Moskow-Izhevsk: Institute for Computer Res. [in Russian].

37. Kramer, D.M., Johnson, G., Kiirats, O. & Edwards, G.E. (2004). New fluorescence parameters for the determination of QA redox state and excitation energy fluxes. Photosynthes. Res., 79 (2), pp. 209-218. https://doi.org/10.1023/b:pres.0000015391. 99477.0d

38. Yooyongwech, S., Samphumphuang, T., Tisarum, R., Theerawitaya, C. & Cha-Um, S. (2017). Water-deficit tolerance in sweet potato (Ipomoea batatas (L.) Lam.) by foliar application of paclobutrazol: role of soluble sugar and free proline. Front. Plant Sci., 8, 1400. https://doi.org/10.3389/fpls.2017.01400