Фізіологія рослин і генетика 2016, том 48, № 1, 3-19, doi: https://doi.org/10.15407/frg2016.01.003

Новітні аспекти дослідження цитокінінів: еволюція та взаємодія з іншими фітогормонами

Веденичова Н.П., Косаківська І.В.

  • Інститут ботаніки ім. М.Г. Холодного Національної академії наук України 01601 Київ, вул. Терещенківська, 2

В огляді проаналізовано досягнення сучасної фізіології рослин у галузі вивчення однієї з найважливіших груп класичних гормонів — цитокінінів. Увагу закцентовано на двох новітніх напрямах розвитку досліджень: з’ясуванні поход­ження й еволюції цих гормонів та їх взаємодії з іншими компонентами гормональної системи (ауксинами, гіберелінами, етиленом, абсцизовою та жасмоновою кислотами, брасиностероїдами, стриголактонами). Показано, що, незважаючи на значне поширення цитокінінів у біологічному світі, сигнальних функцій ці гормони набули лише у покритонасінних. Тільки у вищих рослин сформувався тип регуляторики, який об’єднав усі гормональні речовини в єдину сигнальну систему. Наведено відомості щодо існування дуже тісних взаємозв’язків між усіма компонентами гормонального комплексу рослин. Підкреслено провідну роль балансу фітогормонів у регуляції фізіологічних процесів рослин.

Ключові слова: цитокініни, еволюція, взаємодія фітогормонів, регуляція, ауксини, гібереліни, абсцизова кислота, етилен

Фізіологія рослин і генетика
2016, том 48, № 1, 3-19

Повний текст та додаткові матеріали

У вільному доступі: PDF  

Цитована література

1. Vysotskaya, L.B., Cherkozyanova, A.V., Veselov, S.Y. & Kudoyarova, G.R. (2007). Role of auxins and cytokinins in the development of lateral roots in wheat plants with several roots removed. Russ. J. Plant Physiol., 54, No. 3, pp. 402-406. [In Russian]. https://doi.org/10.1134/S1021443707030168

2. Kudoyarova, G.R., Veselov, S.Y., Usmanov, I.Yu. (1999). Hormonal regulation of the shoot/root biomass ratio under stress. J. General Biology, 60, No. 6, pp. 633-641 [In Russian].

3. Kupriyanova, E.V., Shevchenko, G.V., Karavaiko, N.N., Selivankina, S.Y., Zubkova, N.K., Los, D.A., Kusnetsov, V.V. & Kulaeva, O.N. (2014). Possible involvement of cyanobacteria in the formation of plant hormonal system. Russ. J. Plant Physiol., 61, No. 2, pp. 154-159. [In Russian]. https://doi.org/10.1134/S1021443714020149

4. Muromtsev, G.S., Chkanikov, D.I., Kulaeva, O.N. & Gamburg, K.Z. (1987). Basics of chemical regulation of plant growth and productivity. Moscow: Agropromizdat [In Russian].

5. Romanov, G.A. How do cytokinins affect the cell? (2009). Russ. J. Plant Physiol., 56, No. 2, pp. 268-290. [In Russian]. https://doi.org/10.1134/S1021443709020174

6. Teplova, I.R., Kudoyarova, G.R. & Nikitina, V.S. (1990). Changes in the hormonal balance of etiolated corn seedlings under the action of exogenous hormones. In: ELISA analysis of plant growth regulators. Application in plant physiology and ecology. Ufa: BSC UD AS USSR [In Russian].

7. Aloni, R., Aloni, E., Langhans, M. & Ullrich, C.I. (2006). Role of cytokinin and auxin in shaping root architecture: Regulating vascular differentiation, lateral root initiation, root apical dominance and root gravitropism. Ann. Bot., 97, pp. 883-893. https://doi.org/10.1093/aob/mcl027

8. Ananieva, K. & Ananiev, E.D. (2000). Interaction between methyl ester of jasmonic acid and benzyladenine during the growth of excised greening cotyledons. Bulg. J. Plant Physiol., 26, No. 1, pp. 48-57.

9. Anantharaman, V., Iyer, L.M. & Aravind, L. (2007). Comparative genomics of protists: new insights into the evolution of eukaryotic signal transduction and gene regulation. Ann. Rev. Microbiol., 61, pp. 453-475. https://doi.org/10.1146/annurev.micro.61.080706.093309

10. Anjard, C. & Loomis, W.F. (2008). Cytokinins induce sporulation in Dictyostelium. Development, 135, pp. 819-827. https://doi.org/10.1242/dev.018051

11. Argueso, C.T., Ferreira, F.J., Epple, P., To, J.P., Hutchison, C.E., Schaller, G.E., Dangl, J.L. & Kieber, J.J. (2012). Two-component elements mediate interactions between cytokinin and salicylic acid in plant immunity. PLoS Genet., 8, No. 1, pp. 1002448. https://doi.org/10.1371/journal.pgen.1002448

12. Argueso, C.T., Raines, T. & Kieber, J.J. (2010). Cytokinin signalling and transcriptional networks. Curr. Opin. Plant Biol., 13, pp. 533-539. https://doi.org/10.1016/j.pbi.2010.08.006

13. Arthur, G.D., Stirk, W.A., Novak, O., Hekera, P. & Van Staden, J. (2007). Occurrence of nutrients and plant hormones (cytokinin and IAA) in the water fern Salvinia molesta during growth and composting. Environ. Exp. Bot. 61, No. 2, pp. 137-144. https://doi.org/10.1016/j.envexpbot.2007.05.002

14. Bainbridge, K., Sorefan, K., Ward, S. & Leyser, O. (2005). Hormonally controlled expression of the Arabidopsis MAX4 shoot branching regulatory gene. Plant J., 44, pp. 569-580. https://doi.org/10.1111/j.1365-313X.2005.02548.x

15. Bajgus, A. & Piotrowska-Niczyporuk, A. (2014). Interactive effect of brassinosteroids and cytokinins on growth, chlorophyll, monosaccharide and protein content in the green alga Chlorella vulgaris (Trebouxiophyceae). Plant Physiol. Biochem., 80, pp. 176-183. https://doi.org/10.1016/j.plaphy.2014.04.009

16. Bangerth, F., Li, Ch.-J. & Gruber, J. (2000). Mutual interaction of auxin and cytokinins in regulating correlative dominance. Plant Grow. Regul., 32, No. 2-3, pp. 205-217. https://doi.org/10.1023/A:1010742721004

17. Bassil, N.V., Mok, D.W. & Mok, M.C. (1993). Partial purifacation of a cis-trans-isomerase of zeatin from immature seed of Phaseolus vulgaris L. Plant Physiol., 102, pp. 867-872. https://doi.org/10.1104/pp.102.3.867

18. Bielach, A., Podlesakova, K., Marhavy, P., Duclercq, J., Cuesta, C., Muller, B., Grunewald, W., Tarkowski, P. & Benkova, E. (2012). Spatiotemporal regulation of lateral root organogenesis in Arabidopsis by cytokinin. Plant Cell, 24, pp. 3967-3981. https://doi.org/10.1105/tpc.112.103044

19. Bishopp, A., Help, H., El-Showk, S., Weijers, D., Scheres, B., Friml, J., Benkova, E., Mahonen, A.P. & Helariutta, Y. (2011). A mutually inhibitory interaction between auxin and cytokinin specifies vascular pattern in roots. Curr. Biol., 21, No. 11, pp. 917-926. https://doi.org/10.1016/j.cub.2011.04.017

20. Bishopp A., Lehesranta S., Vaten, A., Help, H., El-Showl, S., Scheres, B., Helariutta, K., Mahonen, A.P., Sakakibara, H. & Helariutta, Y. (2011). Phloem-transported cytokinin regulates polar auxin transport and maintains vascular pattern in the root meristem. Curr. Biol., 21, No. 11, pp. 927-932. https://doi.org/10.1016/j.cub.2011.04.049

21. Brenner, W.G., Romanov, G.A., Kollmer, I., Burkle, L. & Schmulling, T. (2005). Immediate-early and delayed cytokinin response genes of Arabidopsis thaliana identified by genome-wide expression profiling reveal novel cytokinin-sensitive processes and suggest cytokinin action through transcriptional cascades. Plant J., 44, pp. 314-333. https://doi.org/10.1111/j.1365-313X.2005.02530.x

22. Cary, A., Liu, W. & Howell S. (1995). Cytokinin action is coupled to ethylene in its effects on the inhibition of root and hypocotyl elongation in Arabidopsis thaliana seedlings. Plant Physiol., 106, pp. 1075-1082. https://doi.org/10.1104/pp.107.4.1075

23. Chae, H.S., Faure, F. & Kieber, J.J. (2003). The eto1, eto2, and eto3 mutations and cytokinin treatment increase ethylene biosynthesis in Arabidopsis by increasing the stability of ACS protein. Plant Cell, 15, pp. 545-559. https://doi.org/10.1105/tpc.006882

24. Chandler, J.W. & Werr, W. (2015). Cytokinin-auxin crosstalk in cell type specification. Trends Plant Sci., 20, No. 5, pp. 291-300. https://doi.org/10.1016/j.tplants.2015.02.003

25. Chatfield, S.P., Stirnberg, P., Forde, B.G. & Leyser, O. (2000). The hormonal regulation of axillary bud growth in Arabidopsis. Plant J., 24, pp. 159-169. https://doi.org/10.1046/j.1365-313x.2000.00862.x

26. Cheng, X., Ruyter-Spira, C. & Bouwmeester, H. (2013). The interaction between strigolactones and other plant hormones in the regulation of plant development. Frontiers Plant Sci., 4, pp. 199-216. https://doi.org/10.3389/fpls.2013.00199

27. Chow, B. & McCourt, P. (2004). Hormone signalling from a developmental context. J. Exp. Bot., 55, pp. 247-251. https://doi.org/10.1093/jxb/erh032

28. Cui, X. & Luan, Sh. (2012). A new wave of hormone research: crosstalk mechanisms. Mol. Plant., 6, pp. 781-789. https://doi.org/10.1093/mp/sss090

29. Debi, B.R., Taketa, S. & Ichii M. (2005). Cytokinin inhibits lateral root initiation but stimulates lateral root elongation in rice (Oryza sativa). J. Plant Physiol., 162, pp. 507-515. https://doi.org/10.1016/j.jplph.2004.08.007

30. Dekhuijzen, H.M. (1980). The occurrence of free and bound cytokinins in clubroots and Plasmodiophora brassicae infected turnip tissue cultures. Physiol. Plant., 49, pp. 169-176. https://doi.org/10.1111/j.1399-3054.1980.tb02647.x

31. Dello Ioio, R., Nakamura, K., Moubayidin, L. Perilli, S., Taniguchi, M., Morita, M.T., Aoyama T., Costantino, P. & Sabatini, S. (2008). A genetic framework for the control of cell division and differentiation in the root meristem. Science, 322, pp. 1380-1384. https://doi.org/10.1126/science.1164147

32. Dermastia, M., Ravnikar, M., Vilhar, B. & Kovac, M. (1994). Increased level of cytokinin ribosides in jasmonic acid-treated potato (Solanum tuberosum) stem mode cultures. Physiol. Plant., 92, No. 2, pp. 241-246. https://doi.org/10.1111/j.1399-3054.1994.tb05332.x

33. De Smet, I., Voss, U., Lau, S., Wilson, M., Shao N., Timme, R.E., Swarup, R., Kerr, I., Hodgman, C., Bock, R., Bennet, M., Jurgens G. & Beeckman. T. (2011). Unraveling the evolution of auxin signalling. Plant Physiol., 155, No. 1, pp. 209-221. https://doi.org/10.1104/pp.110.168161

34. Dettmer, J., Elo, A. & Helariutta Y. (2009). Hormone interactions during vascular development. Plant Mol. Biol., 69, pp. 347-360. https://doi.org/10.1007/s11103-008-9374-9

35. Dorchin, N., Hoffman, J.H., Stirk, W.A., Novak, O., Strnad, M., & Van Staden, J. (2009). Sexually dimorphic gall structures correspond to differential phytohormone contents in male and female wasp larvae. Physiol. Entomol., 34, pp. 359-369. https://doi.org/10.1111/j.1365-3032.2009.00702.x

36. Dun, E.A., de Saint Germain, A., Rameau, C. & Beveridge, C.A. (2012). Antagonistic action of strigolactone and cytokinin in bud outgrowth control. Plant Physiol., 158, pp. 487-498. https://doi.org/10.1104/pp.111.186783

37. Eklof, S., Åstot, C., Blackwell, J., Moritz, T., Olsson, O. & Sandberg, G. (1997). Auxin-cytokinin interactions in transgenic tobacco. Plant Cell Physiol., 38, pp. 225-235. https://doi.org/10.1093/oxfordjournals.pcp.a029157

38. Eklof, S., Åstot, C., Sitbon, F., Moritz, T., Olsson, O. & Sandberg, G. (2000).Transgenic tobacco plants co-expressing Agrobacterium iaa and ipt genes have wild-type hormone levels but display both auxin - and cytokinin-overexpressing phenotypes. Plant J., 23, pp. 279-284. https://doi.org/10.1046/j.1365-313x.2000.00762.x

39. El-Showk, S., Raili Ruonala, R. & Helariutta, Y. (2013). Crossing paths: cytokinin signalling and crosstalk. Development, 140, pp. 1373-1383. https://doi.org/10.1242/dev.086371

40. Faiss, M., Zalubilova, J., Strnad, M. & Schmulling, T. (1997). Conditional transgenic expression of the ipt gene indicates a function for cytokinins in paracrine signaling in whole tobacco plants. Plant J., 12, pp. 401-415. https://doi.org/10.1046/j.1365-313X.1997.12020401.x

41. Ferguson, B.J. & Beveridge, C.A. (2009). Roles for auxin, cytokinin, and strigolactone in regulating shoot branching. Plant Physiol., 149, pp. 1929-1944. https://doi.org/10.1104/pp.109.135475

42. Fleishon, S., Shani, E., Ori, N. & Weiss, D. (2011). Negative reciprocal interactions between gibberellin and cytokinin in tomato. New Physiol., 190, No. 3, pp. 609-617. https://doi.org/10.1111/j.1469-8137.2010.03616.x

43. Frebort, I., Kowalska, M., Hluska, T., Frebortova, J. & Galuszka, P. (2011). Evolution of cytokinin biosynthesis and degradation. J. Exp. Bot., 62, No. 8, pp. 2431-2452. https://doi.org/10.1093/jxb/err004

44. Gajdosova, S., Spichal, L., Kaminek, M., Hoverova, K., Novak, O., Dobrev, P.I., Galuszka, P., Klima, P., Gaudinová, A., Zizkova, E., Hanus, J., Dancak, M., Travnicek, B., Pesek, B., Krupicka, M., Vankova, R., Strnad, M. & Motyka, V. Distribution, biological activities, metabolism and the conceivable function of cis-Zeatin type cytokinins in plants. J. Exp. Bot., 62, No. 8, pp. 2827-2840. https://doi.org/10.1093/jxb/erq457

45. Garay-Arroyo, A., Sanchez, M.D.L.P., Garcia-Ponce, B., Azpeitia, E. & Alvarez-Buylla ,E.R. (2012). Hormone symphony during root growth and development. Dev. Dynamics, 241, pp. 1867-1885. https://doi.org/10.1002/dvdy.23878

46. Giron, D., Frago, E., Glevarec, G., Pieterse, C.M.J. & Dicke, M. (2013). Cytokinins as key regulators in plant-microbe-insect interactions: connecting plant growth and defence. Funct. Ecol., https://doi.org/10.1111/1365-2435.12042

47. Greenboim-Wainberg, Y., Maymon, I., Borochov, R., Alvarez, J., Olszewski, N., Ori, N., Eshed, Y. & Weeiss, D. (2005). Cross talk between gibberellin and cytokinin: the Arabidopsis GA-response inhibitor SPINDLY plays a positive role in cytokinin signalling. Plant Cell, 17, pp. 92-102. https://doi.org/10.1105/tpc.104.028472

48. Guan, C., Wang, X., Feng, J., Hong, S., Liang, Y., Ren, B. & Zuo, J. (2014). Cytokinin antagonizes abscisic acid-mediated inhibition of cotyledon greening by promoting the degradation of abscisic acid insensitive5 protein in Arabidopsis. Plant Physiol., 164, No 3, pp. 1515-1526. https://doi.org/10.1104/pp.113.234740

49. Gu, R., Fu, J., Guo, S., Duan, F., Wang, Z. & Mi, G. (2010). Comparative expression and phylogenetic analysis of maize cytokinin dehydrogenase/oxidase (CKX) gene family. J. Plant Grow. Regul., 29, pp. 428-440. https://doi.org/10.1007/s00344-010-9155-y

50. Yartig, K. & Beck, E. (2006). Crosstalk between auxin, cytokinins, and sugars in the plant cell cycle. Plant Biol., 8, pp. 389-396. https://doi.org/10.1055/s-2006-923797

51. Hartung, W. (2010). The evolution of abscisic acid (ABA) and ABA function in lower plants, fungi and lichen. Funct. Plant Biol., 37, No. 9, pp. 806-812. https://doi.org/10.1071/FP10058

52. Ha, S., Vankova, R., Yamaguchi-Shinozaki, K., Shinozaki, K. & Tran, L.S. (2012). Cytokinins: metabolism and function in plant adaptation to environmental stresses. Trends Plant Sci., 17, No. 3, pp. 172-179. https://doi.org/10.1016/j.tplants.2011.12.005

53. Havlova, M., Dobrev, P.I., Motyka, V. Storchova, H., Libus, J., Dobra, J., Malbeck, J., Gaudinova, A. & Vankova, R. (2008). The role of cytokinins in responses to water deficit in tobacco plants over-expressing trans-zeatin-O-glucosyltransferase gene under 35S or SAG12 promoters. Plant Cell Environ., 31, pp. 341-353. https://doi.org/10.1111/j.1365-3040.2007.01766.x

54. Heyl, A., Riefler, M., Romanov, G.A. & Schmulling, T. (2012). Properties, functions and evolution of cytokinin receptors. Eur. J. Cell Biol., 91, pp. 246-256. https://doi.org/10.1016/j.ejcb.2011.02.009

55. Hirose, N., Takei, K., Kuroha, T., Kamada-Nobusada, T., Hayashi, H & Sakakibara, H. (2008). Regulation of cytokinin biosynthesis, compartmentalization and translocation. J. Exp. Bot., 59, No. 1, pp. 75-83. https://doi.org/10.1093/jxb/erm157

56. Huang, S., Cerny, R.E., Qi, Y.L., Bhat, D., Aydt, C.M., Hanson, D.D., Malloy, K.P. & Ness, L.A. (2003). Transgenic studies on the involvement of cytokinin and gibberellin in male development. Plant Physiol., 131, pp. 1270-1282. https://doi.org/10.1104/pp.102.018598

57. Hussain, A., Krischke, M., Roitsch, T. & Hasnain, S. (2010). Rapid determination of cytokinins and auxin in cyanobacteria. Curr. Microbiol., 61, pp. 361-369. https://doi.org/10.1007/s00284-010-9620-7

58. Hwang, I., Sheen, J. & Muller, B. (2012). Cytokinin signaling networks. Ann. Rev. Plant Biol., 63, pp. 353-380. https://doi.org/10.1146/annurev-arplant-042811-105503

59. Jasinski, S., Piazza, P., Craft, J., Hay, A., Wooley, L., Rieu, I., Phillips, A., Hedden, P. & Tsiantis, M. (2005). KNOX action in Arabidopsis is mediated by coordinate regulation of cytokinin and gibberellin activities. Curr. Biol., 15, pp. 1560-1565. https://doi.org/10.1016/j.cub.2005.07.023

60. Javid, M.G., Soroosshzadeh, A., Moradi, F., Sanavi, S.A.M.M. & Allahdadi, I. (2011). The role of phytohormones in alleviating salt stress in crop plants. Aust. J. Crop Plants, 5, No. 6, pp. 726-734.

61. Jeon, J., Kim, N.Y., Kim, S., Kang, N.Y., Novak, O., Ku, S.J., Cho, C., Lee, D.J., Lee, E.J., Strnad, M. & Kim, J. (2010). A subset of cytokinin two-component signaling system plays a role in cold temperature stress response in Arabidopsis. J. Biol. Chem., 285, pp. 23371-23386. https://doi.org/10.1074/jbc.M109.096644

62. Jiang, C.J., Shimono, M., Sugano, S., Kojima, M., Liu, X., Inoue, H., Sakakibara, H. & Takatsuji, H. (2013). Cytokinins act synergistically with salicylic acid to activate defense gene expression in rice. Mol. Plant-Microbe Interact., 26, No. 3, pp. 287-296. https://doi.org/10.1094/MPMI-06-12-0152-R

63. Jones, B., Gunneras, S.A., Petersson, S.V., Tarkowski, P., Gragam, N., May, S., Dolezal, K., Sandberg, G. & Ljung, K. (2010). Cytokinin regulation of auxin synthesis in Arabidopsis involves a homeostatic feedback loop regulated via auxin and cytokinin signal transduction. Plant Cell, 22, pp. 2956-2969. https://doi.org/10.1105/tpc.110.074856

64. Kalosek, P., Buchtova, D. & Balla, J. (2010). Cytokinin and polar auxin in axillary pea bud // Acta Univ. Agricult. et Silvicult. Mendelianae Brunensis, LVIII, pp. 79-88. https://doi.org/10.11118/actaun201058040079

65. Kamada-Nobusada, T. & Sakakibara, H. (2009). Molecular basis for cytokinin biosynthesis. Phytochemistry, 70, No 4, pp. 444-449. https://doi.org/10.1016/j.phytochem.2009.02.007

66. Kenrick, P. & Crane, P.R. (1997). The origin and early evolution of plants on land. Nature, 389, pp. 33-39. https://doi.org/10.1038/37918

67. Kieber, J.J. & Schaller, G.E. (2014). Cytokinins. The Arabidopsis Book, 11:e0168. https://doi.org/10.1199/tab.0168

68. Kojima, M., Kamada-Nobusada, T., Komatsu, H., Takei, K., Kuroha, T., Mizutani, M., Ashikari, M., Ueguchi-Tanaka, M., Matsuoka, M., Suzuki, K & Sakakibara, H. (2012). Highly sensitive and high-throughput analysis of plant hormones using MS-probe modification and liquid chromatography-tandem mass spectrometry: an application for hormone profiling in Oryza sativa. Plant Cell Physiol., 50, pp. 1201-1214. https://doi.org/10.1093/pcp/pcp057

69. Kudo, T., Kiba, T. & Sakakibara, H. (2010). Metabolism and long-distance translocation of cytokinins. J. Integr. Plant Biol., 52, No. 1, pp. 53-60. https://doi.org/10.1111/j.1744-7909.2010.00898.x

70. Kudo T., Makita N., Kojima, M., Tokunaga, H. & Sakakibara, H. (2012). Cytokinin activity of cis-zeatin and phenotypic alterations induced by overexpression of putative cis-zeatin-O-glucosyltransferase in rice. Plant Physiol., 160, No. 1, pp. 319-331. https://doi.org/10.1104/pp.112.196733

71. Kudryakova, N.V., Efimova, M.V., Danilova, M.N., Zubkova, N.A., Khripach, V.A. & Kusnetsov, V.V. (2013). Exogenous brassinosteroids activate cytokinin signalling pathway gene expression in transgenic Arabidopsis thaliana. Plant Growth Regul., 70, No. 1, pp. 61-69. https://doi.org/10.1007/s10725-012-9778-z

72. Kushwah, S., Jones, A.M. & Laxmi, A. (2011). Cytokinin interplay with ethylene, auxin, and glucose signaling controls Arabidopsis seedling root directional growth. Plant Physiol., 156, pp. 1851-1866. https://doi.org/10.1104/pp.111.175794

73. Laplaze, L., Benkova, E., Casimiro, I., Maes, L., Vanneste, S., Swarup, R., Weijers, D., Calvo, V., Parizot, B., Herrera-Rodriguez, M.B., Offringa, R., Graham, N., Doumas, P., Friml, J., Bogusz, D., Beeckman, T. & Bennett, M. (2007). . Cytokinins act directly on lateral root founder cells to inhibit root initiation. Plant Cell, 19, pp. 3889-3900. https://doi.org/10.1105/tpc.107.055863

74. Leonard, N.J., Hecht, S.M., Skoog, F. & Schmitz, R.Y. (1969). Cytokinins: synthesis, mass spectra and biological activity of compounds related to zeatin. Proc. Natl. Acad. Sci. USA, 63, pp. 175-182. https://doi.org/10.1073/pnas.63.1.175

75. Liu, J., Mehdi, S., Topping, J., Friml, J. & Lindsey, K. (2013). Interaction of PLS and PIN and hormonal crosstalk in Arabidopsis root development. Front. Plant Sci., 4, pp. 75-89. https://doi.org/10.3389/fpls.2013.00075

76. Lomin, S.N., Krivosheev, D.M., Steklov, M.Yu., Osolodkin, D.I. & Romanov, G.A. (2012). Receptor properties and features of cytokinin signalling. Acta Naturae, 4, No. 3, pp. 31-45.

77. Marhavy, P., Bielach, A., Abas, L., Abuzeineh, A., Duclercq, J., Tanaka, H., Parezova M., Petrasek, J., Friml, J., Kleine-Vehn, J. & Benkova, E. (2011). Cytokinin modulates endocytic trafficking of pin1 auxin effux carrier to control plant organogenesis. Dev. Cell., 21, pp. 796-804. https://doi.org/10.1016/j.devcel.2011.08.014

78. Martin, R.C., Mok, M.C., Habben, J.E. & Mok, D.W.S. (2001). A maize cytokinin gene encoding an O-glucosyl-transferase specific to cis-zeatin. Proc. Natl. Acad. Sci. USA, 98, pp. 5922-5926. https://doi.org/10.1073/pnas.101128798

79. Maruyama, A., Maeda, M. & Simidu, U. (1986). Occurrence of plant hormone (cytokinin)-producing bacteria in the sea. J. Appl. Bacteriol., 61, pp. 569-574. https://doi.org/10.1111/j.1365-2672.1986.tb01731.x

80. Maruyama, K., Urano, K., Yoshiwara, K., Morishita, Y., Sakurai, N., Suzuki, H., Kojima, M., Sakakibara, H., Shibata, D., Saito, K., Shinozaki, K. & Yamaguchi-Shinozaki, K. (2014). Integrated analysis of the effects of cold and dehydration on rice metabolites, phytohormones, and gene transcripts. Plant Physiol., 164, No. 4, pp. 1759-1771. https://doi.org/10.1104/pp.113.231720

81. Maruyama, S., Matsuzaki, M., Misawa, K. & Nozaki, H. (2009). Cyanobacterial contribution to the genomes of the plastid-lacking protists. BMC Evolut. Biol., 9, pp. 197-220. https://doi.org/10.1186/1471-2148-9-197

82. McKeon, T.A., Hoffman, N.E. & Yang, S.F. (1982). The effect of plant-hormone pretreatments on ethylene production and synthesis of 1-aminocyclopropane-1-carboxylic acid in water-stressed wheat leaves. Planta, 155, pp. 437-443. https://doi.org/10.1007/BF00394473

83. Miyawaki, K., Tarkowski, P., Matsumoto-Kitano, M., Kato, T., Sato, S., Tarkowska, D., Tabata, S., Sandberg, G & Kakimoto, T. (2006). Roles of Arabidopsis ATP/ADP isopentenyltransferases and tRNA isopentenyltransferases in cytokinin biosynthesis. Proc. Natl. Acad. Sci. USA, 103, pp. 16598-16603. https://doi.org/10.1073/pnas.0603522103

84. Moubayidin, L., Di Mambro, R. & Sabatini, S. (2009). Cytokinin-auxin crosstalk. Trends Plant Sci., 14, No. 10, pp. 557-562. https://doi.org/10.1016/j.tplants.2009.06.010

85. Moubayidin, L., Perilli, S., Dello Ioio, R., Di Mambro, R., Costantino, P. & Sabatini, S. (2010). The rate of cell differentiation controls the Arabidopsis root meristem growth plase. Curr. Biol., 20, pp. 1138-1143. https://doi.org/10.1016/j.cub.2010.05.035

86. Muller, B. & Sheen, J. (2008). Cytokinin and auxin interaction in root stem-cell specification during early embryogenesis. Nature, 453, pp. 1094-1098. https://doi.org/10.1038/nature06943

87. Muller, D. & Leyser, O. (2011). Auxin, cytokinin and the control of shoot branching. Ann. Bot., 107, No. 7, pp. 1203-1212. https://doi.org/10.1093/aob/mcr069

88. Munne-Bosch, S. & Muller, M. (2013). Hormonal cross-talk in plant development and stress responses. Front. Plant Sci., 4, pp. 529-531. https://doi.org/10.3389/fpls.2013.00529

89. Murai, N. (2014). Review: Plant growth hormone cytokinins control the crop yield. Amer. J. Plant Sci., 5, pp. 2178-2187. https://doi.org/10.4236/ajps.2014.514231

90. Naseem, M., Kaltdorf, M., Hussain, A. & Dandekar, T. (2013). The impact of cytokinin on jasmonate-salicylate antagonism in Arabidopsis immunity against infection with Pst DC3000. Plant Signal Behav., 8, No. 10, e26791. https://doi.org/10.4161/psb.26791

91. Nicander, B., Bjorkman, P.O. & Tillberg, E. (1995). Identification of an N-glucoside of cis-zeatin from potato tuber sprouts. Plant Physiol., 109, pp. 513-516. https://doi.org/10.1104/pp.109.2.513

92. Nishiyama, R., Watanabe, Y., Fujita, Y., Le, D.T., Kojima, M., Werner, T., Vankova, R., Yamaguchi-Shinozaki, K., Shinozaki, K., Kakimoto, T., Sakakibara, H., Schmulling, T. & Tran, L.S. (2011). Analysis of cytokinin mutants and regulation of cytokinin metabolic genes reveals important regulatory roles of cytokinins in drought, salt and abscisic acid responses, and abscisic acid biosynthesis. Plant Cell, 23, pp. 2169-2183. https://doi.org/10.1105/tpc.111.087395

93. Nordstrom, A., Tarkowski, P., Tarkowska, D., Norbaek, R., Astot, C., Dolezal, K. & Sandberg, G. (2004). Auxin regulation of cytokinin biosynthesis in Arabidopsis thaliana: a factor of potential importance for auxin-cytokinin-regulated development. Proc. Natl. Acad. Sci. USA, 101, pp. 8039-8044. https://doi.org/10.1073/pnas.0402504101

94. O'Brien, J.A. & Benkova, E. (2013). Cytokinin cross-talking during biotic and abiotic stress responses. Front. Plant Sci., 19, No. 4, pp. 451. https://doi.org/10.3389/fpls.2013.00451

95. Ordog, V., Stirk, W.A., Van Staden, J., Novak, O, & Strnad, M. (2004). Endogenous cytokinins in three genera of microalgae from the Chlorophyta. J. Phycology, 40, No. 1, pp. 88-95. https://doi.org/10.1046/j.1529-8817.2004.03046.x

96. Osmont, K.S., Sibout, R. & Hardtke, C.S. (2007). Hidden branches: Developments in root system architecture. Annu. Rev. Plant Biol., 58, pp. 93-113. https://doi.org/10.1146/annurev.arplant.58.032806.104006

97. Paponov, I.A., Teale, W., Lang, D., Paponov, M., Reski, R., Rensing, S.A. & Palme, K. (2009). The evolution of nuclear auxin signalling. BMC Evol. Biol., 9, pp. 126. https://doi.org/10.1186/1471-2148-9-126

98. Peleg, Z. & Blumwald, E. (2011). Hormone balance and abiotic stress tolerance in crop plants. Curr. Opin. Plant Biol., 14, pp. 290-295. https://doi.org/10.1016/j.pbi.2011.02.001

99. Perilli, S., Moubayidin, L. & Sabatini, S. (2010). The molecular basis of cytokinin function. Curr. Opin. Plant Biol., 13, pp. 21-26. https://doi.org/10.1016/j.pbi.2009.09.018

100. Pernisova, M., Klima, P., Horak, J., Valkova, M., Malbeck, J., Soucek, P., Reichman, P., Hoyerova, K., Dubova, J., Friml, J., Zazimanova, E. & Hejatko, J. (2009). Cytokinins modulate auxin-induced organogenesis in plants via regulation of the auxin efflux. Proc. Natl. Acad. Sci. USA, 106, No. 9, pp. 3609-3614. https://doi.org/10.1073/pnas.0811539106

101. Persson, B.C., Esberg, B., Olafsen, O. & Bjork, G.R. (1994). Synthesis and function of isopentenyl adenosine derivaties in tRNA. Biochimie, 76, pp. 1152-1160. https://doi.org/10.1016/0300-9084(94)90044-2

102. Pils, B. & Heyl, A. (2009). Unraveling the evolution of cytokinin signalling. Plant Physiol., 151, pp. 782-791. https://doi.org/10.1104/pp.109.139188

103. Pospisilova, J., Vagner, M., Malbeck, J., Travnichkova, A. & Batkova, P. (2005). Interactions between abscisic acid and cytokinins during water stress and subsequent rehydration. Biol. Plant., 49, pp. 533-540. https://doi.org/10.1007/s10535-005-0047-0

104. Putarjunan, A. & Rodermel, S. (2014). gigantea suppresses immutans variegation by interactions with cytokinin and gibberellin signaling pathways. Plant Physiol., 166, No. 4, pp. 2115-2132. https://doi.org/10.1104/pp.114.250647

105. Quesnelle, P.E. & Emery, R.J.N. (2007). cis-Cytokinins that predominate in Pisum sativum during early embryogenesis will accelerate embryo growth in vitro. Can. J. Bot., 85, pp. 91-103. https://doi.org/10.1139/b06-149

106. Rashotte, A.M., Chae, H.S., Maxwell, B.M. & Kieber, J.J. (2005). The interaction of cytokinin with other signals. Physiol. Plant., 123, pp. 184-194. https://doi.org/10.1111/j.1399-3054.2005.00445.x

107. Ross, J.J. & Reid, J.B. (2010). Evolution of growth-promoting plant hormones. Funct. Plant Biol., 37, No. 9, pp. 795-805. https://doi.org/10.1071/FP10063

108. Růzicka, K., Simaskova, M., Duclercq, J., Petrasek, J., Zazimanova, E., Simon, S., Friml, J., Van Montagu, M.C.E. & Benkova, E. (2009). Cytokinin regulates root meristem activity via modulation of the polar auxin transport. Proc. Natl. Acad. Sci. USA, 106, pp. 4284-4289. https://doi.org/10.1073/pnas.0900060106

109. Sakakibara, H. (2006). Cytokinins: Activity, biosynthesis and translocation. Ann. Rev. Plant Biol., 57, pp. 431-449. https://doi.org/10.1146/annurev.arplant.57.032905.105231

110. Sarafraz-Ardakani, M.-R., Khavari-Nejad, R.-A., Moradi, F. & Najafi, F. (2014). Abscisic acid and cytokinin-induced osmotic and antioxidant regulation in two drought-tolerant and drought-sensitive cultivars of wheat during grain filling under water deficit in field conditions. Notulae Sci. Biol., 6, No 3, pp. 354-362. https://dx.doi.org/10.15835/nsb639301. https://doi.org/10.15835/nsb.6.3.9301

111. Schaller, G.E., Bishopp, A. & Kieber, J.J. (2015). The yin-yang of hormones: Cytokinin and auxin interaction in plant development. Plant Cell, 27, No. 1, pp. 44-63. https://doi.org/10.1105/tpc.114.133595

112. Schaller, G.E., Street, I.H. & Kieber, J.J. (2014). Cytokinin and the cell cycle. Curr. Opin. Plant Biol., 21, pp. 7-15. https://doi.org/10.1016/j.pbi.2014.05.015

113. Schmulling, T., Werner, T., Riefler, M., Krupkova, E., Bartrina, I. & Munns, T. (2003). Structure and function of cytokinin oxidase/dehydrogenase genes of maize, rice, Arabidopsis and other species. J. Plant Res., 116, pp. 241-252. https://doi.org/10.1007/s10265-003-0096-4

114. Shimizu-Sato, S., Tanaka, M. & Mora, H. (2009). Auxin-cytokinin interactions in the control of shoot branching. Plant Mol. Biol., 69, pp. 429-435. https://doi.org/10.1007/s11103-008-9416-3

115. Shi, Y., Tian, S., Hou, L., Huang, X., Zhang, X., Guo, H. & Yang, S. (2012). Ethylene signalling negatively regulates freezing tolerance by repressing expression of CBF and type-A ARR genes in Arabidopsis. Plant Cell, 24, pp. 2578-2595. https://doi.org/10.1105/tpc.112.098640

116. Shkolnik-Inbar, D. & Bar-Zvi, D. (2010). AB14 mediates abscisic acid and cytokinin inhibition of lateral root formation by reducing polar auxin transport in Arabidopsis. Plant Cell, 22, No. 11, pp. 3560-3573. https://doi.org/10.1105/tpc.110.074641

117. Skoog, F. & Miller, C.O. (1957). Chemical regulation of growth and organ formation in plant tissues cultured in vitro. Symp. Soc. Exp. Biol., 11, pp. 118-130.

118. Spichal, L. (2012). Cytokinins - recent news and views of evolutionally old molecules. Funct. Plant Biol., 39, No. 4, pp. 267-284. https://doi.org/10.1071/FP11276

119. Spinola, M., Galvan, A., Pignatiello, C., Conti, B., Pastorino, U., Nicander, B., Paroni, R. & Dragani, T.A. (2005). Identification and functional characterization of the candidate tumor suppressor gene TRIT1 in human lung cancer. Oncogene, 24, pp. 5502-5509. https://doi.org/10.1038/sj.onc.1208687

120. Stirk, W.A. & Van Staden, J. (2010). Flow of cytokinins through the environment. Plant Grow. Regul., 62, No. 2, pp. 101-116. https://doi.org/10.1007/s10725-010-9481-x

121. Subbiah, V. & Reddy, K.J. (2010). Interactions between ethylene, abscisic acid and cytokinin during germination and seedling establishment in Arabidopsis. J. Biosci., 35, No. 3, pp. 451-458. https://doi.org/10.1007/s12038-010-0050-2

122. Su, Y.-H., Liu, Y.-B. & Zhang, X.-Sh. (2011). Auxin-cytokinin interaction regulates meristem development. Mol. Plant., 4, No. 4, pp. 616-625. https://doi.org/10.1093/mp/ssr007

123. Tanaka, M., Takei, K., Kojima, M., Sakakibara, H. & Mori, H. (2006a). Auxin controls local cytokinin biosynthesis in the nodal stem in apical dominance. Plant J., 45, pp. 1028-1036. https://doi.org/10.1111/j.1365-313X.2006.02656.x

124. Tanaka, Y., Sano, T., Tamaoki, M., Nakajima, N., Kondo, N. & Hasezawa, S. (2006b). Cytokinin and auxin inhibit abscisic acid-induced stomatal closure by enhancing ethylene production in Arabidopsis. J. Exp. Bot., 57, No. 10, pp. 2259-2266. https://doi.org/10.1093/jxb/erj193

125. Tarkowska, D., Novak, O., Flokova, K., Tarkowski, P., Tureckova, V., Gruz, J., Rolcik, J. & Strnad, M. (2014). Quo vadis plant hormone analysis? Planta, 240, pp. 55-76. https://doi.org/10.1007/s00425-014-2063-9

126. Taylor, N.J., Stirk, W.A. & Van Staden, J. (2003). The elusive cytokinin biosynthetic pathway. South Afr. J. Bot., 69, pp. 269-281. https://doi.org/10.1016/S0254-6299(15)30313-6

127. Tran, L.-S.P., Urao, T., Qin, F., Maruyama, K., Kakimoto, T., Shinozaki, K. & Yamaguchi-Shinozaki, K. (2007). Functional analysis of AHK1/ATHK1 and cytokinin receptor histidine kinases in response to abscisic acid, drought, and salt stress in Arabidopsis. Proc. Natl. Acad. Sci. USA, 104, pp. 20623-20628. https://doi.org/10.1073/pnas.0706547105

128. Tran, L.S., Shinozaki, K. & Yamaguchi-Shinozaki, K. (2010). Role of cytokinin responsive two-component system in ABA and osmotic stress signalling. Plant Signal. Behav., 5, pp. 148-150. https://doi.org/10.4161/psb.5.2.10411

129. Vandenbussche, F., Fierro, A.C., Wiedemann, G., Reski, R. & Van Der Straeten, D. (2007). Evolutionary conservation of plant gibberellin signalling pathway components. BMC Plant Biol., 7, pp. 65. https://doi.org/10.1186/1471-2229-7-65

130. Vankova, R. (2014). Cytokinin regulation of plant growth and stress responses. Phytohormones: a Window to Metabolism, Signaling and Biotechnological Applications. New York, Heidelberg, Dordrecht, London: Springer Science + Business Media, pp. 55-80. https://doi.org/10.1007/978-1-4939-0491-4_3

131. Van Staden, J. & Nicholson, R.I.D. (1989). Cytokinins and mango flower malformation II. The cytokinin complement produced by Fusarium moniliforme and the ability of the fungus to incorporate [8- 14C] adenine into cytokinins. Physiol. Mol. Plant Pathol., 35, pp. 423-431. https://doi.org/10.1016/0885-5765(89)90061-1

132. Vaseva, I., Todorova, D., Malbeck, J. & Travnichkova, A. (2008). Response of cytokinin pool and cytokinin oxidase/dehydrogenase activity to abscisic acid exhibits organ specificity in peas. Acta Physiol. Plant., 30, pp. 151-155. https://doi.org/10.1007/s11738-007-0103-9

133. Vogel, J.P., Woeste, K.E., Theologis, A. & Kieber, J.J. (1998). Recessive and dominant mutations in the ethylene biosynthetic gene ACS5 of Arabidopsis confer cytokinin insensitivity and ethylene overproduction, respectively. Proc. Natl. Acad. Sci. USA, 95, pp. 4766-4771. https://doi.org/10.1073/pnas.95.8.4766

134. Von Schwartzenberg, K., Nunez, M.F., Blaschke, H., Dobrev, P.I., Novak, O., Motyka, V. & Strnad, M. (2007). Cytokinins in the Bryophyte Physcomitrella patens: Analysis of activity, distribution, and cytokinin oxidase/ dehydrogenase overexpression reveal the role of extracellular cytokinins. Plant Physiol., 145, pp. 786-800. https://doi.org/10.1104/pp.107.103176

135. Vos, U., Bishopp, A., Farcot, E. & Bennett, M.J. (2014). Modelling hormonal response and development. Trends Plant Sci., 19, No. 5, pp. 311-319. https://doi.org/10.1016/j.tplants.2014.02.004

136. Wang, Y., Li, L., Ye, T., Zhao, S., Liu, Z., Feng, Y.Q. & Wu, Y. (2011). Cytokinin antagonizes ABA-suppression to seed germination of Arabidopsis by down-regulating ABI5 expression. Plant J., 68, pp. 249-261. https://doi.org/10.1111/j.1365-313X.2011.04683.x

137. Weiss, D. & Ori, N. (2007). Mechanisms of cross talk between gibberellin and other hormones. Plant Physiol., 144, No. 3, pp. 1240-1246. https://doi.org/10.1104/pp.107.100370

138. Werner, T., Kollmer, I., Bartrina, I., Holst, K. & Schmulling, T. (2006). New insights into the biology of cytokinin degradation. Plant Biol., 8, pp. 371-381. https://doi.org/10.1055/s-2006-923928

139. Werner, Y. & Schmulling, T. (2009). Cytokinin action in plant development. Curr. Opin. Plant Biol., 12, No. 5, pp. 527-538. https://doi.org/10.1016/j.pbi.2009.07.002

140. Woeste, K.E., Vogel, J.P. & Kieber, J.J. (1999). Factors regulating ethylene biosynthesis in etiolated Arabidopsis thaliana seedlings. Physiol. Plant., 105, pp. 478-484. https://doi.org/10.1034/j.1399-3054.1999.105312.x

141. Wolters, H. & Jurgens, G. (2009). Survival of the flexible: hormonal growth control and adaptation in plant development. Nature Rev. Genet., 10, pp. 305-317. https://doi.org/10.1038/nrg2558

142. Yamada, H., Suzuki, T., Terada, K., Takei, K., Ishikawa, K., Miwa, K., Yamashino, T. & Mizuno, T. (2001). The Arabidopsis AHK4 histidine kinase is a cytokinin-binding receptor that transduces cytokinin signals across the membrane. Plant Cell Physiol., 42, pp. 1017-1023. https://doi.org/10.1093/pcp/pce127

143. Yang, C., Liu, J., Dong, X., Cai, Z., Tian, W. & Wang, X. (2014). Short-term and continuing stresses differentially interplay with multiple hormones to regulate plant survival and growth. Mol. Plant., 7, No. 5, pp. 841-855. https://doi.org/10.1093/mp/ssu013

144. Yevdakova, N.A., Motyka, V., Malbeck, J., Travnickova, A., Novak, O., Strnad, M. & von Schwartzenberg, K. Evidence for importance of tRNA-dependent cytokinin biosynthetic pathway in the moss Physcomitrella patens. J. Plant Grow. Regul., 27, pp. 271-281. https://doi.org/10.1007/s00344-008-9053-8

145. Yokoya, N.S., Stirk, W.A., Van Staden, J., Novak, O., Tureckova, V., Pencik, A., Strnad, M. & von Schwartzenberg, K. (2010). Endogenous cytokinins, auxins and abscisic acid in red algae from Brazyl. J. Phycology, 46, pp. 1198-1205. https://doi.org/10.1111/j.1529-8817.2010.00898.x

146. Yinekura-Sakakibara, K., Kojima, M., Yamaya, T. & Sakakibara, H. (2004). Molecular characterization of cytokinin-responsive histidine kinases in maize. Differential ligand preferences and response to cis-zeatin. Plant Physiol., 134, pp. 1654-1661. https://doi.org/10.1104/pp.103.037176

147. Young, N.F., Ferguson, B.J., Antoniada, I., Bennett, M.H., Beveridge, C.A., Turnbull, C.G.N. (2014). Conditional auxin response and differential cytokinin profiles in shoot branching mutants. Plant Physiol., 165, No. 4, pp. 1723-1736. https://doi.org/10.1104/pp.114.239996

148. Zaveska-Drabkova, L., Dobrev, P.I. & Motyka, V.(2014). Physiological and phylogenetic view to cis-zeatin-type cytokinins in plants. Abs. Intern. Conf. "Plant Physiology and Genetics - Archievements and Challenges" (24-26 Sept. 2014, Sofia, Bulgaria), p. 13.

149. Zdarska, M., Zatloukalova, P., Benitez, M., Sedo, O., Potesil, D., Novak, O., Svacinova, J., Pesek, B., Malbeck, J., Vasickova, J., Zdrahal, Z. & Hejatko, J. (2013). Proteome analysis in Arabidopsis reveals shoot - and root-specific targets of cytokinin action and differential regulation of hormonal homeostasis. Plant Physiol., 161, pp. 918-930. https://doi.org/10.1104/pp.112.202853

150. Zhang, W., Swarup, R., Bennett, M., Schaller, G.E. & Kieber, J.J. (2013). Cytokinin induces cell division in the quiescent center of the Arabidopsis root apical meristem. Curr. Biol., 23, pp. 1979-1989. https://doi.org/10.1016/j.cub.2013.08.008

151. Zhao, Z., Andersen, S.U., Ljung, K., Dolezal, K., Miotk, A., Schultheiss, S.J. & Lohmann, J.U. (2010). Hormonal control of the shoot stem-cell niche. Nature, 465, pp. 1089-1092. https://doi.org/10.1038/nature09126

152. Zimmer, A., Lang, D., Richardt, S., Frank, W., Reski, R. & Rensing, S.A. Dating the early evolution of plants: detection and molecular clock analyses of orthologs. Mol. Gen. Genomics, 278, pp. 393-402. https://doi.org/10.1007/s00438-007-0257-6