Фізіологія рослин і генетика 2016, том 48, № 6, 508-518, doi: https://doi.org/10.15407/frg2016.06.508

Продукування фітогормонів цитокінінової природи міцелярною біомасою базидієвих грибів

Веденичова Н.П., Аль-Маалі Г.А., Бісько Н.А., Косаківська І.В.

  • Інститут ботаніки ім. М.Г. Холодного Національної академії наук України 01601 Київ, вул. Терещенківська, 2

Досліджували продукування цитокінінів базидієвими грибами з метою створення препаратів з грибної сировини з високою цитокініновою активністю для тестування на терапевтичну дію, виробництва лікувально-профілактичних харчових добавок і чистих лікарських засобів. Для цього вперше методом високоефективної рідинної хроматографії (ВЕРХ) проведено якісний і кількісний аналіз цитокінінів міцелярної біомаси штамів Ganoderma lucidum, Trametes versicolor, Fomitopsis officinalis, Pleurotus nebrodensis, Grifola frondosa, Sparassis crispa. Ідентифіковано зеатин (транс- і цис-форми), зеатинрибозид, зеатин-О-глюкозид, ізопентеніладенозин, ізопентеніладенін, проте усі ці форми виявлено лише в одного виду (G. lucidum штам 1900). Найбільший сумарний вміст цитокінінів визначено в F. officinalis штам 5004. У міцелярній біомасі Т. versicolor штам 353 і G. lucidum штам 1900 встановлено найвищу продуктивність синтезу рибозидних форм цитокінінів (зеатинрибозиду й ізопентеніладенозину), які мають терапевтичні властивості (антипроліферативна й цитотоксична дія на ракові клітини). F. officinalis штам 5004, Т. versicolor штам 353, G. lucidum штам 1900 розглянуто як перспективні види базидієвих грибів для розробки біотехнології отримання з їхньої міцелярної біомаси препаратів з високою біологічною активністю.

Досліджували продукування цитокінінів базидієвими грибами з метою створення препаратів з грибної сировини з високою цитокініновою активністю для тестування на терапевтичну дію, виробництва лікувально-профілактичних харчових добавок і чистих лікарських засобів. Для цього вперше методом високоефективної рідинної хроматографії (ВЕРХ) проведено якісний і кількісний аналіз цитокінінів міцелярної біомаси штамів Ganoderma lucidum, Trametes versicolor, Fomitopsis officinalis, Pleurotus nebrodensis, Grifola frondosa, Sparassis crispa. Ідентифіковано зеатин (транс- і цис-форми), зеатинрибозид, зеатин-О-глюкозид, ізопентеніладенозин, ізопентеніладенін, проте усі ці форми виявлено лише в одного виду (G. lucidum штам 1900). Найбільший сумарний вміст цитокінінів визначено в F. officinalis штам 5004. У міцелярній біомасі Т. versicolor штам 353 і G. lucidum штам 1900 встановлено найвищу продуктивність синтезу рибозидних форм цитокінінів (зеатинрибозиду й ізопентеніладенозину), які мають терапевтичні властивості (антипроліферативна й цитотоксична дія на ракові клітини). F. officinalis штам 5004, Т. versicolor штам 353, G. lucidum штам 1900 розглянуто як перспективні види базидієвих грибів для розробки біотехнології отримання з їхньої міцелярної біомаси препаратів з високою біологічною активністю.

Ключові слова: базидіоміцети, лікарські гриби, цитокініни, фітогормони

Фізіологія рослин і генетика
2016, том 48, № 6, 508-518

Повний текст та додаткові матеріали

У вільному доступі: PDF  

Цитована література

1. Vedenicheva, N.P., Generalova, V.N., Bisko, N.A., Musatenko, L.I. & Dudka, I.O. (1997). Phytohormonal comlex of Pleurotus ostreatus. Ukr. Botan. J., 54, No 3, pp. 266-271 [in Ukrainian].

2. Sytnik, K.M., Musatenko, L.I., Vasyuk, V.A., Vedenicheva, N.P., Generalova, V.N., Martyn, G.G. & Nesterova, A.N. (2003). Hormonal complex of plants and fungi. Kyiv: Akademperiodika [in Ukrainian].

3. Solomko, E.F. & Mytropolskaya, N.Yu. (1994). Obtaining of sow material of Lentinus edodes (Berk.) Sing. by deep culture method. Mycology and Phytopathology, 28, No 3, pp. 34-39 [in Russian].

4. Adachi, Y., Okazaki, M., Ohno, N. & Yadomae, T. (1994). Enhancement of cytokinin production by macrophages stimulated with (1–3)-beta-D-glucan, grifolan (GRN), isolated from Grifola frondosa. Biol. Pharmacol. Bull., 17, pp. 1554-1560. https://doi.org/10.1248/bpb.17.1554

5. Bifulco, M., Malfitano, A.M., Proto, M.C., Santoro, A., Caruso, M.G. & Laezza, C. (2008). Biological and pharmacological roles of N6-isopentenyladenosine: an emerging anticancer drug. Anticancer. Agenst. Med. Chem., 8, pp. 200-204. https://doi.org/10.2174/187152008783497028

6. Casati, S., Ottria, R., Baldoli, E., Lopez, E., Maier, J.A.M. & Ciuffreda, P. (2011). Effects of cytokinins, cytokinin ribosides and their analogs on the viability of normal and neoplastic human cells. Anticancer. Res., 31, pp. 3401-3406.

7. Castiglioni, S., Casati, S., Ottria, R., Ciuffreda, P. & Maier, J.A.M. (2013). N6-isopentenyladenosine and its analogue N6-benzyladenosine induce cell cycle arrest and apoptosis in bladder carcinoma T24 cells. Anticancer. Agents Med. Chem., 13, pp. 672-678. https://doi.org/10.2174/1871520611313040016

8. Castillo, G., Torrecillas, A., Nogueiras, C., Michelena, G., Sanchez-Bravo, J. & Acosta, M. (2014). Simultaneous quantification of phytohormones in fermentation extracts of Botryodiplodia theobromae by liquid chromatography-electrospray tandem mass spectrometry. World J. Microbiol. Biotechnol., 30, pp. 1937-1946. https://doi.org/10.1007/s11274-014-1612-5

9. Chen, X., Hu, Z.P., Yang, X.X., Huang, M., Gao, Y., Tang, W., Chan, S.Y., Dai, X., Ye, J., Ho, P.C., Duan, W., Yang, H.Y., Zhu, Y.Z. & Zhou, S.F. (2006). Monitoring of immune responses to a herbal immuno-modulator in patients with advanced colorectal cancer. Int. Immunopharmacol., 2006, 6, pp. 499-508. https://doi.org/10.1016/j.intimp.2005.08.026

10. Choi, J., Choi, D., Lee, S., Ryu, C.-M. & Hwang, I. (2011). Cytokinins and plant immunity: old foes or new friends? Trends Plant Sci., 16, pp. 388-394. https://doi.org/10.1016/j.tplants.2011.03.003

11. Ciaglia, E., Pisanti, S., Picardi, P., Laezza, C., Malfitano, A.M., D'Alessandro, A., Gazzerro, P., Vitale, M., Carbone, E. & Bifulco, M. (2013). N6-Isopentenyladenosine, an endogenous isoprenoid end product, directly affects cytotoxic and regulatory functions of human NK cells through FDPS modulation. J. Leukocyte Biol., 94, pp. 1207-1219. https://doi.org/10.1189/jlb.0413190

12. Colombo, F., Falvella, F.S., De Cecco, L., Tortoreto, M., Pratesi, G., Ciuffreda, P., Ottria, R., Santaniello, E., Cicatiello, L., Weisz, A. & Dragani, T.A. (2009). Pharmacogenomics and analogues of the antitumour agent N6-isopentenyladenosine. Int. J. Cancer., 124, pp. 2179-2185. https://doi.org/10.1002/ijc.24168

13. Crafts, C.B. & Miller, C.O. (1974). Detection and identification of cytokinins produced by mycorrhizal fungi. Plant Physiol., 54, pp. 586-588. https://doi.org/10.1104/pp.54.4.586

14. Dua, I.S. & Jandaik, C.L. (1979). Cytokinins in two cultivated edible mushrooms. Sci. Hort., 10, pp. 301-304. https://doi.org/10.1016/0304-4238(79)90086-4

15. Frebort, I., Kowalska, M., Hluska, T., Frébortová, J. & Galuszka, P. (2011). Evolution of cytokinin biosynthesis and degradation. J. Exp. Bot., 62, pp. 2431-2452. https://doi.org/10.1093/jxb/err004

16. Gargano, M.L., Zervakis, G.I. & Venturella, G. (2013). Cultivation and nutritional value of Pleurotus nebrodensis. In: Pleurotus nebrodensis, A Very Special Mushroom. Sharjah: Bentham Science Publishers, pp. 99-120. https://doi.org/10.2174/9781608058006113010009

17. Hinsch, J., Vrabka, J., Oeser, B., Novak, O., Galuszka, P. & Tudzynski, P. (2015). De novo biosynthesis of cytokinins in the biotrophic fungus Claviceps purpurea. Environ. Microbiol., 17, pp. 2935-2951. https://doi.org/10.1111/1462-2920.12838

18. Hobbs Ch. (1995). Medicinal mushrooms: An exploration of tradition, healing and culture. Santa Cruz: Botanica Press.

19. Kieber, J.J. & Schaller, G.E. (2014). Cytokinins. In: The Arabidopsis Book. 11:e0168.doi:10.1199/tab.0168. https://doi.org/10.1199/tab.0168

20. Kolyachkina, S.V., Tararov, V.I., Alexeev, C.S., Krivosheev, D.M., Romanov, G.A., Stepanova, E.V., Solomko, E.S., Inshakov, A.N. & Mikhailov, S.N. (2011). N6-substituted adenosines. Cytokinin and antitumor activities. Collect. Czech. Commun., 76, pp. 1361-1378. https://doi.org/10.1135/cccc2011114

21. Kwon, A.H., Qiu, Z., Hashimoto, M. & Kimura, T. (2009). Effects of medicinal mushroom (Sparassis crispa) on wound healing in streptozotocin-induced diabetis rats. Amer. J. Surgery, 197, pp. 503-509. https://doi.org/10.1016/j.amjsurg.2007.11.021

22. Molinsky, J., Klanova, M., Koc, M., Beranova, L., Andera, L., Ludvikova, Z., Bohmova, M., Gasova, Z., Strnad, M., Ivanek, R., Trneny, M., Necas, E., Zivny, J. & Klener, P. (2013). Roscovitine sensitizes leukemia and lymphoma cells to tumor nexrosis factor-related apoptosis-inducing ligand-induced apoptosis. Leuk. Lymphoma, 54, pp. 372-380. https://doi.org/10.3109/10428194.2012.710331

23. Morrison, E.N., Knowles, S., Hayward, A., Thorn, R.G., Saville, B.J. & Emery, R.J. (2015). Detection of phytohormones in temperate forest fungi predicts consistent abscisic acid production and a common pathway for cytokinin biosynthesis. Micologia, 107, pp. 245-257. https://doi.org/10.3852/14-157

24. Musatenko, L., Vedenicheva, N., Vasyuk, V., Generalova, V., Martyn, G. & Sytnik, K. (2003). Phytohormones in seedlings of maize hybrids differing in their tolerance to high temperatures. Russian J. Plant Physiol., 50, pp. 499-504.

25. Ottria, R., Casati, S., Manzocchi, A., Baldoli, E., Mariotti, M., Maier, J.A.M. & Ciuffreda, P. (2010). Synthesis and evaluation of in vitro anticancer activity of some novel isopentenyladenosine derivaties. Bioorg. and Med. Chem., 18, pp. 4249-4254. https://doi.org/10.1016/j.bmc.2010.04.093

26. Ozcan B. (2001). GA3, ABA and cytokinin production by Lentinus tigrinus and Laetiporus sulphureus fungi cultured in the medium of olive oil mill waste. Turk. J. Biol., 25, pp. 453-462.

27. Patel, S. & Goyal, A. (2012). Recent developments in mushrooms as anti-cancer therapeutics: a review. Biotechnology, 2, pp. 1-15.

28. Paterson, R.R. (2006). Ganoderma – a therapeutic fungal biofactory. Phytochemistry, 67, pp. 1985-2001. https://doi.org/10.1016/j.phytochem.2006.07.004

29. Romanov, G.A. (2009). How do cytokinins affect the cell? Russian J. Plant Physiol., 56, pp. 268-290. https://doi.org/10.1134/S1021443709020174

30. Schafer, M., Brutting, C., Meza-Canales, I.D., Großkinsky, D.K., Vankova, R., Baldwin, I.T. & Meldau, S. (2015). The role of cis-zeatin-type cytokinins in plant growth regulation and mediating responses to environmental interactions. J. Exp. Bot., 66, pp. 4873-4884. https://doi.org/10.1093/jxb/erv214

31. Schaller, G.E., Street, I.H. & Kieber J.J. (2014). Cytokinin and the cell cycle. Curr. Opin. Plant Biol., 21, pp. 7-15. https://doi.org/10.1016/j.pbi.2014.05.015

32. Spichal, L. (2012). Cytokinins – recent new and views of evolutionally old molecules. Funct. Plant Biol., 39, pp. 267-284. https://doi.org/10.1071/FP11276

33. Spinola, M., Colombo, F., Falvella, F.S. & Dragani, T.A. (2007). N6-isopentenyladenosine: A potential therapeutic agent for a variety of epithelial cancers. Int. J. Cancer., 120, pp. 2744-2748. https://doi.org/10.1002/ijc.22601

34. Stirk, W.A. & Van Staden, J. (2010). Flow of cytokinins through the environment. Plant Grow. Regul., 62, pp. 101-116. https://doi.org/10.1007/s10725-010-9481-x

35. Tararov, V.I., Tijsma, A., Kolyachkina, S.V., Oslovsky, V.E., Nevts, J., Drenichev, M.S., Leyssen, P. & Mikhailov, S.N. (2015). Chemical modification of the plant isoprenoid cytokinin N6-isopentenyladenosine yields a selective inhibitor of human enterovirus 71 replication. Eur. J. Med. Chem., 90, pp. 406-413. https://doi.org/10.1016/j.ejmech.2014.11.048

36. Turker, M., Demirel, K., Uzun, Y., Battal, P. & Tileklioglu, B. (2005). Determination of phytohormones level in some dried and fresh macrofungi taxa. Phyton – Annales rei Botanicae, 45, pp. 145-157.

37. Vankova, R. (2014). Cytokinin regulation of plant growth and stress responses In: Phytohormones: a window to metabolism, signaling and biotechnological applications. N.Y., Heidelberg, Dordrecht, London: Springer Science + Business Media, pp. 55-80. https://doi.org/10.1007/978-1-4939-0491-4_3

38. Van Staden, J. & Nicholson, R.I.D. (1989). Cytokinins and mango flower malformation II. The cytokinin complement produced by Fusarium moniliforme and the ability of the fungus to incorporate [8-14C] adenine into cytokinins. Physiol. Mol. Plant Pathol., 35, pp. 423-431. https://doi.org/10.1016/0885-5765(89)90061-1

39. Voller, J., Zatloukal, M., Lenobel, R., Dolezal, K., Beres, T., Krystof, V., Spichal, L., Niemann, P., Dzubak, P., Hajduch, M. & Strnad, M. (2010). Anticancer activity of natural cytokinins: A structure-activity relationship study. Phytochemistry, 71, pp. 1350-1359. https://doi.org/10.1016/j.phytochem.2010.04.018

40. Wasser, S.P. (2014). Medicinal mushroom science: Current perspectives, advances, evidences, and challenges. Biomed. J., 37, pp. 345-356. https://doi.org/10.4103/2319-4170.138318

41. Wasser, S.P. (2010). Medicinal mushroom science: History, current status, future trends, and unsolved problems. Int. J. Med. Mushrooms, 12, pp. 1-16. https://doi.org/10.1615/IntJMedMushr.v12.i1.10

42. Wasser, S.P. & Weis, A.L. (1999). Medicinal properties of substances occurring in higher basidiomycetes mushrooms: current perspectives (review). Int. J. Med. Mushrooms, 1, pp. 31-62. https://doi.org/10.1615/IntJMedMushrooms.v1.i1.30

43. Werner, T. & Schmulling, T. (2009). Cytokinin action in plant development. Curr. Opin. Plant Biol., 12, pp. 527-538. https://doi.org/10.1016/j.pbi.2009.07.002

44. Yamamoto, K., Kimura, T., Sugitachi, A. & Matsuura, N. (2009). Anti-angiogenic and anti-metastatic effects of beta-1,3-d-glucan purified from Hanabiratake, Sparassis crispa. Biol. Pharmaceut. Bull., 32, pp. 259-263. https://doi.org/10.1248/bpb.32.259

45. Yoshikawa, K., Kokudo, N., Hashimoto, T., Yamamoto, K., Inose, T. & Kimura, T. (2010). Novel phthalate compounds from Sparassis crispa (Hanabiratake), Hanabiratakelide A-C, exhibiting anticancer related activity. Biol. Pharmaceut. Bull., 33, pp. 1355-1359. https://doi.org/10.1248/bpb.33.1355

46. Zhang, J. & Huang C. (2007). Study on germplasm characteristics of Pleurotus nebrodensis in China. Int. J. Med. Mushrooms, 9, pp. 365.