en   ru   uk  
 
 
Fiziol. rast. genet. 2019, vol. 51, no. 1, 55-66, doi: https://doi.org/10.15407/frg2019.01.055

Effects of exogenous abscisic acid on seed germination and morphological characteristics of two related wheats Triticum aestivum L. and Triticum spelta L.

Kosakivska I.V., Vasyuk V.A., Voytenko L.V.

  • M.G. Kholodny Institute of Botany, National Academy of Sciences of Ukraine  2 Tereshchenkivska St., Kyiv, 01601, Ukraine

The inhibitory effect of exogenous abscisic acid (ABA) on seed germination of related species Triticum aestivum L. and Triticum spelta L. was detected in laboratory conditions. ABA at concentration of 10-5 and 10-6 M significantly retarded the germination of grains of the winter wheat cv. Podolyanka. The number of grains with a clearly pronounced germinal root and a coleoptile-protected plume after 24 hours in the experimental plants was two times less than in the control. When incubated on a 10-7 M solution of ABA, the number of germinated grains approached the control. It was shown that germination of T. spelta cv. Frankenkorn seeds, which is considered as one of the probable wild precursors of soft wheat, was higher. The presence of hull positively influenced the germination of grain. After 24 hours, the number of grains with a clearly defined germinal root and coleoptile-protected plume was in the range of 65—81 %. The largest inhibitory effect was shown by ABA at a concentration of 10-5 M. Nonspecific and specific changes in the morphological characteristics of T. spelta and T. aestivum seedlings, caused by the action of exogenous ABA, were revealed. Thus, a change in the length of the leaves and roots was recorded for both types of wheat, but, the growth and development of T. spelta seedlings under incubation of grains on ABA solutions for the second and third days was suppressed, whereas T. aestivum intensified. Changes in the morphological parameters of seedlings of both types of wheat under incubation of grains on the 10-6 M solution of ABA were closer to control. A significant difference was observed between the winter wheat and spelt seedlings fresh weight, which in winter wheat increased during incubation at 10-6 and 10-7 M solutions of ABA, while in spelt seedlings was observed inhibition in accumulation of fresh weight. The greatest inhibitory effect was observed after 72 hours of incubation at 10-5 M solution of ABA. The possibility of exogenous ABA using for seeds priming in order to increase their stress resistance is discussed.

Keywords: Triticum aestivum, Triticum spelta, abscisic acid, morphometry, resistance

Fiziol. rast. genet.
2019, vol. 51, no. 1, 55-66

Full text and suplimented materials

Free full text: PDF  

References

1. Vasyuk, V.A., Generalova, V.M., Vedenichova, N.P., Martin, G.I. & Musatenko, L.I. (2005). Participation of abscisic acid in the regulation of growth of the primary leaf Phaseolus vulgaris L. Ukr. Botan. zhurn., 62, No. 5, pp. 574-580 [in Ukrainian].

2. Voytenko, L.V. & Kosakivska, I.V. (2016). Polyfunctional phytohormone abscisic acid. Visnyk Kharkiv. nats. agrar. un-tu, 1, No. 37, pp. 27-41 [in Ukrainian].

3. Kosakovskaya, I.V. (2008). Stress proteins of plants. Kiev: Phytocenter. 151 p. [in Russian].

4. Kosakovskaya, I.V., Vasyuk, V.A. & Voytenko, L.V. (2018). Effect of modeled soil drought on growth characteristics of related species Triticum aestivum L. and Triticum spelta L. Fiziol. rast. genet., 50, No. 3, pp. 241-252 [in Ukrainian].

5. Morgun, V.V., Sanin, Ye.V. & Shvartau, V.V. (2014). Club 100 centners. Modern varieties and systems of nutrition and protection of winter wheat. Kyiv: Logos [in Ukrainian].

6. Pustovoitova, T.N. & Meliksetyan, N.A. (1985). Inhibition of growth with abscisic acid and drought tolerance of wheat seedlings. Fiziologya Rasteniy, 32, No. 1, pp. 169-175 [in Russian].

7. Sytnik, K.M., Musatenko, L.I., Vasyuk, V.A., Vedenichova, N.P., Generalova, V.M., Martin, G.G. & Nesterova, A.N. (2003). Hormonal complex of plants and mushrooms. Kyiv [in Ukrainian].

8. Babenko, L.M., Hospodarenko, H.M., Rozhkov, R.V., Pariy, Ya.F., Pariy, M.F., Babenko, A.V. & Kosakivska, I.V. (2018). Triticum spelta L.: origin, biological characteristics and perspectives of use in breeding and agriculture. Regulatory Mechanisms in Biosystems, 8, No. 2, pp. 250-257. https://doi.org/10.15421/021837

9. Bassel, G.W., Lanc, H., Glaab, E., Gibbs, D.J., Gerjets, T., Krasnogor, N., Bonner, A.J., Holdsworth, M.J. & Provart, N.J. (2011). Genome-wide network model capturing seed germination reveals coordinated regulation of plant cellular phase transitions. Proc. Natl. Acad. Sci. USA, 108, No. 23, pp. 9709-9714. https://doi.org/10.1073/pnas.1100958108

10. Bray, E.A. (2002). Abscisic acid regulation of gene expression during water-deficit stress in the era of the Arabidopsis genome. Plant Cell Environ., 25, pp. 153-161. https://doi.org/10.1046/j.1365-3040.2002.00746.x

11. Chandrasekaran, U. & Liu, A. (2014). Endogenous abscisic acid signaling towards storage reserve filling in developing seed tissues of castor bean (Ricinus communis L.). Plant Growth Regul., 72, pp. 203-207. https://doi.org/10.1007/s10725-013-9846-z

12. Christmann, A., Weiler, E.W., Steudle, E. & Grill, E. (2007). A hydraulic signal in root-to-shoot signaling of water shortage. Plant J., 52, pp. 167-174. https://doi.org/10.1111/j.1365-313X.2007.03234.x

13. Finkelstein, R.R. & Rock, C.D. (2002). Abscisic acid biosynthesis and response. The Arabidopsis Book. Eds. C.R. Somerville, E.M. Meyerowitz. Amer. Soc. Plant Biologists: Rockville, MD, pp. 137-155. https://doi.org/10.1199/tab.0058

14. Finkelstein, R.R., Gampala, S.S. & Rock, C.D. (2002). Abscisic acid signaling in seeds and seedlings. Plant Cell., 14, pp. 15-45. https://doi.org/10.1105/tpc.010441

15. Graeber, K., Nakabayashi, K., Miatton, E., Leubner-Metzger, G. & Soppe, W.J.J. (2012). Molecular mechanisms of seed dormancy. Plant Cell Environ., 35, No. 10, pp. 1769-1786. https://doi.org/10.1111/j.1365-3040.2012.02542.x

16. Hasegawa, P.M., Bressan, R.A., Zhu, J.K. & Bohnert, H.J. (2000). Plant cellular and molecular responses to high salinity. Annu Rev. Plant Physiol. Plant Mol. Biol., 51, pp. 463-499. https://doi.org/10.1146/annurev.arplant.51.1.463

17. Humplík, J.F., Bergougnoux, V., Jandová, M., Šimura, J., Pěnčík, A., Tomanec, O., Rolčík, J., Novák O. & Fellner, M. (2015). Endogenous abscisic acid promotes hypocotyl growth and affects endoreduplication during dark-induced growth in tomato (Solanum lycopersicum L.). PLoS One., 10, No. 2, pp. 1-23. https://doi.org/10.1371/journal.pone.0117793

18. Humplík, J.F., Bergougnoux, V. & Van Volkenburgh, E. (2017). To stimulate or inhibit? That is the question for the function of abscisic acid. Trend Plant Sci., 22, No. 10, pp. 830-843. https://doi.org/10.1016/j.tplants.2017.07.009

19. Jia, W. & Zhang, J. (1999). Stomatal clousere is induced rather by previaling xylem abscisic acid than by accumulated amount of xylem-derived abscisic acid. Physiol. Plant., 106, No. 2, pp. 268-275. https://doi.org/10.1034/j.1399-3054.1999.106303.x

20. Olds, C.L., Glennon, E.K.K. & Luckhart, S. (2018). Abscisic acid: new perspectives on an ancient universal stress signaling molecule. Microbes and Infection, 34, pp. 1-40. https://doi.org/10.1016/j.micinf.2018.01.009

21. Phillips, J., Artsaenko, O., Fiedler, U., Horstmann, C., Mock, H. P., Muntz, K. & Conrad, U. (1997). Seed-specific immunomodulation of abscisic acid activity induces a developmental switch. EMBO J., 16, pp. 4489-4496. https://doi.org/10.1093/emboj/16.15.4489

22. Rock, C.D., Sakata, Y. & Quatrano, R.S. (2010). Stress signaling: the role of abscisic acid (ABA)/Abiotic Stress Adaptation in Plants. Eds. A. Pareek, S.A. Sopory, H.J. Bohner. Dordrecht. Springer, pp. 33-73.

23. Schmitz, K. (2006). Dinkel — ein Getreide mit Zukunft. Backmittelinstitut aktuell Sonderausgabe, pp. 1-8.

24. Taiz, L. & Zeiger, E. (2002). Abscisic acid: A seed maturation and antistress signal. Plant physiology. 3rd edn. L. Taiz, E. Zeiger. Sunderland: Sinauer Associates, pp. 539-558.

25. Takahashi, K. (1972). Abscisic acid as a stimulator for rice mesocotyl growth. Nat. New Biol., 238, pp. 92-93. https://doi.org/10.1038/newbio238092a0

26. Vishwakarmam, K., Upadhyay, N., Kumar, N., Yadav, G., Singh, J., Mishra, R., Kumar, Vivek, Verma, R., Upadhyay, R.G., Pandey, M. & Sharma, S. (2017). Abscisic acid signaling and abiotic stress tolerance in plants: a review on current knowledge and future prospects. Frontiers in Plant Sci., 8, pp. 161-173.

27. Wilkinson, S. & Davies, W.J. (2002). ABA-Based chemical signalling: the Co-ordination of responses to stress in plants. Plant Cell Environ., 25, No. 1, pp. 195-210. https://doi.org/10.1046/j.0016-8025.2001.00824.x

1. Vasyuk, V.A., Generalova, V.M., Vedenichova, N.P., Martin, G.I. & Musatenko, L.I. (2005). Participation of abscisic acid in the regulation of growth of the primary leaf Phaseolus vulgaris L. Ukr. Botan. zhurn., 62, No. 5, pp. 574-580 [in Ukrainian].

2. Voytenko, L.V. & Kosakivska, I.V. (2016). Polyfunctional phytohormone abscisic acid. Visnyk Kharkiv. nats. agrar. un-tu, 1, No. 37, pp. 27-41 [in Ukrainian].

3. Kosakovskaya, I.V. (2008). Stress proteins of plants. Kiev: Phytocenter. 151 p. [in Russian].

4. Kosakovskaya, I.V., Vasyuk, V.A. & Voytenko, L.V. (2018). Effect of modeled soil drought on growth characteristics of related species Triticum aestivum L. and Triticum spelta L. Fiziol. rast. genet., 50, No. 3, pp. 241-252 [in Ukrainian].

5. Morgun, V.V., Sanin, Ye.V. & Shvartau, V.V. (2014). Club 100 centners. Modern varieties and systems of nutrition and protection of winter wheat. Kyiv: Logos [in Ukrainian].

6. Pustovoitova, T.N. & Meliksetyan, N.A. (1985). Inhibition of growth with abscisic acid and drought tolerance of wheat seedlings. Fiziologya Rasteniy, 32, No. 1, pp. 169-175 [in Russian].

7. Sytnik, K.M., Musatenko, L.I., Vasyuk, V.A., Vedenichova, N.P., Generalova, V.M., Martin, G.G. & Nesterova, A.N. (2003). Hormonal complex of plants and mushrooms. Kyiv [in Ukrainian].

8. Babenko, L.M., Hospodarenko, H.M., Rozhkov, R.V., Pariy, Ya.F., Pariy, M.F., Babenko, A.V. & Kosakivska, I.V. (2018). Triticum spelta L.: origin, biological characteristics and perspectives of use in breeding and agriculture. Regulatory Mechanisms in Biosystems, 8, No. 2, pp. 250-257. https://doi.org/10.15421/021837

9. Bassel, G.W., Lanc, H., Glaab, E., Gibbs, D.J., Gerjets, T., Krasnogor, N., Bonner, A.J., Holdsworth, M.J. & Provart, N.J. (2011). Genome-wide network model capturing seed germination reveals coordinated regulation of plant cellular phase transitions. Proc. Natl. Acad. Sci. USA, 108, No. 23, pp. 9709-9714. https://doi.org/10.1073/pnas.1100958108

10. Bray, E.A. (2002). Abscisic acid regulation of gene expression during water-deficit stress in the era of the Arabidopsis genome. Plant Cell Environ., 25, pp. 153-161. https://doi.org/10.1046/j.1365-3040.2002.00746.x

11. Chandrasekaran, U. & Liu, A. (2014). Endogenous abscisic acid signaling towards storage reserve filling in developing seed tissues of castor bean (Ricinus communis L.). Plant Growth Regul., 72, pp. 203-207. https://doi.org/10.1007/s10725-013-9846-z

12. Christmann, A., Weiler, E.W., Steudle, E. & Grill, E. (2007). A hydraulic signal in root-to-shoot signaling of water shortage. Plant J., 52, pp. 167-174. https://doi.org/10.1111/j.1365-313X.2007.03234.x

13. Finkelstein, R.R. & Rock, C.D. (2002). Abscisic acid biosynthesis and response. The Arabidopsis Book. Eds. C.R. Somerville, E.M. Meyerowitz. Amer. Soc. Plant Biologists: Rockville, MD, pp. 137-155. https://doi.org/10.1199/tab.0058

14. Finkelstein, R.R., Gampala, S.S. & Rock, C.D. (2002). Abscisic acid signaling in seeds and seedlings. Plant Cell., 14, pp. 15-45. https://doi.org/10.1105/tpc.010441

15. Graeber, K., Nakabayashi, K., Miatton, E., Leubner-Metzger, G. & Soppe, W.J.J. (2012). Molecular mechanisms of seed dormancy. Plant Cell Environ., 35, No. 10, pp. 1769-1786. https://doi.org/10.1111/j.1365-3040.2012.02542.x

16. Hasegawa, P.M., Bressan, R.A., Zhu, J.K. & Bohnert, H.J. (2000). Plant cellular and molecular responses to high salinity. Annu Rev. Plant Physiol. Plant Mol. Biol., 51, pp. 463-499. https://doi.org/10.1146/annurev.arplant.51.1.463

17. Humplík, J.F., Bergougnoux, V., Jandová, M., Šimura, J., Pěnčík, A., Tomanec, O., Rolčík, J., Novák O. & Fellner, M. (2015). Endogenous abscisic acid promotes hypocotyl growth and affects endoreduplication during dark-induced growth in tomato (Solanum lycopersicum L.). PLoS One., 10, No. 2, pp. 1-23. https://doi.org/10.1371/journal.pone.0117793

18. Humplík, J.F., Bergougnoux, V. & Van Volkenburgh, E. (2017). To stimulate or inhibit? That is the question for the function of abscisic acid. Trend Plant Sci., 22, No. 10, pp. 830-843. https://doi.org/10.1016/j.tplants.2017.07.009

19. Jia, W. & Zhang, J. (1999). Stomatal clousere is induced rather by previaling xylem abscisic acid than by accumulated amount of xylem-derived abscisic acid. Physiol. Plant., 106, No. 2, pp. 268-275. https://doi.org/10.1034/j.1399-3054.1999.106303.x

20. Olds, C.L., Glennon, E.K.K. & Luckhart, S. (2018). Abscisic acid: new perspectives on an ancient universal stress signaling molecule. Microbes and Infection, 34, pp. 1-40. https://doi.org/10.1016/j.micinf.2018.01.009

21. Phillips, J., Artsaenko, O., Fiedler, U., Horstmann, C., Mock, H. P., Muntz, K. & Conrad, U. (1997). Seed-specific immunomodulation of abscisic acid activity induces a developmental switch. EMBO J., 16, pp. 4489-4496. https://doi.org/10.1093/emboj/16.15.4489

22. Rock, C.D., Sakata, Y. & Quatrano, R.S. (2010). Stress signaling: the role of abscisic acid (ABA)/Abiotic Stress Adaptation in Plants. Eds. A. Pareek, S.A. Sopory, H.J. Bohner. Dordrecht. Springer, pp. 33-73.

23. Schmitz, K. (2006). Dinkel — ein Getreide mit Zukunft. Backmittelinstitut aktuell Sonderausgabe, pp. 1-8.

24. Taiz, L. & Zeiger, E. (2002). Abscisic acid: A seed maturation and antistress signal. Plant physiology. 3rd edn. L. Taiz, E. Zeiger. Sunderland: Sinauer Associates, pp. 539-558.

25. Takahashi, K. (1972). Abscisic acid as a stimulator for rice mesocotyl growth. Nat. New Biol., 238, pp. 92-93. https://doi.org/10.1038/newbio238092a0

26. Vishwakarmam, K., Upadhyay, N., Kumar, N., Yadav, G., Singh, J., Mishra, R., Kumar, Vivek, Verma, R., Upadhyay, R.G., Pandey, M. & Sharma, S. (2017). Abscisic acid signaling and abiotic stress tolerance in plants: a review on current knowledge and future prospects. Frontiers in Plant Sci., 8, pp. 161-173.

27. Wilkinson, S. & Davies, W.J. (2002). ABA-Based chemical signalling: the Co-ordination of responses to stress in plants. Plant Cell Environ., 25, No. 1, pp. 195-210. https://doi.org/10.1046/j.0016-8025.2001.00824.x