en   ru   uk  
 
 
Fiziol. rast. genet. 2019, vol. 51, no. 5, 399-414, doi: https://doi.org/10.15407/frg2019.05.399

Content of inorganic elements in winter wheat grain when controlling fusarium

Mykhalska L.M., Schwartau V.V., Sanin O.Yu., Tretyakov V.O.

  • Institute of Plant Physiology and Genetics, National Academy of Sciences of Ukraine 31/17 Vasylkivska St., Kyiv, 03022, Ukraine

The influence of modern fungicides of triazole and strobilurin classes, as well as fertilizers containing microelements and amino acids on the accumulation of macro- and microelements in the grain of highly productive varieties of winter wheat has been studied. Determination of inorganic elements content in grain samples was carried out on mass spectrometers with inductively coupled plasma ICP-MS «Agilent 7700w» and «Agilent 7500» using ICP-MS Mass Hunter Work Station. It has been established that the application of fertilizers based on the complex of microelements (Brexil Mix) and on algae hydrolyzates (which contain amino acids) — Megafol, in foliar treatments, does not significantly affect the grain elemental composition of winter wheat varieties Smuglyanlka and Podolyanka. It has been revealed that the application of fungicides Alto Super, Amistar Extra and Magnello in the phase of BBCH 37 provides the greatest prolonged protective action against pathogens. The use of Amistar Extra and Magnello contributed to the elongation of crops vegetation, which may cause changes in the elemental composition of winter wheat.

Keywords: Triticum aestivum L., Fusarium, ICP-MS, fungicides, inorganic elements, effectivity

Fiziol. rast. genet.
2019, vol. 51, no. 5, 399-414

Full text and suplimented materials

Free full text: PDF  

References

1. Morgun, V.V., Schwartau, V.V. & Kiriziy, D.A. (2010). Physiological fundamentals of grain cereals high productivity forming. Fiziologiya i biokhimiya kult. rastenii, 42, No. 5, pp. 371-392 [in Russian].

2. Fedoroff, N. V. (2015). Food in a future of 10 billion. Agric. & Food Secur., 4, p. 11. https://doi.org/10.1186/s40066-015-0031-7

3. Commonwealth Scientific and Industrial Research Organisation (CSIRO) website: http://www.csiro.gov.au (select: Agribusiness/Field Crops/Field Crops & Australia).

4. Retman, S.V. & Kislyh, T.M. (2011). Fusariosis of the ear. Analysis of changes in the pathogenic complex of pathogens. Quarantine and plant protection, No. 2, pp. 1-3 [in Ukrainian].

5. Retman, S.V., Shevchuk, O.V. & Gorbachev, N.P. (2011). Diseases of the leaves and ear of cereal crops: distribution, development and protection measures. Quarantine and Plant Protection, No. 4, pp. 25-27 [in Ukrainian].

6. Gagkayeva, T.Yu., Dmitriev, A.P. & Pavlyushin, V.A. (2012). The grain microbiota is an index of its quality and safety. Protection and quarantine of plants, No. 9, pp. 14-18 [in Russian].

7. Gagkaeva, T.Y., Gavrilova, O.P., Levitin, M.M. & Novozhilov, K.V. (2011). Fusariosis of Grain Cultures. Appendix to the journal "Protection and Plant Quarantine", No. 5, p. 120 [in Russian].

8. McMullen, M., Halley, S., Schatz, B., Meyer, S., Jordahl, J. & Ransom, J. (2008). Integrated strategies for Fusarium head blight management in the United States. Cereal Res. Commun., No. 36, pp. 563-568. https://doi.org/10.1556/CRC.36.2008.Suppl.B.45

9. McMullen, M.P., Bergstrom, G.C., DeWolf, E., Dill-Macky, R., Hershman, D., Shaner, G. & Van Sanford, D. (2012). A unified effort to fight an enemy of wheat and barley: Fusarium head blight. Plant Dis., No. 96, pp. 1712-1728. https://doi.org/10.1094/PDIS-03-12-0291-FE

10. Schwartau, V.V., Zozulya, O.L., Mykhalska, L.M. & Sanin, O.Yu. (2016). Fusariosis of plant crops. Kyiv: Logos [in Ukrainian].

11. Cakmak, I., Ozkan, H., Braun, H.J., Welch, R.M. & Romheld, V. (2000). Zinc and iron concentrations in seeds of wild, primitive and modern wheats. Food Nutr. Bull., No. 21, pp. 401-403. https://doi.org/10.1177/156482650002100411

12. Cakmak, I. (2008). Enrichment of cereal grains with zinc: Agronomic or genetic biofortification? Plant and Soil, No. 302(1), pp. 1-17. https://doi.org/10.1007/s11104-007-9466-3

13. Rosado, J.L., Hambidge, K.M., Miller, L.V., Garcia, O.P., Westcott, J., Gonzalez, K., Conde, J., Hotz, C., Pfeiffer, W., Ortiz-Monasterio, I. & Krebs, N.F. (2009). The quantity of zinc absorbed from wheat in adult women is enhanced by biofortification. J. Nutr., No. 139(10), pp. 1920-1925. https://doi.org/10.3945/jn.109.107755

14. Lyons, G. & Cakmak, I. (2012). Agronomic biofortification of food crops with micronutrients. Fertilizing Crops to Improve Human Health: a Scientific Review. Food and Nutrition Security. Paris, IFA-IPNI Publ., No. 1, pp. 97-122.

15. Yoshida, M., Nakajima, T. & Tonooka, T. (2008). Effect of nitrogen application at anthesis on Fusarium head blight and mycotoxin accumulation in breadmaking wheat in the western part of Japan. J. Gen. Plant Pathol., No. 74, p. 355. https://doi.org/10.1007/s10327-008-0109-1

16. Lemmens, M., Haim, K., Lew, H. & Ruckenbauer, P. (2004). The effect of nitrogen fertilization on Fusarium head blight development and deoxynivalenol contamination in wheat. Journal of Phytopathology, No. 152(1), pp. 1-8. https://doi.org/10.1046/j.1439-0434.2003.00791.x

17. Marin, P., Moretti, A., Ritieni, A., Jurado, M., Vazquez, C. & Gonzalez-Jaen, M.T. (2012). Phylogenetic analyses and toxigenic profiles of Fusarium equiseti and Fusarium acuminatum isolated from cereals from Southern Europe. Food Microbiol., No. 2, pp. 229-237. https://doi.org/10.1016/j.fm.2012.03.014

18. Khoshgoftarmanesh, A.H., Kabiri, S., Shariatmadari, H., Sharifnabi, B. & Schulin, R. (2010). Zinc nutrition effect on the tolerance of wheat genotypes to Fusarium root-rot disease in a solution culture experiment. Soil Science and Plant Nutrition, No. 56(2), pp. 234-243. https://doi.org/10.1111/j.1747-0765.2009.00441.x

19. Grewal, H.S., Graham, R.D. & Rengel, Z. (1996). Genotypic variation in zinc efficiency and resistance to crown rot disease (Fusarium graminearum Schw. Group 1) in wheat. Plant Soil, No. 186, pp. 219-226. https://doi.org/10.1007/BF00014756

20. Sparrow, D. H. & Graham, R. D. (1988). Susceptibility of zinc-deficient wheat plants to colonization by Fusarium graminearum Schw. Group 1. Plant Soil, No. 112, pp. 261-266. https://doi.org/10.1007/BF02140004

21. Gaurs, R.B. & Vaidya, P.K. (1983). Reduction of root rot of chickpea by soil application of phosphorus and zinc. International Chickpea Newsletter, No. 9, pp. 17-18.

22. Dordas, C. (2008). Role of nutrients in controlling plant diseases in sustainable agriculture. A review. Agronomy for Sustainable Development, Springer Verlag/EDP Sciences/INRA, No. 28(1), pp. 33-46. https://doi.org/10.1051/agro:2007051

23. Cakmak, I. & Kutman, B. (2018). Agronomic biofortification of cereals with zinc. Areview. Eur. J. Soil Sci., No. 69, pp. 172-180. https://doi.org/10.1111/ejss.12437

24. Masson, P., Dalix, T. & Bussiere, S. (2010). Determination of major and trace elements in plant samples by inductively coupled plasma-mass spectrometry. Communications in Soil Science and Plant Analysis, No. 41(3), pp. 231-243. https://doi.org/10.1080/00103620903460757

25. Bouis, H.E., Hotz, C., McClafferty, B., Meenakshi, J.V. & Pfeiffer, W. H. (2011). Biofortification: a new tool to reduce micronutrient malnutrition. Food Nutr. Bull., No. 32, pp. 31-40. https://doi.org/10.1177/15648265110321S105

26. Cubadda, F., Baldini, M., Carcea, M., Pasqui, L.A., Raggi, A. & Stacchini, P. (2001). Influence of laboratory homogenization procedures on trace element content of food samples: an ICP-MS study on soft and durum wheat. Food Additives and Contaminants, 18, No. 9, pp. 778-787. https://doi.org/10.1080/02652030120630

27. Gomez-Becerra, H.F., Yazici, A., Ozturk, L., Budak, H., Peleg, Z., Morgounov, A., Fahima, T., Saranga, Y. & Cakmak, I. (2010). Genetic variation and environmental stability of grain mineral nutrient concentrations in Triticum dicoccoides under five environments. Euphytica, No. 171, pp. 39-52. https://doi.org/10.1007/s10681-009-9987-3

28. Hebbern, C.A., Pedas, P., Schjoerring, J.K., Knudsen, L. & Husted, S. (2005). Genotypic differences in manganese efficiency: fiald experiments with winter barley (Hordeum vulgare L.). Plant Soil, No. 272, pp. 233-244. https://doi.org/10.1007/s11104-004-5048-9

29. Pokhylko, S.Yu., Schwartau, V.V., Mykhalska, L.M., Dugan, O.M. & Morgun, B.V. (2016). ICP-MS analysis of bread wheat carrying the GPC-B1 gene of Triticum turgidum ssp. dicoccoides. Biotechnologia Acta, No. 9(5), pp. 64-69. https://doi.org/10.15407/biotech9.05.065

30. El-Haramein, F.J. & Grando, S. Determination of iron and zinc content in food barley. Ceccarelli, S. & Grando, S. (eds). (2010). Proceedings of the 10th International Barley Genetics Symposium. 5-10 April 2008, Alexandria, Egypt. ICARDA, POBox 5466, Aleppo, Syria, pp. 603-606.

31. Persson, D.P., Hansen, T.H., Laursen, K.H., Husted, S. & Schjoerring, J.K. (2012). ICP-MS and LC-ICP-MS for analysis of trace element content and speciation in cereal grains. Plant Metabolomics, series Methods in Molecular Biology, No. 860, pp. 193-211. https://doi.org/10.1007/978-1-61779-594-7_13

32. Pilon-Smits Elizabeth, A.H. (2015). Selenium in Plants. Liittge, U., Beyschlag, W. (eds.). Progress in Botany. Springer International Publishing Switzerland, No. 76, pp. 93-107. https://doi.org/10.1007/978-3-319-08807-5_4

33. Zhang, Y.-J., Zhang, X., Chen, C.-J., Zhou, M.-G. & Wang, H.-C. (2010). Effects of fungicides JS399-19, azoxystrobin, tebuconazole and carbendazim. Pesticide Biochemistry and Physiology, 98, is. 2, pp. 151-157. https://doi.org/10.1016/j.pestbp.2010.04.007

34. Van Dingenen, J., Antoniou, C., Filippou, P., Pollier, J., Gonzalez Sanchez, N., Dhondt, S., Goossens, A., Fotopoulos, V. & Inze, D. (2017). Strobilurins as growth-promoting compounds: how Stroby regulates Arabidopsis leaf growth. Plant Cell and Environment, 40(9), pp. 1748-1760. https://doi.org/10.1111/pce.12980