en   ru   uk  
 
 
Fiziol. rast. genet. 2019, vol. 51, no. 2, 172-182, doi: https://doi.org/10.15407/frg2019.02.172

The influence of Cd2+ ions on the activity of stromal carbonic anhydrases of spinach chloroplasts

Topchiy N.M.1, Polishchuk O.V.1, Zolotareva E.K.1, Sytnyk S.K.2

  1. M.G. Kholodny Institute of Botany, National Academy of Sciences of Ukraine 2 Tereshchenkivska St., Kyiv, 01004, Ukraine
  2. Institute of Plant Physiology and Genetics, National Academy of Sciences of Ukraine  31/17 Vasylsivska St., Kyiv, 03022, Ukraine

The fraction of stromal proteins was obtained after osmotic destruction of whole chloroplasts isolated from spinach leaves (Spinacia oleracea) and washed from the cytosol components. The effect of cadmium ions on the activity of stromal carbonic anhydrase (CA) was studied by infrared CO2 analysis. The half-maximal inhibition of CA dehydratase activity was observed under 35 µM CdCl2 in the solution; at 80 µM CdCl2, the enzyme activity was 15 % of the control. The CA activity in PAAG after non-denaturing electrophoresis was visualized by the change in the color of the bromothymol blue indicator at the sites of CA localization. Four protein zones with different mobility and different levels of CA activity were identified. The number of zones with CA activity and the intensity of their staining decreased after pre-incubation of the stromal proteins with CdCl2, depending on its concentration. The low molecular weight form of CA was the most sensitive to the Cd2+ action, whose activity was completely suppressed in the samples treated with 80 µM CdCl2, while the CA migra­ted together with Rubisco remained partly active after stromal proteins incubation with 150 µM CdCl2. The obtained data confirm the possibility of chloroplast CA using as a biomarker for early monitoring of the environmental pollution by heavy metals.

Keywords: Spinacia oleracea, cadmium, carbonic anhydrase, biomarker

Fiziol. rast. genet.
2019, vol. 51, no. 2, 172-182

Full text and suplimented materials

Free full text: PDF  

References

1. https://eur-lex.europa.eu/

2. Shahid, M., Dumat, C., Khalid, S., Niazi, N. K. & Antunes, P. M. (2016). Cadmium bioavailability, uptake, toxicity and detoxification in soil-plant system. Reviews of Environmental Contamination and Toxicology, 241, pp. 73-137. https://doi.org/10.1007/398_2016_8

3. Ilyin, V.B. (2012). Heavy metals and non-metals in the soil-plant system. Novosibirsk: Science. 218 p. [in Russian].

4. Kupper, H. & Leitenmaier, B. (2013). Cadmium-accumulating plants. In Cadmium: from toxicity to essentiality. Springer, Dordrecht, pp. 373-393. https://doi.org/10.1007/978-94-007-5179-8_12

5. Dias, M. C., Monteiro, C., Moutinho-Pereira, J., Correia, C., Goncalves, B. & Santos, C. (2012). Cadmium toxicity affects photosynthesis and plant growth at different levels. Acta Physiol. Plant., 35, No. 4, pp. 1281-1289. https://doi.org/10.1007/s11738-012-1167-8

6. Benavides, M. P., Gallego, S. M., & Tomaro, M. L. (2005). Cadmium toxicity in plants. Brazilian J. of Plant Physiol., 17, No. 1, pp. 21-34. https://doi.org/10.1590/S1677-04202005000100003

7. Perreault, F., Dionne, J., Didur, O., Juneau, P. & Popovic, R. (2011). Effect of cadmium on photosystem II activity in Chlamydomonas reinhardtii: alteration of O-J-I-P fluorescence transients indicating the change of apparent activation energies within photosystem II. Photosynth. Res., 107, No. 2, pp. 151-157. https://doi.org/10.1007/s11120-010-9609-x

8. Faller, P., Kienzler, K. & Krieger-Liszkay, A. (2005). Mechanism of Cd2+ toxicity: Cd2+ inhibits photoactivation of photosystem II by competitive binding to the essential Ca2+ site. Biochim. Biophys. Acta, 1706, No. 1-2, pp. 158-164. https://doi.org/10.1016/j.bbabio.2004.10.005

9. Sigfridsson, K.G.V., Bernat, G., Mamedov. F. & Styring, S. (2004). Molecular interference of Cd2+ with photosystem II. Biochim. Biophys. Acta, 1659, pp.19-31. https://doi.org/10.1016/j.bbabio.2004.07.003

10. Fagioni, M., D'Amici, G.M., Timperio, A.M. & Zolla, L. (2009). Proteomic analysis of multiprotein complexes in the thylakoid membrane upon cadmium treatment. J. Proteome Res. 8, pp. 310-326. https://doi.org/10.1021/pr800507x

11. Pietrini, F., Iannelli, M. A., Pasqualini, S. & Massacci, A. (2003). Interaction of cadmium with glutathione and photosynthesis in developing leaves and chloroplasts of Phragmites australis. Plant Physiol., 133, No. 2, pp. 829-837. https://doi.org/10.1104/pp.103.026518

12. Krupa, Z., Oquist, G. & Huner, N. P. (1993). The effects of cadmium on photosynthesis of Phaseolus vulgaris - a fluorescence analysis. Physiol. Plant., 88, No. 4, pp. 626-630. https://doi.org/10.1111/j.1399-3054.1993.tb01381.x

13. Asencio, C.I. & Cedeno-Maldonado, A. (1978). Effects of cadmium on carbonic anhydrase and activities dependent on electron transport of isolated chloroplasts. J. Agric. Univ. Puerto Rico, 63, pp. 195-201.

14. Polishchuk, A. V., Semenihin, A. V., Topchiy, N. M. & Zolotareva, O. K. (2018). Inhibition of multiple forms of carbonic anhydrases of spinach chloroplasts by Cu ions. Dopov. Nac. akad. nauk Ukr., No. 4, pp. 94-101. https://doi.org/10.15407/dopovidi2018.04.094

15. Hall, D. O. (1972). Nomenclature of isolated chloroplasts. Nature, 235, No. 56, pp. 125-128. https://doi.org/10.1038/newbio235125a0

16. Reeves, S. G. & Hall, D. O. (1980). Higher plants chloroplasts and grana: general preparative procedures (excluding high carbon dioxide fixation ability chloroplasts). Methods Enzymol., 69, pp. 85-94. https://doi.org/10.1016/S0076-6879(80)69010-7

17. Arnon, D.I. (1949). Copper enzymes in isolated chloroplast. Polyphenoloxidase in Beta vulgaris. Plant Physiol., 24, No. 1, pp. 1-15. https://doi.org/10.1104/pp.24.1.1

18. Ornstein, L. & Davis, B. J. (1964). Disc electrophoresis I. Background and theory. Ann. N. Y. Acad. Sci., 121, pp. 321-349. https://doi.org/10.1111/j.1749-6632.1964.tb14207.x

19. Edwards, L. J. & Patton, R. L. (1966). Visualization of carbonic anhydrase activity in polyacrilamide gel. Stain Technol., 41, No. 6, pp. 333-334. https://doi.org/10.3109/10520296609116335

20. Wilbur, K.W. & Anderson, N.G. (1948). Electrometric and colorimetric determination of carbonic anhydrase. J. Biol. Chem., 176, pp. 147-154.

21. Kimber, M.S. & Pai, E.F. (2000). The active site architecture of Pisum sativum beta-carbonic anhydrase is a mirror image of that of alpha-carbonic anhydrases. EMBO J., 19, No. 7, pp. 1407-1418. https://doi.org/10.1093/emboj/19.7.1407

22. Rudenko, N.N., Ignatova, L.K., Fedorchuk, T.P. & Ivanov, B.N. (2015). Carbonic anhydrases in photosynthetic cells of higher plants. Biochemistry, 80, No. 6, pp. 798-813. https://doi.org/10.1134/S0006297915060048

23. Fabre, N., Reiter, I.M., Becuwe-Linka, N., Genty, B. & Rumeau, D. (2007). Characterization and expression analysis of genes encoding a and b carbonic anhydrases in Arabidopsis. Plant Cell Environ., 30, pp. 617-629. https://doi.org/10.1111/j.1365-3040.2007.01651.x

24. Moroney, J.V., Bartlett, S.G. & Samuelsson, G. (2001). Carbonic anhydrases in plants and algae. Plant Cell Environ., 24, pp. 141-153. https://doi.org/10.1111/j.1365-3040.2001.00669.x

25. DiMario, R. J., Clayton, H., Mukherjee, A., Ludwig, M. & Moroney, J.V. (2017). Plant carbonic anhydrases: structures, locations, evolution, and physiological roles. Mol. Plant., 10, pp. 30-46. https://doi.org/10.1016/j.molp.2016.09.001

26. DiMario, R.J., Quebedeaux, J.C., Longstreth, D.J., Dassanayake, M., Hartman, M.M. & Moroney, J.V. (2016). The cytoplasmic carbonic anhydrases b-CA2 and b-KA4 are required for optimal plant growth at low CO2. Plant Physiol., 171, pp. 280-293. https://doi.org/10.1104/pp.15.01990

27. Badger, M.R. & Price, G.D. (1994). The role of carbonic anhydrase in photosynthesis. Ann. Rev. Plant Physiol. Plant Mol. Biol., 45, pp. 369-392. https://doi.org/10.1146/annurev.pp.45.060194.002101

28. Johansson, I.M. & Forsman, C. (1993). Kinetic studies of pea carbonic anhydrase. Eur. J. Biochem., 218, No. 2, pp. 439-446. https://doi.org/10.1111/j.1432-1033.1993.tb18394.x

29. Kaplan, A. & Reinhold, L. (1999). CO2 concentrating mechanisms in photosynthetic microorganisms. Ann. Rev. Plant Biol., 50, No. 1, pp. 539-570. https://doi.org/10.1146/annurev.arplant.50.1.539

30. Jebanathirajah, J. A. & Coleman, J.R. (1998). Association of carbonic anhydrase with a Calvin cycle enzyme complex in Nicotiana tabacum. Planta, 204, pp. 177-182. https://doi.org/10.1007/s004250050244

31. Lionetto, M. G., Caricato, R., Giordano, M. E., Erroi, E. & Schettino, T. (2012). Carbonic anhydrase and heavy metals. Biochemistry ed. by Ekinci D., pp. 205-224. ISBN: 978-953-51-0076-8.

32. Lionetto, M. G., Caricato, R., Giordano, M. E. & Schettino, T. (2016). The complex relationship between metals and carbonic anhydrase: new insights and perspectives. Int. J. Mol. Sci., 17, No. 127, pp. 1-14. https://doi.org/10.3390/ijms17010127

33. Soyut, H., Beydemir, Є. & Hisar, O. (2008). Effects of some metals on carbonic anhydrase from brains of rainbow. Trout. Biol. Trace Elem. Res., 123, No. 1, pp. 179-190. https://doi.org/10.1007/s12011-008-8108-9