Fiziol. rast. genet. 2024, vol. 56, no. 2, 95-129, doi:

Wholemeal products — the world's health strategy

Rybalka О.І.1,2, Morgun V.V.2, Polyshchuk S.S.1, Chervonys M.V.1, Morgun B.V.2,3, Sokolov V.М.1

  1. Plant Breeding and Genetics Institute — National Center of Seed and Cultivars Investigation, National Academy of Agrarian Sciences of Ukraine  3 Ovidiopolska Rd., Odesa, 65036, Ukraine
  2. Institute of Plant Physiology and Genetics, National Academy of Sciences of Ukraine 31/17 Vasylkivska St., Kyiv, 03022, Ukraine
  3. Institute of Cell Biology and Genetic Engineering, National Academy of Sciences of Ukraine  148 Akademika Zabolotnoho St., Kyiv, 03143, Ukraine

The data of wheat bran compounds composition, bran biochemistry, bran properties as well as physiological effects on the human’s organism some of the individual bran compounds and their synergy in terms of positive influence on the human health are reviewed. Overwhelming majority of valuable for human health compounds of wheat grain accumulated in the outer grain layers such as bran, aleurone layer and germ. They are all presenting together the milling fraction of technological bran, that are screened out separately while grain processing, and used as feed for animal. Refined white flour with bran removed loose from 50 % to 90 % valuable for health vitamins, minerals and bioactive compounds thereby needed to be artificially fortified by vitamin and mineral additives. Reasonable alternative to refined white flour is a wholemeal flour with no bran separation that keeps untouchable all of the valuable grain nutrients. Numerous scientific and clinical research of the whole wheat grain and wheat bran compounds have evidenced their positive effect on human health, and argued the necessity potentially to get rid of the white flour wheat products and considerably enhancing preferable consumption of the wholemeal products in the worldwide population diet. In 2017 in Vienna the 6-th International Wholemeal Summit has accepted the special Wholegrain Initiative (WIG) coordinated by International Association for Cereal Science and Technology (ICC). Within the body of WIG the array of international programs aimed on the wholemeal wheat and other cereal products popularisation were approved. The review gives comprehensive characteristics of the wheat bran composition including important for health ingredients such as insoluble and soluble fibre, polyphenol acids, vitamins and minerals, bioactive peptides, powerful antioxidants protecting human organism against such kind of destructive pathologies like cancer, cardiovascular diseases, diabetes mellitus, at ctr. The review describes a new prospective trend in the modern world breeding aimed at improvement of the wheat bran and wheat grain nutritional status by development of coloured wheat cultivars with blue, purple and black grain. The grain colour caused by flavonoid pigments anthocyanins widely presented in coloured fruits and berries such as blueberry, bilberry, strawberry, and possessing a very high antioxidant activity comparable with the strongest antioxidants. Considerable attention focused also on the wholemeal flour fermented products. Lactobacillus fermentation drastically ameliorates the nutritional value of the wholemeal flour and flour-derived food products due to activation of fermented reactions resulting in biosynthesis of new bioactive compounds as well as neutralising of the antinutritional and toxic exogenous contaminants. The review contains the author’s recommendations for the new scientific and technological research of the wholemeal flour and flour-based products in Ukraine, development of the new wheat cultivars possessing the functional food status, enforcement of the healthy wholemeal food production as well as active popularization of the wholemeal products in the populations, enhancement of the wholemeal products consumption in the human’s healthy nutrition.

Keywords: wheat, wholemeal products, bran, coloured grain, healthy nutrition

Fiziol. rast. genet.
2024, vol. 56, no. 2, 95-129

Full text and supplemented materials

Free full text: PDF  


1. Burkitt, B.P. (1971). Epidemiology of cancer of the colon and rectum. Cancer, 28 (1), pp. 3-13.<3::AID-CNCR2820280104>3.0.CO;2-N

2. Onipe, O., Lideani, A. & Beswa, D. (2015). Composition and functionality of wheat bran and its application in some cereal food products. Int. J. Food Sci. Technol., 50, pp. 2509-2518.

3. Schroeder, H.A. (1971). Losses of vitamins and trace minerals resulting from processing and preservations of foods. Am. J. Clin. Nutr., 24 (5), pp. 562-573.

4. Cardozo, R.V., Fernandes, A., Gonzalйz-Paramбs, A., Barros, L. & Ferreira, I.C. (2019). Flour fortification for nutrition and health improvement: A review. Food Res. Int., 125, pp. 2-11.

5. WHO (2017). Nutrients. Retrieved February 27, 2019 from nutrient/en/

6. Kaim, U. & Goluch, S. (2023). Health benefits of bread fortification: a systematic review of clinical trials according to the PRIZMA statement. Nutrients, 15, p. 4459.

7. Fardet, A. (2010). New hypothesis for the health-protective mechanism of whole-grain cereals: what is beyond fibre? Nutr. Res. Rev., 23 (1), pp. 65-134.

8. Curti, E., Carini, E., Bonacini, G., Tribuzio, G. & Vittadini, E. (2013). Effect of the addition of bran fractions on bread properties. J. Cer. Sci., 57 (3), pp. 325-332.

9. Prьcker, M., Siebenhandl-Ehn, S., Apprich, S., Hцltinger, S., Haas, C., Schmid, E. & Kneifel, W. (2014). Wheat bran-based biorefinery 1. Composition of wheat bran and strategies functionalization. LWT-Food Sci. Technol., 56 (2), pp. 211-221.

10. Brier, N., Hemdane, S., Dornez, E., Gomand, S., Delcour, A. & Courtin, C. (2015). Structure, chemical composition and enzymatic activities of pearlings and bran obtained from pearled wheat (Triticum aestivum L.) by roller milling. J. Cer. Sci., 62, pp. 66-72.

11. Andersson, A., Dimberg, L., Eman, P. & Landberg, L. (2014). Recent finding on certain bioactive components in whole grain wheat and rye. J. Cer. Sci., 59 (3), pp. 294-311.

12. Brouns, F., Hemery, Y., Price, R. & Anson, N-M. (2012). Wheat aleurone: separation, composition, health aspects, and potential for use. Crit. Rev. Food Sci. Nutr., 52 (6), pp. 553-568.

13. Almedia, E.L., Chang, Y.K. & Steel, C.J. (2013). Dietary fibre sources in bread: influence on technological quality. Food Sci. Technol., 50 (2), pp. 545-553.

14. Reddy, B., Hirose, Y., Cohen, L., Simi, B., Cooma, I. & Rao, C. (2000). Preventive potential of wheat bran fractions against experimental colon carcinogenesis: implications for human colon cancer prevention. Cancer Res., 60 (17), pp. 4792-4797.

15. Javed, M., Zahoor, S., Shafaat, S., Mehmooda, I., Gul, A., Rasheed, H., Bukhari, S.A., Aftab, M. & Ikram-ul-Haq. (2012). Wheat bran is a brown gold: nutritious value and its biotechnological application. Review. African J. Microbiol. Res., 6 (4), pp. 724-733.

16. Babu, Ch.R., Ketanapalli, H., Beebi, Sh.Kh. & Kolluru, V.Ch. (2018). Wheat bran - composition and nutritional quality: a review. Advances Biotechnol. Microbiol., 9 (1), pp. 21-27.

17. Kozubek, A. & Tyman, J. (1999). Resorcinolic lipids, the natural non-isoprenoid phenolic amphiphiles and their biological activity. Chem. Rev., 99 (1), pp. 1-26.

18. Esposito, F., Arlotti, G., Bonifati, A., Napolitano, A., Vitale, D. & Fogliano, V. (2005). Antioxidant activity and dietary fibre in durum wheat bran by-products. Food Res. Int., 38 (10), pp. 1167-1173.

19. Maki, K., Gibson, G., Dickman, R., Kendall, C., Chen, O., Costabile, A., Comelli, E., McKay, D., Almeida, N., Jenkins, D., Zello, G. & Blumberg, G. (2012). Digestive and physiologic effects of wheat bran extract, arabino-xylan-oligosaccharide, in breakfast cereal. Nutrition. 28 (11-12), pp. 1115-1121.

20. Bernstein, A., Titgemeier, B., Kirkpatrick K., Golubic, M. & Roizen, M. (2013). Major cereal grain fibres and psyllium in relation to cardiovascular health. Nutrients, 5 (5), pp. 1471-1487.

21. Liyana-Pathirana, Ch. & Shahidi, F. (2007). The antioxidant potential of milling fractions from bread wheat and durum. J. Cer. Sci., 45 (3), pp. 238-247.

22. Pйrez-Jimйnez, J. (2005). Literature data may underestimate the actual antioxidant capacity of cereals. J. Agric. Food Chem., 53 (12), pp. 5036-5040.

23. Vaher, M. (2010). Phenolic compounds and the antioxidant activity of the bran, flour and whole grain of different wheat varieties. Procedia Chem., 2 (1), pp. 76-82.

24. Zhou, K., Su, L. & Yu, L. (2004). Phytochemicals and antioxidant properties in wheat bran. J. Agric. Food Chem., 52 (20), pp. 6108-6114.

25. Ross, A., Kamal-Eldin, A. & Aman, P. (2004). Dietary alkylresorcinols: absorption, bioactivities, and possible use as biomarkers of whole-grain wheat- and rye-rich foods. Nutr. Rev., 62 (3), pp. 81-95.

26. Wang, J., Sun, B., Cao, Y. & Tian, Y. (2009). Protection of wheat bran feruloyl oligosaccharides against free radical-induced oxidative damage in normal human erythrocytes. Food Chem. Toxicol., 47 (7), pp. 1591-1599.

27. Vitaglione, P., Napolitano, A. & Fogliano, V. (2008). Cereal dietary fibre: a natural functional ingredient to deliver phenolic compounds into the guts. Trends in Food Sci. Technol., 19 (9), pp. 451-463.

28. Anson, N., Havenaar, R. & Bast, A. (2009). Bioavailability of ferulic acid is determined by its inaccessibility. J. Cer. Sci., 49(2), pp. 296-300.

29. Liu, R.H. (2007). Whole grain phytochemical and health. J. Cer. Sci., 46 (3), pp. 207-219.

30. Sara-Calixto, F. (2011). Dietary fibre as a carrier of dietary antioxidants: an essential physiological function. J. Agric. Food Chem., 59 (1), pp. 43-49.

31. Mйtayer, S., Seiliez, I., Collin, A., Duchkne, S., Mercier, Y., Geraet, P-A. & Tesseraud, S. (2008). Mechanism of through which sulfur amino acids control protein metabolism and oxidative ststus. J. Nutr. Biochem., 19 (4), pp. 207-215.

32. Qu, H., Madi, R., Takemoto, D. & Baybutt, R. (2005). Lignans are involved in the antitumor activity of wheat bran in colon cancer SW480 cels1. J. Nutr., 135 (3), pp. 598-602.

33. Stevenson, L., Phillips, F., O'Sullivan, K. & Walton, J. (2012). Wheat bran: its composition and benefits to health, a European perspective. Int. J. Food Sci. Nutr., 63 (8), pp. 1001-1013.

34. Cheryan, M. (1980). Phytic acid interactions in food systems. Agric. Sci., 13 (4), pp. 296-335.

35. Bilgiзli, N. & Ibanplu, Ю. (2007). Effect of wheat germ and wheat bran on the fermentation activity, phytic acid content and colour of tarhana, a wheat flour-yoghurt mixture. J. Food Engineer., 78(1), pp. 681-686.

36. Sandberg, A-S., Brune, M., Carlsson, N-G. & Halberg, L. (1999). Inositol phosphates with different numbers of phosphate groups influence iron absorption in humans. Am. J. Clin. Nutr., 70 (2), pp. 240-246.

37. Weaver, C., Heaney, R., Teegarden, D. & Hinders, S. (1996). Wheat bran abolishes the inverse relationship between calcium load size and absorption fraction in women. J. Nutr., 126 (1), pp. 303-307.

38. Chen, Z., Stini, W., Marshall, J., MartПnez, M., Guillйn-RodrПguez, J., Roe. D. & Alberts, D. (2004). Wheat bran fiber supplementation and bone loss among older people. Nutrition, 20 (9), pp. 747-751.

39. Hunt, J., Bieseigel, M. & Johnson, L. (2008). Adaptation in human zinc absorption as influenced by dietary zinc and bioavailability. Am. J. Clin. Nutr., 87(5), pp. 1336-1345.

40. Gibson, R., Perlas, L., & Hotz, Ch, (2006). Improving bioavailability of nutrients in plant foods at the household level. Proc. Nutr. Soc., 65 (2), pp. 160-168.

41. Hallberg, L., Rossander, L. & Skanberg, A. (1987). Phytates and the inhibitory effect of bran on iron absorption in man. Am. J. Clin. Nutr., 45 (5), pp. 988-996.

42. Dintzis, F., Watson, P. & Sandstead, H. (1985). Mineral contents of bran passed through the human GI tract. Am. J. Clin. Nutr., 41 (5), pp. 901-908.

43. Agte, V., Tarwadi, K. & Chiplonkar, S. (1999). Phytate degradation during traditional cooking: significance of the phytic acid profile in cereal-based vegetarian meals. J. Food. Compos. Anal., 12 (3), pp. 161-167.

44. Gibson, R. (1994). Content and bioavailability of trace elements in vegetarian diets. Am. J. Clin. Nutr., 59 (5), pp. 1223-1232.

45. Vitali, D., Dragojeviє, I. & Љebe№iє, B. (2008). Bioaccessibility of Ca, Mg, Mn and Cu from wholegrain tea biscuits: impact of proteins, phytic acid and polyphenols. Food Chem., 110 (1), pp. 62-68.

46. Garcia-Casal, M. (2006). Carotenoids increase iron absorption from cereal-based food in the human. Nutr. Res., 26 (7), pp. 340-344.

47. Watzke, H. (1998). Impact of processing on bioavailability examples of minerals in food. Trends Food Sci. Technol., 9 (8), pp. 320-327.

48. Minihane, A. & Rimbach, G. (2002). Iron absorption and the iron binding and antioxidant properties of phytic acid. Int. J. Food Sci. Technol., 37, pp. 741-748.

49. Bingham, S., Day, N. & Luben, R. (2003). Dietary fibre in food and protection against colorectal cancer in the European Prospective Investigation into Cancer and Nutrition (EPIC): an observational study. Lancet, 361 (9368), pp. 1496-1501.

50. De Cosse, J., Miller, H. & Lesser, M. (1989). Effect of wheat fibre and vitamins C and E on rectal polyps in patients with familial adenomatous polyposis. J. Natl. Cancer Inst., 81 (17), pp. 1290-1297.

51. Alberts, D., Ritenbaugh, C. & Story, J. (1996). Randomised double blinded placebo controlled study of the effect of wheat bran fibre and calcium on faecal bile acids in patients with respected adenomatous colon polyps. J. Natl. Cancer Inst., 88 (2), pp. 81-92.

52. Maclennan, R., Macrae, F. & Bain, C. (1995). Randomized trial of intake of fat, fibre and betacarotene to prevent colorectal adenomas: the Australian Polyp Prevention Project. J. Natl. Cancer Inst., 87 (23), pp. 1760-1766.

53. Lupton, J. & Turner, N. (1999). Potential protective mechanisms of wheat bran fibre. Am. J. Med., 106 (1A), pp. 24-27.

54. Lupton, J. & Meacher, M. (1988). Radiographic analysis of the effect of dietary fibers on rat transit time. Am. J. Physiol-Legacy Cont., 255 (5Pt1), pp. 633-639.

55. Schley, P. & Field, C. (2002). Immune-enhancing effects of dietary fibres and prebiotics. British J. Nutr., 2 (S2), pp. 221-230.

56. Zoran, D., Turner, D. & Taddeo, S. (1997). Wheat bran diet reduced tumor incidence in a rat model of colon cancer independent of effects on distal luminal butyric acid concentrations. J. Nutr., 127(11), pp. 2217-2225.

57. Alberts, D., Einspahr, J., Rees-McGee, S., Ramanujam, P., Buller, M. & Clark, L. (1990). Effects of dietary wheat bran fiber on rectal epithelial cell proliferation in patients with resection for colorectal cancers. J. Natl. Cancer Inst., 82 (15), pp. 1280-1285.

58. Huang, C., Ma, W., Hecht, S. & Dong, Z. (1997). Inositol hexaphosphate inhibits cell transformation and activator protein 1 activation by targeting phosphatidylinositol-3 kinase. Cancer Res., 57 (14), pp. 2873-2878.

59. Waliszewski, P., Blaszczyk, M. & Wolinska-Witort, E. (1997). Molecular study of sex steroid receptor gene expression in human colon and in colorectal carcinomas. J. Oncol., 64 (1), pp. 3-11.<3::aid-jso2>;2-g<3::AID-JSO2>3.0.CO;2-G

60. Zhao, Y., Shi, L., Hu, Ch. & Sang, Sh. (2019). Wheat bran for colon cancer prevention: the synergy between phytochemical alkylresorcinol C21 and intestinal microbial metabolite butyrate. J. Agric. Food Chem., 67 (46), pp. 12761-12769.

61. Stoll, D.A. (1996). Can supplementary dietary fiber suppress breast cancer growth? Br. J. Cancer, 73 (5), pp. 557-559.

62. Belobrajdic, D. & Bird, A. (2013) The potential role of phytochemicals in hole grain cereals for the prevention of type-2 diabetes. Nutr. J., 12, pp. 62-73.

63. Wang, Y. (2009). Prebiotics: present and future in food science and technology. Food Res. Int., 42 (1), pp. 8-12.

64. Jensen, M., Koh-Banerjee, P., Hu, F., Franz, M., Sampson, L., Grшnbжk, M. & Rimm, E. (2004). Intake of whole grains, bran and germ and the risk of coronary heart disease in man. Am. J. Clin. Nutr., 80 (6), pp. 1492-1499.

65. Costabile, A., Klinder, A., Fava, F., Napolitano, A., Fogliano, V. & Leonard, C. (2008). Wholegrain wheat breakfast cereal has a prebiotic effect on the human gut microbiota. Br. J. Nutr., 99 (1), pp. 110-120.

66. Zhu, R., Xu, H., Cai, H., Wang, S., Mao, J., Zhang, J., Xiong, X., Wang, X., Zhou, W. & Guo, L. (2023). Effects of cereal bran consumption on cardiometabolic risk factors: A systematic review and meta-analysis. Nutr., Metabolism and Cardiovascular Disease., 33 (10), pp. 1849-1865.

67. Barrett, E., Batterham, M., Ray, S. & Beck, E. (2019). Whole grain, bran and cereal fibre consumption and CVD: a systematic review. British J. Nutr., 121, pp. 914-937.

68. Smuda, S., Mohsen, S., Olsen, K. & Aly, M. (2018). Bioactive compounds and antioxidant activities of some cereal milling byproducts. J. Food Sci. Technol,, 55 (3), pp. 1134-1142.

69. Chakraborty, M. & Budhwar, S. (2019). Critical analysis of wheat bran as therapeutic source. Int. J. Trend Sci. Res. Develop., 3, pp, 296-303.

70. Budhwar, S., Chakrabortyn M., Sethi, K. & Chatterjee, A. (2020). Antidiabetic properties of rice and wheat bran - a review. J. Food Biochem., 00, e13424.

71. McIntyre, A., Vincent, A., Perkins, R. & Spiller, R. (1997). Effect of bran, ispaghula, and inert plastic particles on gastric emptying and small bowel transit in humans: the role of physical McIntyre factors. Gut, 40, pp. 223-227.

72. Monro, J. (2002). New approaches to providing nutrition information. In: Henry CKJ, Chapman C, editors. The nutrition handbook for food processors. Boca Raton, NC: CRC Press., pp. 165-192.

73. Topping, D. (2007). Cereal complex carbohydrates and their contribution to human health. J. Cer. Sci., 46 (3), pp. 220-229.

74. Chen, H., Haack, V., Janecky, C., Vollendorf, N. & Marlett, J. (1998). Mechanisms by which wheat bran and oat bran increase stool weight in humans. Am. J. Clin. Nutr., 68 (3), pp. 711-719.

75. Cummings, J. (1993). The effect of dietary fiber on fecal weight and composition. In: Spiller GA, editor. Dietary fibre in human nutrition. Boca Raton, FL: CRC Press, pp. 263-350.

76. Payler, D., Pomare, E., Heaton, K. & Harvey, R. (1975). The effect of wheat bran on intestinal transit. Gut, 16 (3), pp. 209-213.

77. Gibson, G. & Roberfroid, M. (1995). Dietary modulation of the human colonic microbiota: introducing the concept of prebiotics. J. Nutr., 125 (6), pp. 1401-1412.

78. Freeland, K., Anderson, G. & Wolever, T. (2009). Acute effects of dietary fibre and glycaemic carbohydrate on appetite and food intake in healthy males. Appetite., 52(1), pp. 58-64.

79. Astrup, A., Kristensen, N., Gregersen, A., Belza, A., Lorenzen, J., Due, A. & Larsen, T. (2010). Can bioactive foods affect obesity. Ann. N.Y. Acad. Sci., 1190 (1), pp. 25-41.

80. Mucoz-Esparza, N., Costa-Catala, J., Comas-Bastй, O., Toro-Funes, N., Latorre-Moratalla, L., Veciana-Noguйs, T. & Vidal-Carou, C. (2021). Occurrence of polyamines in foods and the influence of cooking processes. Foods, 10, pp. 1-13.

81. Kala№, P. (2014). Health effects and occurrence of dietary polyamines: A review for the period 2005-mid 2013. Food Chem., 161, pp. 27-39.

82. Handa, A., Fatima, T. & Mattoo, A. (2018). Polyamines: Bio-Molecules with diverse functions in plant and human health and disease. Front. Chem., 6, pp. 1-18.

83. Madeo, F., Eisenberg, T., Pietrocola, F. & Kroemer, G. (2018). Spermidine in health and disease. Sci., 359 (6374), eaan 2788.

84. Gugliucci, A. & Menini, T. (2003). The polyamines spermine and spermidine protect proteins from structural and functional damage by AGE precursors: A new role for old molecules? Life Sci.,72 (23), pp. 2603-2616.

85. Soda, K. (2020). Spermine and gene methylation: A mechanism of lifespan extension induced by polyamine-rich diet. Amino Acids, 52, pp. 213-224.

86. Kiechl, S., Pechlaner, R., Willeit, P., Notdurfter, M., Paulweber, B., Willeit, K., Werner, P., Ruckenstuhl, C., Iglseder, B. & Weger, S. (2018). Higher spermidine intake is linked to lower mortality: A prospective population-based study. Am. J. Clin. Nutr., 108, pp. 371-380.

87. Garg, M., Kaur, S., Sharma, A., Kumari, A., Tiwari. V., Sharma, S., Kapoor, P., Sheoran, B., Goyal, A. & Krishania, M. (2022). Rising demand for healthy foods-anthocyanin biofortified coloured wheat is a new research trend. Front. Nutr., 9, pp. 1-23.

88. Zeven, A.C. (1991). Wheats with purple and blue grains: a review. Euphytica, 56, pp. 243-258.

89. Rybalka, O., Morgun, V. & Morgun, B. (2020). Colored grain of wheat and barley - a new breeding strategy of crops with grain of high nutritional value. Fiziol. rast. genet., 52, pp. 95-127.

90. Lin, B., Gong, C., Song, H. & Cui, Y. (2017). Effects of anthocyanins on the prevention and treatment of cancer. Br. J. Pharmacol., 174, pp. 1226-1243.

91. Cerletti, C., De Curtis, A., Bracone, F., Digesщ, C., Morganti, A. & Iacoviello, L. (2016). Dietary anthocyanins and health: data from Flora and Athena EU projects. Br. J. Clin. Pharmacol., 83, pp. 103-106.

92. Alvarez-Suarez, J., Giampieri, F., Tulipani, S., Casoli, T. & Di Stefano, G. (2014). One-month strawberry-rich anthocyanin supplementation ameliorates cardiovascular risk, oxidative stress markers and platelet activation in humans. J. Nutr. Biochem., 25, pp. 289-294.

93. Li, D., Zhang, Y., Liu, Y., Sun, R. & Xia, M. (2015). Purified anthocyanin supplementation reduces dyslipidemia, enhances antioxidant capacity, and prevents insulin resistance in diabetic patients. J. Nutr., 145, pp. 742-748.

94. Knievel, D., Abdel-Aal, E., Rabalski, I., Nakamura, T. & Hucl, P. (2009). Grain color development and the inheritance of high anthocyanin blue aleurone and purple pericarp in spring wheat (Triticum aestivum L.). J. Cer. Sci., 50, pp. 113-120.

95. Martinek, P., Jirsa, O., Vaculova, K., Chrpov«, J., Watanabe, N., Bureлov«, V. (2014). Use of wheat gene resources with different grain colour in breeding. Proc. Tagungsband der 64 Jahrestagung der Vereinigung der Pflanzenzтchter und Saatgutkaufleute љsterreichs. Raumberg-Gumpenstein, 64, pp. 75-78.

96. Singh, K., Ghai, M., Garg, M., Chhuneja, P., Kaur, P. & Schnurbusch, T. (2007). An integrated molecular linkage map of diploid wheat based on a Triticum boeoticum ' T. monococcum RIL population. Theor. Appl. Genet., 115, pp. 301-312.

97. Gobbetti, M. & Ganzle, M. (2012). Handbook on sourdough biotechnology. Springer Science & Business Media.

98. Sen Ma, Zhen Wang, Xingfeng Guo, Fengcheng Wang, Jihong Huang, Binghua Sun & Xiaoxi, Wang. (2021). Sourdough improves the quality of whole-wheat flour products: Mechanisms and challenges-A review. Food Chem., 360, pp. 1-11.

99. Corsetti, A., Settanni, L., Van Sinderen, D., Felis, G., Dellaglio, F. & Gobbetti, M. (2005). Lactobacillus rossii sp. nov., isolated from wheat sourdough. Int. J. Syst. Evol. Microbiol., 55 (1), pp. 35-40.

100. Rizzello, C., Nionelli, L., Coda, R., De Angelis, M. & Gobbetti, M. (2010). Effect of sourdough fermentation on stabilisation, and chemical and nutritional characteristics of wheat germ. Food Chem., 119 (3), pp. 1079-1089.

101. Ma, F., Lee, Y. & Baik, B.-K. (2018). Bran characteristics influencing quality attributes of whole wheat Chinese steamed bread. J. Cer. Sci., 79, pp. 431-439.

102. Lancetti, R., Sciarini, L., Pйrez, G. & Salvucci, E. (2021). Technological performance and selection of lactic acid bacteria isolated from argentinian grains as starters for wheat sourdough. Current Microbiol., 78, pp. 255-264.

103. Nutter, J., Saiz, A. & Iurlina, M. (2019). Microstructural and conformational changes of gluten proteins in wheat-rye sourdough. J. Cer. Sci., 87, pp. 91-97.

104. Sun, L., Li, X., Zhang, Y., Yang, W., Ma, G., Ma, N. & Pei, F. (2020). A novel lactic acid bacterium for improving the quality and shelf life of whole wheat bread. Food Control, 109, 106914.

105. Oshiro, M., Zendo, T. & Nakayama, J. (2021). Diversity and dynamics of sourdough lactic acid bacteriota created by a slow food fermentation system. J. Biosci. Bioengineer., 131 (4), pp. 333-340.

106. Arora, K., Ameur, H., Polo, A., Di Cagno, R., Rizzello, C. & Gobbetti, M. (2021). Thirty years of knowledge on sourdough fermentation: A systematic review. Trends Food Sci. Technol., 108, pp. 71-83.

107. Montemurro, M., Pontonio, E., Gobbetti, M. & Rizzello, C. (2019). Investigation of the nutritional, functional and technological effects of the sourdough fermentation of sprouted flours. Int. J. Food Microbiol., 302, pp. 47-58.

108. Zadeike, D., Vaitkeviciene, R., Bartkevics, V., Bogdanova, E., Bartkiene, E., Lele, V. & Valatkeviciene, Z. (2020). The expedient application of microbial fermentation after whole-wheat milling and fractionation to mitigate mycotoxins in wheat-based products. LWT, 110440.

109. Esfahani, B., Kadivar, M., Shahedi, M. & Soleimanian-Zad, S. (2017). Reduction of acrylamide in whole-wheat bread by combining lactobacilli and yeast fermentation. Food Additives & Contaminants: Part A, 34 (11), pp. 1904-1914.

110. Lund, M. & Ray, C. (2017). Control of Maillard reactions in food: strategies and chemical mechanisms. J. Agric. Food Chem., 65, pp. 4537-4552.

111. Gobbetti, M., De Angelis, M., Di Cagno, R., Calasso, M., Archetti, G. & Rizzello, C. (2019). Novel insights on the functional/nutritional features of the sourdough fermentation. Int. J. Food Microbiol., 302, pp. 103-113.

112. Pontonio, E., Dingeo, C., Di Cagno, R., Blandino, M., Gobbetti, M. & Rizzello, C. (2020). Brans from hull-less barley, emmer and pigmented wheat varieties: From byproducts to bread nutritional improvers using selected lactic acid bacteria and xylanase. Int. J. Food Microbiol., 313, 108384.

113. Ripari, V., Bai, Y. & Gдnzle, M. (2019). Metabolism of phenolic acids in whole wheat and rye malt sourdoughs. Food Microbiol., 77, pp. 43-51.