Fìzìol. rosl. genet. 2024, vol. 56, no. 5, 451-457, doi: https://doi.org/10.15407/frg2024.05.451

Can the join use of an enzyme inhibitor and an inhibitor of the synthesis of this enzyme's coenzyme be a universal algorithm for creating anti-resistance herbicide compositions?

Morderer Ye.Yu.

  • Institute of Plant Physiology and Genetics, National Academy of Sciences of Ukraine  31/17 Vasylkivska St., Kyiv, 03022, Ukraine

Based on an analysis of factors that determine the effectiveness of herbicides, a hypothesis was proposed, that the join use of an enzyme inhibitor and an inhibitor of the synthesis of this enzyme’s coenzyme should result in a synergistic interaction. To test this hypothesis, a field experiment was conducted in winter wheat crops to study the interaction effect when using a mixture of the herbicide diflufenican, an inhibitor of phytoene desaturase, and herbicide tolpyralate, an inhibitor of hydroxyphenylpyruvate dioxygenase, as the latter is involved in the synthesis of plastoquinone, which is a coenzyme for phytoene desaturase. It was found, that interaction between tolpyralate and diflufenican was additive with respect to broadleaf species, and synergistic with respect to grass species. It was concluded, that although the join use of an enzyme inhibitor and an inhibitor of the synthesis of this enzyme’s coenzyme does not absolutely guarantee a synergistic interaction, the absence of antagonism and presence of additive or synergistic interactions for plant species with contrasting levels of resistance to the individual components indicates the potential for creating anti-resistance herbicide compositions using this algorithm.

Keywords: herbicides, resistance, interaction

Fìzìol. rosl. genet.
2024, vol. 56, no. 5, 451-457

Full text and supplemented materials

Free full text: PDF  

References

1. Gaines, T.A., Duke, S.O., Morran, S., Rigon, C.A.G., Tranel, P.J., Kтpper, A. & Dayan, F.E. (2020). Mechanisms of evolved herbicide resistance. J. Biol. Chem., 295 (30), рр. 10307-10330. https://doi.org/10.1074/jbc.REV120.013572

2. Norsworthy, J..K., Ward, S.M., Shaw, D.R., Llewellyn, R.S., Nichols, R.L., Webster, T.M., Bradley, K.W., Frisvold, G., Powles, S.T., Burgos, N.R., Witt, W.W. & Barret, M. (2012). Reducing the risk of herbicide resistance: best management practices and recommendation. Weed Sci., 60 (SP1), рр. 31-62. https://doi.org/10.1614/WS-D-11-00155.1

3. Yukhymuk, V.V., Radchenko, M.P., Sytnik, S.K. & Morderer, Y.Y. (2022). Effects of interaction and effectiveness of weed control when using tank mixtures of herbicides in maize crops. Regul. Mechan. Biosyst., 13 (2), pp. 114-120. https://doi.org/10.15421/022216

4. Yukhуmuk, V.V., Radchenko, M.P. Guralchuk, Zh.Z. & Morderer, Ye.Yu. (2022). Efficacy of weed control by herbicides diflufenican, metribuzin and carfentrazone when applied in winter wheat crops in autumn. Fisiol. rast genet., 54, No. 2, рр. 148-160. https://doi.org/10.15407/frg2022.02.148

5. Yukhymuk, V., Radchenko, M., Guralchuk, Zh., Rodzevych, O., Khandezhyna, M. & Morderer, Ye. (2023). Effectiveness of weed control by tank mixture of herbicides aclonifen and prometryn on sunflower crops. Bulg. J. Agric. Sci., 29 (3), pp. 481-489.

6. Duke, S.O. (2012). Why have no new herbicide modes of action appeared in recent years? Pest. Manag. Sci., 68 (4), рр. 505-512. https://doi.org/10.1002/ps.2333

7. Qu, R.-Y., He, B., Yang, J.-F., Lin, H.-Y., Yang, W.-C., Wu, Q.-Y., Li, Q.X. & Yang, G.-F. (2021). Where are the new herbicides? Pest. Manag. Sci., 77 (6), рр. 2620-2625. https://doi.org/10.1002/ps.6285

8. Duke, S.O., Stidham, M.A. & Dayan, F.E. (2019). A novel genomic approach to herbicide and herbicide mode of action discovery. Pest. Manag. Sci., 75 (2), рр. 314-317. https://doi.org/10.1002/ps.5228

9. Dayan, F.E. & Duke, S.O. (2020). Discovery for new herbicide sites of action by quantification of plant primary metabolite and enzyme pools. Engineering, 6 (5), рр. 509-514. https://doi.org/10.1016/j.eng.2020.03.004

10. Bayramov, S., Varanasi, V.K., Vara Prasad, P.V. & Jugulam, M. (2023). Expression of herbicide target-site and chloroplastic genes in response to herbicide applications in Italian ryegrass (Lolium multiflorum ssp. multiflorum (Lam.)). J. Agricult. Sci., 15 (5). https://doi.org/10.5539/jas.v15n5p23

11. Huan, Z., Xu, Z., Lv, D. & Wang, J. (2013). Determination of ACCase sensitivity and gene expression in quizalofop-ethyl-resistant and -susceptible barnyardgrass (Echinochloa crus-galli). Biotypes. Weed Sci., 61 (4), рр. 537-542. https://doi.org/10.1614/WS-D-13-00010.1

12. Akbarabadi, A., Ismaili, A., Nazarian Firouzabadi, F., Ercisli, S. & Kahrizi, D. (2023). Assessment of ACC and P450 genes expression in wild oat (Avena ludoviciana) in different tissues under herbicide application. Biochem. Genet., 61 (5), pp. 1867-1879. https://doi.org/10.1007/s10528-023-10357-1

13. Fernandez-Escalada, M., Zulet-Gonzalez, A., Gil-Monreal, M., Zabalza, A., Ravet, K., Gaines, T. & Royuela, M. (2017). Effects of EPSPS copy number variation (CNV) and glyphosate application on the aromatic and branched chain amino acid synthesis pathways in Amaranthus palmeri. Front. Plant Sci., Sec. Agroecol., 8. https://doi.org/10.3389/fpls.2017.01970

14. Zulet-Gonzalez, A., Barco-Antonanzas, M., Gil-Monreal, M., Royuela, M. & Zabalza, A. (2020). Increased glyphosate-induced gene expression in the shikimate pathway is abolished in the presence of aromatic amino acids and mimicked by shikimate. Front. Plant Sci., Sec. Plant Metabolism and Chemodiversity, 11. https://doi.org/10.3389/fpls.2020.00459

15. Rangani, G., Porri, A., Salas-Perez, R.A., Lerchl, J., Karaikal, S.K., Velasquez, J.C. & Roma-Burgos, N. (2023). Assessment of efficacy and mechanism of resistance to soil-applied PPO inhibitors in Amaranthus palmeri. Agronomy, 13 (2), 592. https://doi.org/10.3390/agronomy13020592

16. Morderer, Ye.Yu. (2023). What is missing to create new herbicides and solving the problem of resistance? Fiziol. rast. genet., 55, No. 5, pp. 371-394. https://doi.org/10.15407/frg2023.05.371

17. Garcia, M.D., Nouwens, A., Lonhienne, T.G. & Guddat, L.W. (2017). Comprehensive understanding of acetohydroxyacid synthase inhibition by different herbicide families. Proc. Natl. Acad. Sci. USA. 114 (7), E1091-100. Available from: https://doi.org/10.1073/pnas.1616142114

18. Zhen R.-G. & Singh B.K. (2001). From inhibitors to target site genes and beyond - herbicidal inhibitors as powerful tools for functional genomics. Weed Sci., 49 (2). pp. 266-272.

19. Ivashchenko, O.O. & Merezhinsky, Yu.G. (2001). The effectiveness of herbicides (pp. 381-383). Methods of testing and application of pesticides /Ed. S.O. Tribel. Kyiv [in Ukrainian].

20. Colby, S.R. (1969). Calculating synergistic and antagonistic responses of herbicide combinations. Weed Sci., 15, pp. 20-22.