Fiziol. rast. genet. 2024, vol. 56, no. 2, 130-150, doi: https://doi.org/10.15407/frg2024.02.130

Рhytohormones in growth regulation and the formation of stress resistance in cultivated cereals

Kosakivska I.V., Shcherbatiuk M.M., Vasyuk V.A., Voytenko L.V.

  • M.G. Kholodny Institute of Botany, National Academy of Sciences of Ukraine 2 Tereshchenkivska St., Кyiv, 01004, Ukraine

The study of abiotic stresses’ impact on the growth, development and productivity of cultivated cereals stands as one of the principal tasks of modern biological science. In response to stressors, plants modify their developmental pathway through morphological, physiological and biochemical reactions, thereby alleviating stress loads, limiting damage, and facilitating recovery processes. Phytohormones play a pivotal role in regulating all stages of the plant life cycle — from seed germination to senescence — under both optimal and stressful conditions. They serve as signaling triggers, initiating cascade of reactions that aid plants in adapting to adverse influences. Therefore, determining their content and localization sites is important for finding ways to control growth rate, development, and stress resistance formation. Among phytohormones, abscisic acid (ABA) is extensively studied for its involvement in responses to abiotic stresses. Stress-induced ABA accumulation, as a mechanism for slowing down metabolism, enables plants to adapt to adverse factors. Cytokinins and auxins also contributed significantly to the formation of adaptive plant responses, with stress-induced changes in their content and distribution being observed in numerous plant species. Gibberellins are closely associated with crucial developmental processes, making them essential for the precise implementation of plant genetic programs. The mechanism of stress resistance formation involving salicylic acid remains complex and not entirely understood. This hormone enhances osmolyte production, antioxidant activity, and interacts with other hormones. A promising strategy to increase the stability and yield of cultivated cereals involves the exogenous application of phytohormonal treatments, which effectively mitigate negative effects. Pre-sowing priming provides optimal conditions for initiating the metabolic processes during germination, minimizing seed quality and structure problems, and ensuring uniform, strong seedlings. Priming triggers metabolic processes that enhance growth and prompts alteration in the balance and distribution of endogenous hormones within plant organs. However, the mechanisms through which priming with exogenous phytohormones enhances seed germination, subsequent plant growth, and development remained insufficiently explored and not entirely understood. This review delves into recent advancements concerning the roles of both endogenous and exogenous phytohormones in regulating growth and promoting resistance to abiotic stresses in cultivated cereals.

Keywords: cultured cereals, phytohormones, growth, stress resistance, signaling systems

Fiziol. rast. genet.
2024, vol. 56, no. 2, 130-150

Full text and supplemented materials

Free full text: PDF  

References

1. Ilchenko, L. (2024) Ukraine lost 19.3 % of sown areas due to war - analysis. Ekonom. pravda. Retrieved from https://www.epravda.com.ua/news/2024/01/12/708698/ [in Ukrainian].

2. Kosakivska, I.V., Vasyuk, V.A., Voytenko, L.V. & Shcherbatiuk, M.M. (2022). Plant hormonal system under heavy metal stress. Kyiv: M.G. Kholodny Institute of Botany, 176 p. [in Ukrainian].

3. Munnѕ-Bosch, S. & Mтller, M. (2013). Hormonal cross-talk in plant development and stress responses. Front. Plant Sci., 4, pp. 529-531. https://doi.org/10.3389/fpls.2013.00529

4. Liu, J., Moore, S., Chen, C. & Lindsey, K. (2017). Crosstalk complexities between auxin, cytokinin and ethylene in Arabidopsis root development: from experiments to systems modeling and back again. Mol. Plant, 10 (12), pp. 1480-1496. https://doi.org/10.1016/j.molp.2017.11.002

5. Rehman, R.S., Ali, M., Ali Zafar, S., Hussain, M., Pasha, A., Saqib Naveed, M., Ahmad, M. & Waseem, M. (2022). Abscisic acid mediated abiotic stress tolerance in plants. Asian J. Res. Crop Sci., 7 (1), pp. 1-17. https://doi.org/10.9734/ajrcs/2022/v7i130128

6. Hu, Y., Zhi, L., Li, P., T. Hancock, J.T. & Hu, X. (2022). The role of Salicylic acid signal in plant growth, development and abiotic stress. Phyton-Int. J. Exp. Bot., 91 (12), pp. 2591-2605. https://doi.org/10.32604/phyton.2022.023733

7. Castro-Camba, R., S«nchez, C., Vidal, N. & Vielba, J.M. (2022). Interactions of gibberellins with phytohormones and their role in stress responses. Horticulture, 8, 241. https://doi.org/10.3390/horticulturae8030241

8. Shah, S., Islam, S., Mohammad, F. & Siddiqui, M. (2023). Gibberellic acid: a versatile regulator of plant growth, development and stress responses. J. Plant Growth Regul., 42, pp. 1-22. https://doi.org/10.1007/s00344-023-11035-7

9. Mandal, S., Ghorai, M., Anand, U., Samanta, D., Kant, N., Mishra, T., Rahman, M.H., Jha, N.K., Jha, S.K., Lal, M.K., Tiwari, R.K., Kumar, M., Radha, Prasanth, D.A., Mane, A.B., Gopalakrishnan, A.V., Biswas, P., ProєkЩw, J. & Dey, A. (2022). Cytokinin and abiotic stress tolerance - what has been accomplished and the way forward? Front. Genet., 13, 943025. https://doi.org/10.3389/fgene.2022.943025

10. Sosnowski, J., Truba, M. & Vasileva, V. (2023). The impact of auxin and cytokinin on the growth and development of selected crops. Agriculture, 13, 724. https://doi.org/10.3390/agriculture13030724

11. Voytenko, L.V. & Kosakivska, I.V. (2016). Polyfunctional phytohormone abscisic acid. Visn. Hark. nats. ahrar. un-tu. Ser. Biol., 1(37), pp. 27-41 [in Ukrainian].

12. Islam, M.R., Baohua, F., Tingting, C., Longxing, T. & Guanfu, F. (2018). Role of abscisic acid in thermal acclimation of plants. J. Plant Biol., 61, pp. 255-264. https://doi.org/10.1007/s12374-017-0429-9

13. Zhang, C.X., Fu, G.F., Yang, X.Q., Yang, Y.J., Zhao, X., Chen, T.T. & Tao, L. (2016). Heat stress effects are stronger on spikelet's than on flag leaves in rice due to differences in dissipation capacity. J. Agron. Crop Sci., 202, pp. 394-408. https://doi.org/10.1111/jac.12138

14. Maurel, C., Boursiac, Y., Luu, D.N., Santoni, V., Shalzad, Z. & Vendoucq, L. (2015). Aquaporins in plants. Physiol. Rev., 95, pp. 1321-1358. https://doi.org/10.1152/physrev.00008.2015

15. McAdam, S.A., Brodribb, T.J. & Ross, J.J. (2016). Shoot-derived abscisic acid promotes root growth. Plant Cell Environ., 39, pp. 652-659. https://doi.org/10.1111/pce.12669

16. Hu, X.L., Li, Y.H., Li, C.H., Yang, H.R., Wang, W. & Lu, M.H. (2010). Characterization of small heat shock proteins associated with maize tolerance to combined drought and heat stress. J. Plant Growth Regul., 29, pp. 455-464. https://doi.org/10.1007/s00344-010-9157-9

17. Hu, X., Liu, R., Li, Y., Wang, W., Tai, F., Xue, R. & Li, C. (2010). Heat shock protein 70 regulates the abscisic acid-induced antioxidant response of maize to combined drought and heat stress. Plant Growth Regul., 60, pp. 225-235. https://doi.org/10.1007/s10725-009-9436-2

18. Li, H., Liu, S.S., Yi, C.Y., Wang, F., Zhou, J., Xia, X.J., Shi, K., Zhou, Y.H. & Yu, J.Q. (2014). Hydrogen peroxide mediates abscisic acid-induced HSP70 accumulation and heat tolerance in grafted cucumber plants. Plant Cell Environ., 37, pp. 2768-2780. https://doi.org/10.1111/pce.12360

19. Hu, X.J., Chen, D., Mclntyre, C.L., Dreccer, M.F., Zhang, Z.B., Drenth, J., Kalaipandian, S., Chang, H. & Xue, G.P. (2018). Heat shock factor C2a serves as a proactive mechanism for heat protection in developing grains in wheat via an ABA-mediated regulatory pathway. Plant Cell Environ., 41, pp. 79-98. https://doi.org/10.1111/pce.12957

20. Boursiac, Y., Leґran, S., Corratgeґ-Faillie, C., Gojon, A., Krouk, G. & Lacombe, B. (2013). ABA transport and transporters. Trends Plant Sci., 18(6), pp. 325-333. https://doi.org/10.1016/j.tplants.2013.01.007

21. Vishwakarma, K., Upadhyay, N., Kumar, N., Yadav, G., Singh, J., Mishra, R., Kumar, V., Verma, R., Upadhyay, R.G., Pandey, M. & Sharma, S. (2017). Abscisic acid signaling and abiotic stress tolerance in plants: a review on current knowledge and future prospects. Front. Plant Sci., 8. https://doi.org/10.3389/fpls.2017.00161

22. Xu, W., Jia, L., Sha, W., Liang, J., Zhou, F., Li, Q. & Zhang, J. (2013). Abscisic acid accumulation modulates auxin transport in the root tip to enhance proton secretion for maintaining root growth under moderate water stress. New Phytol., 197, pp. 139-150. https://doi.org/10.1111/nph.12004

23. Daszkowska-Golec, A. & Szarejko, I. (2013). The molecular basis of ABA-mediated plant response to drought. In abiotic stress - plant responses and applications in agriculture (pp. 103-133.), Publisher: In Tech. https://doi.org/10.5772/53128

24. Estrada-Melo, A.C., Ma, C., Reid, M.S. & Jiang, C.Z. (2015). Overexpression of an ABA biosynthesis gene using a stress-inducible promoter enhances drought resistance in petunia. Hortic. Res., 2, 15013. https://doi.org/10.1038/hortres.2015.13

25. Mao, X.G. Zhang, H.Y., Tian, S.J., Chang, X.P. & Jing, R.L. (2010). TaSnRK2.4, an SNF1-type serine/threonine protein kinase of wheat (Triticum aestivum L.), confers enhanced multistress tolerance in Arabidopsis. J. Exp. Bot., 61, pp. 683-696. https://doi.org/10.1093/jxb/erp331

26. Giuliani, S., Sanguineti, M.C., Tuberosa, R., Bellotti, M., Salvi, S. & Landi, P. (2005). Root-ABA1, a major constitutive QTL, affects maize root architecture and leaf ABA concentration at different water regimes. J. Exp. Bot., 56, pp. 3061-3070. https://doi.org/10.1093/jxb/eri303

27. Chen, C.-W., Yang, Y.-W., Lur, H.S., Tsai, Y.-G. & Chang, M.-C. (2006). A novel function of abscisic acid in the regulation of rice (Oryza sativa L.) root growth and development. Plant Cell Physiol., 47 (1), pp. 1-13. https://doi.org/10.1093/pcp/pci216

28. Kosakivska, I.V., Voytenko, L.V., Shcherbatiuk, M.M. & Vasjuk V.A. (2020). Dynamics and distribution of abscisic and indole-3-acetic acids in Triticum aestivum organs after short-term hyperthermia and during restoration. Visn. Hark. nac. agrar. univ. Ser. Biol., 1 (49), pp. 62-71 [in Ukrainian]. https://doi.org/10.35550/vbio2020.01.062

29. Kosakivska, I.V., Voytenko, L.V., Shcherbatiuk, M.M. & Vasjuk, V.A. (2020). Abscisic and indol-3-acetic acids in Triticum spelta L. after heat stress and during recovery period. Visn. Hark. nac. agrar. univ. Ser. Biol., 2 (50), pp. 83-92 [in Ukrainian]. https://doi.org/10.35550/vbio2020.02.083

30. Kosakivska, I.V., Vasyuk, V.A., Voytenko, L.V. & Shcherbatiuk, M.M. (2022). The effect of moderate soil drought on phytohormonal balance of Triticum aestivum L. and Triticum spelta L. Cereal Res. Commun., 50 (4), pp. 821-830. https://doi.org/10.1007/s42976-021-00206-5

31. Janda, T., Gondor, O.K., Yordanova, R. Szalai, G. & Pal, M. (2014). Salicylic acid and photosynthesis: signaling and effects. Acta Physiol. Plant., 36 (10), pp. 2537-2546. https://doi.org/10.1007/s11738-014-1620-y

32. Jayakannan, M., Bose, J., Babourina, O., Rengel, Z. & Shabala, S. (2015). Salicylic acid in plant salinity stress signaling and tolerance. J. Plant Growth Regul., 75, pp. 25-40. https://doi.org/10.1007/s10725-015-0028-z

33. Kang, G.Z., Li, G. & Guo, T. (2014). Molecular mechanism of salicylic acid induced abiotic stress tolerance in higher plants. Acta Physiol. Plant., 36, pp. 2287-2297. https://link.springer.com/article/10.1007/s11738-014-1603-z https://doi.org/10.1007/s11738-014-1603-z

34. Khan, M.I., Fatma, M., Per, T.S., Anjum, N.A. & Khan, N.A. (2015). Salicylic acid-induced abiotic stress tolerance and underlying mechanisms in plants. Front. Plant Sci., 6, 462. https://doi.org/10.3389/fpls.2015.00462

35. Hamayun, M., Khan, S.A., Shinwari, Z.K. & Khan, A.L. (2010). Effect of polyethylene glycol induced drought stress on physio-hormonal attributes of soybean. Pak. J. Bot., 42 (2), pp. 977-986.

36. Elhakem, A.H. (2020). Salicylic acid ameliorates salinity tolerance in maize by regulation of phytohormones and osmolytes. Plant Soil Environ., 66, pp. 533-541. https://doi.org/10.17221/441/2020-PSE

37. Kosakivska, I.V., Voytenko, L.V., Vasyuk, V.A. & Shcherbatiuk, M.M. (2019). Effect of zinc on growth and phytohormones accumulation in Triticum aestivum L. priming with abscisic acid. Dopov. nac. akad. nauk Ukr., 11, pp. 93-99. https://doi.org/10.15407/dopovidi2019.11.093

38. Bandurska, H. & StroiXski, A. (2005). The effect of salicylic acid on barley response to water deficit. Acta Physiol. Plant., 27, pp. 379-386. https://doi.org/10.1007/s11738-005-0015-5

39. Guo, J., Beemster G.T.S., Liu, F., Wang, Z. & Li, X. (2023). Abscisic acid regulates carbohydrate metabolism, redox homeostasis and hormonal regulation to enhance cold tolerance in spring barley. Int. J. Mol. Sci., 24, pp. 11348. https://doi.org/10.3390/ijms241411348

40. Kosakivska, I.V., Vasyuk, V.A., Voytenko, L.V. & Shcherbatiuk, M.M. (2021). Changes in hormonal status of winter wheat (Triticum aestivum L.) and spelt wheat (Triticum spelta L.) after heat stress and in recovery period. Cereal Res. Commun., 50, pp. 821-830. https://doi.org/10.1007/s42976-021-00206-5

41. Larkindale, J. & Huang, B. (2004). Thermotolerance and antioxidant systems in Agrostis stolonifera: Involvement of salicylic acid, abscisic acid, calcium, hydrogen peroxide, and ethylene. J. Plant Physiol., 161 (4), pp. 405-413. https://doi.org/10.1078/0176-1617-01239

42. Colebrook, E.H., Thomas, S.G., Phillips, A.L. & Hedden, P. (2014). The role of gibberellin signalling in plant responses to abiotic stress. J. Exp. Biol., 217 (1), pp. 67-75. https://doi.org/10.1242/jeb.089938

43. Kosakivska, I.V. & Vasyuk, V.A. (2021). Gibberellins in regulation of plant growth and development under abiotic stresses. Biotechnol. Acta, 14 (2), pp. 5-18. https://doi.org/10.15407/biotech14.02.005

44. Llanes, A., Andrade, A., Alemano, S. & Luna, V. (2016). Alterations of endogenous hormonal levels in plants under drought and salinity. Am. J. Plant Sci., 7, pp. 1357-1371. https://doi.org/10.4236/ajps.2016.79129

45. Krugman, T., Peleg, Z., Quansah, L., Chaguѕ, V., Korol, A.B., Nevo, E., Saranga, Y., Fait, A., Chalhoub, B. & Fahima, T. (2011). Alteration in expression of hormone-related genes in wild emmer wheat roots associated with drought adaptation mechanisms. Funct. Integr. Genom., 11, pp. 565-583. https://doi.org/10.1007/s10142-011-0231-6

46. Liu, F., Wang, P., Zhang, X., Li, X., Yan, X., Fu, D. & Wu, G. (2018). The genetic and molecular basis of crop height based on a rice model. Planta, 247 (1), pp. 1-26. https://doi.org/10.1007/s00425-017-2798-1

47. Lo, S.F., Ho, T.H.D., Liu, Y.L., Jiang, M.J., Hsieh, K.T., Chen, K.T., Yu, L-C., Lee, M-H., Chen, C-Y., Huang, T-P., Kojima, M., Sakakibara, H., Chen, L-J. & Yu, S-M. (2017). Ectopic expression of specific GA2 oxidase mutants promotes yield and stress tolerance in rice. Plant Biotechnol. J., 15 (7), pp. 850-864. https://doi.org/10.1111/pbi.12681

48. Kosov«, K., Pr«лil, I.T., VHt«mv«s, P., Dobrev, P., Motyka, V., Flokov«, K., Nov«k, O., Ture№kov«, V., Rol№ik, J., Peлek, B., Tr«vni№kov«, A., Gaudinov«, A., Galiba, G., Janda, T., Vlas«kov«, E., Pr«лilov«, P. & Vankov«, R. (2012). Complex phytohormone responses during the cold acclimation of two wheat cultivars differing in cold tolerance, winter Samanta and spring Sandra. J. Plant Physiol., 169, pp. 567-576. https://doi.org/10.1016/j.jplph.2011.12.013

49. Sakata, T., Oda, S., Tsunaga, Y., Shomura, H., Kawagishi-Kobayashi, M., Aya, K. & Saeki, K. (2014). Reduction of gibberellin by low temperature disrupts pollen development in rice. Plant Physiol., 164 (4), pp. 2011-2019. https://doi.org/10.1104/pp.113.234401

50. Vedenicheva, N.P. & Kosakivska, I.V. (2020). Cytokinins in cereals ontogenesis and adaptation. Fiziol. rast. genet., 52 (1), pp. 3-30 [in Ukrainian]. https://doi.org/10.15407/frg2020.01.003

51. Wu, C., Cui, K., Wang, W., Li, Q., Fahad, S., Hu, Q., Huang, J., Nie, L., Mohapatra, P.K. & Peng, S. (2017). Heat-induced cytokinin transportation and degradation are associated with reduced panicle cytokinin expression and fewer spikelets per panicle in rice. Front. Plant Sci., 8, 371. https://doi.org/10.3389/fpls.2017.00371

52. Todorova, D., Genkov, T., Vaseva-Gemisheva, I., Alexieva, V., Karanov, E., Smith, A. & Hall, M. (2005). Effect of temperature stress on the endogenous cytokinin content in Arabidopsis thaliana (L.) Heynh plants. Acta Physiol. Plant., 27, pp. 13-18. https://doi.org/10.1007/s11738-005-0031-5

53. Vedenicheva, N.P., Shcherbatiyk, M.M. & Kosakivska, I.V. (2021). Endogenous cytokinins of Secale cereale L. under high temperature impact: dynamics and localization in the alarm, acclimation and recovery phase. Fiziol. rast. genet., 53 (4), pp. 292-306 [in Ukrainian]. https://doi.org/10.15407/frg2021.04.292

54. Vankov«, R., Kosov«, K., Dobrev, P., Vit«mv«s, P., Tr«vnickov«, A., Cvikrov«, M., Peлek, B., Gaudinov«, A., Prerostov«, S., Musilov«, J., Galiba, G. & Pr«sil, I.T. (2014). Dynamics of cold acclimation and complex phytohormone responses in Triticum monococcum lines G3116 and DV92 differing in vernalization and frost tolerance level. Environ. Exp. Bot., 101, pp. 12-25. https://doi.org/10.1016/j.envexpbot.2014.01.002

55. Werner, T., Nehnevajova, E., Kollmer, I., Novak, O., Strnad, M., Kramer, U. & Schmulling, T. (2010). Root-specific reduction of cytokinin causes enhanced root growth, drought tolerance, and leaf mineral enrichment in Arabidopsis and Tobacco. Plant Cell, 22, pp. 3905-3920. https://doi.org/10.1105/tpc.109.072694

56. PospHлilov«, H., Jiskrova, E., Vojta, P., Mrizova, K., Kokas, F., Gudejkova, M.M., Bergougnoux, V., PlHhal, O., Klimeлov«, J., Nov«k, O., Dzurov«, L., Frѕbort, I. & Galuszka, P. (2016). Transgenic barley overexpressing a cytokinin dehydrogenase gene shows greater tolerance to drought stress. New Biotechnol., 33, pp. 692-705. https://doi.org/10.1016/j.nbt.2015.12.005

57. Korver, R.A., Koevoets, I.T. & Testerink, C. (2018). Out of shape during stress: a key role for auxin. Trends Plant Sci., 23 (9), pp. 783-793. https://doi.org/10.1016/j.tplants.2018.05.011

58. Sakata, T., Oshino, T., Miura, S., Tomabechi, M., Tsunaga, Y., Higashitani, N., Miyazawa, Y., Takahashi, H., Watanabe, M. & Higashitani, A. (2010). Auxins reverse plant male sterility caused by high temperatures. Proc. Natl. Acad. Sci. U.S.A., 107, pp. 8569-8574. https://doi.org/10.1073/pnas.1000869107

59. Tang, R.S., Zheng, J.C., Jin, Z.Q., Zhang, D.D., Huang, Y.H. & Chen, L.G. (2008). Possible correlation between high temperature-induced floret sterility and endogenous levels of IAA, GAs and ABA in rice (Oryza sativa L.). Plant Growth Regul., 54, pp. 37-43. https://doi.org/10.1007/s10725-007-9225-8

60. Yang, D., Li, Y., Shi, Y., Cui, Z., Luo, Y., Zheng, M., Chen, J., Li, Y., Yin, Y. & Wang, Z. (2016). Exogenous cytokinins increase grain yield of winter wheat cultivars by improving stay-green characteristics under heat stress. PLoS One, 11 (5), e0155437. https://doi.org/10.1371/journal.pone.0155437

61. Du, H., Wu, N., Fu, J., Wang, S., Li, X., Xiao, J. & Xiong, L. (2012). A GH3 family member, OsGH3-2, modulates auxin and abscisic acid levels and differentially affects drought and cold tolerance in rice. J. Exp. Bot., 63, pp. 467-648. https://doi.org/10.1093/jxb/ers300

62. Sadok, W. & Schoppach, R. (2019). Potential involvement of root auxins in drought tolerance by modulating nocturnal and daytime water use in wheat. Ann. Bot., 124(6), pp. 969-978. https://doi.org/10.1093/aob/mcz023

63. Garbero, M., Andrade, A., Reinoso, H., Fernandez, B., Cuesta, C., Granda, V., Escudero, C., Abdala, G. & Pedranzani, H. (2012). Differential effect of short-term cold stress on growth, anatomy, and hormone levels in cold-sensitive versus -resistant cultivars of Digitaria eriantha. Acta Physiol. Plant., 34, pp. 2079-2091. https://doi.org/10.1007/s11738-012-1007-x

64. Kosakivska, I.V., Vedenicheva, N.P., Babenko, L.M. Voytenko, L.V., Romanenko, K.O. & Vasyuk, V.A. (2022). Exogenous phytohormones in the regulation of growth and development of cereals under abiotic stresses. Mol. Biol. Rep., 49 (1), pp. 617-628. https://doi.org/10.1007/s11033-021-06802-2

65. Muhie, S.H. (2018). Seed priming with phytohormones to improve germination under dormant and abiotic stress conditions. Adv. Crop Sci. Technol., 6 (6), 403. https://doi.org/10.4172/2329-8863.1000403

66. Varier, A., Vari, A.K. & Dadlani, M. (2010). The subcellular basis of seed priming. Cur. Sci., 99, pp. 451-456.

67. Cai, T., Meng, X., Liu, X., Liu, T., Wang, H., Jia, Z., Yang, D. & Ren, X. (2018). Exogenous hormonal application regulates the occurrence of wheat tillers by changing endogenous hormones. Front. Plant Sci., 9, 1886. https://doi.org/10.3389/fpls.2018.01886

68. Kosakivska, I.V., Voytenko, L.V., Vasyuk, V.A. & Shcherbatiuk, M.M. (2024). ABA-induced alterations in cytokinin homeostasis of Triticum aestivum and Triticum spelta under heat stress. Plant Stress, 11. https://doi.org/10.1016/j.stress.2024.100353

69. Sharipova, G., Veselov, D., Kudoyarova, G., Fricke, W., Dodd, I.C., Katsuhara, M., Furuichi, T., Ivanov, I. & Veselov, S. (2016). Exogenous application of abscisic acid (ABA) increases root and cell hydraulic conductivity and abundance of some aquaporin isoforms in the ABA-deficient barley mutant Az34. Ann. Bot., 18 (4), pp. 777-785. https://doi.org/10.1093/aob/mcw117

70. Yang, D., Luo, Y., Ni, Y., Yin, Y., Yang, W., Peng, D., Cui, Z. & Wang, Z. (2014). Effects of exogenous ABA application on post-anthesis dry matter redistribution and grain starch accumulation of winter wheat with different staygreen characteristics. Crop J., 2, pp. 144-153. https://doi.org/10.1016/j.cj.2014.02.004

71. Hsu, Y.T. & Kao, C.H. (2003). Role of abscisic acid in cadmium tolerance of rice (Oryza sativa L.) seedlings. Plant Cell Environ., 25, pp. 867-874. https://doi.org/10.1046/j.1365-3040.2003.01018.x

72. Wei, L.X., Lv B-S., Wang, M.M., Ma, H.Y., Yang, H.Y., Liu, X.L., Jiang, C.J. & Liang, Z.W. (2015). Priming effect of abscisic acid on alkaline stress tolerance in rice (Oryza sativa L.) seedlings. Plant Physiol. Biochem., 90, pp. 50-57. https://doi.org/10.1016/j.plaphy.2015.03.002

73. Li, G., Zhang, C., Zhang, G., Fu, W., Feng, B., Chen, T., Peng, S., Tao, L. & Fu, G. (2020). Abscisic acid negatively modulates heat tolerance in rolled leaf rice by increasing leaf temperature and regulating energy homeostasis. Rice, 13, pp. 1-16. https://doi.org/10.1186/s12284-020-00379-3

74. Li, X-J., Yang, M-F., Chen, H., Qu, L-Q., Chen, F. & Shen, S-H. (2010). Abscisic acid pretreatment enhances salt tolerance of rice seedlings: Proteomic evidence. Biochim. Biophys. Acta, 1804, pp. 929-940. https://doi.org/10.1016/j.bbapap.2010.01.004

75. Gurmani, A.R., Bano, A., Ullah, N., Khan, H., Jahangir, M. & Flowers, T.J. (2013). Exogenous abscisic acid (ABA) and silicon (Si) promote salinity tolerance by reducing sodium (Na+) transport and by pass flow in rice (Oryza sativa indica). Aust. J. Crop Sci., 7 (9), pp. 1219-1226.

76. Jiang, M. & Zhang, J. (2002). Role of abscisic acid in water stress-induced antioxidant defense in leaves of maize seedlings. Free Radical Res., 36, pp. 1001-1015. https://doi.org/10.1080/1071576021000006563

77. Wei, L., Wang, L., Yang, Y., Wang, P., Guo, T. & Kang, G. (2015). Abscisic acid enhances tolerance of wheat seedlings to drought and regulates transcript levels of genes encoding ascorbate-glutathione biosynthesis. Front. Plant Sci., 6, pp. 1-11. https://doi.org/10.3389/fpls.2015.00458

78. Zhang, L., Gao, M., Hu, J., Zhang, X., Wang, K. & Ashraf, M. (2012). Modulation role of abscisic acid (ABA) on growth, water relations and glycinebetaine metabolism in two maize (Zea mays L.) cultivars under drought stress. Int. J. Mol. Sci., 13, pp. 3189-3202. https://doi.org/10.3390/ijms13033189

79. Khan, S.U., Bano, A., Ud-Din, J.U. &Gurmani, A.R. (2012). Abscisic acid and salicylic acid seed treatment as potent inducer of drought tolerance in wheat (Triticum aestivum L.). Pak. J. Bot., 44, pp. 43-49.

80. Fu, J., Wu, Y., Miao, Y., Xu, Y., Zhao, E., Wang, J., Sun, H., Liu, Q., Xue, Y., Xu, Y. & Hu, T. (2017). Improved cold tolerance in Elymus nutans by exogenous application of melatonin may involve ABA-dependent and ABA-independent pathways. Sci. Rep., 7, 39865. https://doi.org/10.1038/srep39865

81. Liu, L, Zhang, D, Jin, Z, Zhang, Z, Li, S, Zhu, K. & Cang L. (2019). Effects of exogenous abscisic acid on expression of cold-regulated genes in winter wheat under low temperature stress. Pak. J. Bot., 51, 1, pp. 55-63. https://doi.org/10.30848/PJB2019-1(21)

82. Pal, M., Tajti, J., Szalai, G., Peeva, V., Vegh, B. & Janda, T. (2018). Interaction of polyamines, abscisic acid and proline under osmotic stress in the leaves of wheat plants. Sci. Rep., 8 (1), 12839. https://doi.org/10.1038/s41598-018-31297-6

83. Sripinyowanich, S., Klomsakul, P., Boonburapong, B., Bangyeekhun, T., Asami, T., Gu, H., Buaboocha, T. & Chadchawan, S. (2013). Exogenous ABA induces salt tolerance in indica rice (Oryza sativa L.): The role of OsP5CS1 and OsP5CR gene expression during salt stress. Environ. Exp. Bot., 86, pp. 94-105. https://doi.org/10.1016/j.envexpbot.2010.01.009

84. Kosakivska, I.V., Vasyuk, V.A., Voytenko, L.V. & Shcherbatiuk, M.M. (2021). Regulation of hormonal balance of wheat by exogenous abscisic acid under heat stress. Visn. Hark. nac. agrar. univ., Ser. Biol., 1 (52), pp. 105-118 [in Ukrainian]. https://doi.org/10.35550/vbio2021.01.052

85. Wu, C., Cui, K., Wang, W., Li, Q., Fahad, S., Hu, Q., Huang, J., Nie, L. & Peng, S. (2016). Heat-induced phytohormone changes are associated with disrupted early reproductive development and reduced yield in rice. Sci. Rep., 6, 34978. https://doi.org/10.1038/srep34978

86. Liu, X., Huang, B. & Banowetz, G. (2002). Cytokinin effects on creeping bentgrass responses to heat stress: I. Shoot and root growth. Crop Sci., 42, pp. 457-465. https://doi.org/10.2135/cropsci2002.0457

87. Veerasamy, M., He, Y. & Yuang, B. (2007). Leaf senescence and protein metabolism in creeping bentgrass exposed to heat stress and treated with cytokinins. JASHS, 132, pp. 467-472. https://doi.org/10.21273/JASHS.132.4.467

88. Kumari, S., Kumar, S. & Prakas, P. (2018). Exogenous application of cytokinin (6-BAP) ameliorates the adverse effect of combined drought and high temperature stress in wheat seedling. J. Pharmacog. Phytochem., 7 (1), pp. 1176-1180.

89. Bakhtavar, M.A., Afzal, I., Basra, S.M.A., Ahmad, A-u-H. & Noor, M.A. (2015). Physiological strategies to improve the performance of spring maize (Zea mays L.) planted under early and optimum sowing conditions. PLoS ONE, 10 (4), e0124441. https://doi.org/10.1371/journal.pone.0124441

90. Iqbal, M., Nadeem, M., Jamil, S., Ahmed, M. & Altaf, T. (2018). Exogenous application of plant hormones makes wheat (Triticum aestivum) withstand the attack of salinity stress. Int. J. Biol. Sci., 12 (1), pp. 375-385. https://doi.org/10.12692/ijb/12.1.375-385

91. Ma, X., Zhang, J. & Huang, B. (2016). Cytokinin-mitigation of salt-induced leaf senescence in perennial ryegrass involving the activation of antioxidant systems and ionic balance. Environ. Exp. Bot., 125, pp. 1-11. https://doi.org/10.1016/j.envexpbot.2016.01.002

92. Bajwa, A.A., Farooq, M. & Nawaz, A. (2018). Seed priming with sorghum extracts and benzyl aminopurine improves the tolerance against salt stress in wheat (Triticum aestivum L.). Physiol. Mol. Biol. Plants, 24, pp. 239-249. https://doi.org/10.1007/s12298-018-0512-9

93. Panda, B.B., Sekhar, S., Dash, S.K., Behera, L. & Shaw, B.P. (2018). Biochemical and molecular characterization of exogenous cytokinin application on grain filling in rice. BMC Plant Biol., 18, 89. https://doi.org/10.1186/s12870-018-1279-4

94. Hanaa, H. & Safaa, A. (2019). Foliar application of IAA at different growth stages and their influence on growth and productivity of bread Wheat (Triticum aestivum L.) J. Phys.: Conf. Ser., 1294, pp. 1-8. https://doi.org/10.1088/1742-6596/1294/9/092029

95. Hakim, N.M., Quraishi, U.M., Chaudhary, H.J. & Munis, M.F.H. (2016). Indole-3-acetic acid induces biochemical and physiological changes in wheat under drought stress conditions. Philipp. Agric. Sci., 99 (1), pp. 19-24.

96. Kaya, C., Ashraf, M., Dikilitas, M. & Tuna, A.L. (2013). Alleviation of salt stress-induced adverse effects on maize plants by exogenous application of indole acetic acid (IAA) and inorganic nutrients - A field trial. Aust. J. Crop Sci., 7 (2), pp. 249-254.

97. Iqbal, M. & Ashraf, M. (2007). Seed treatment with auxins modulates growth and ion partitioning in salt-stressed wheat plants. J. Integr. Plant Biol., 49, pp. 1003-1015. https://doi.org/10.1111/j.1672-9072.2007.00488.x

98. Akbari, G., Sanavy, S.A. & Yousefzadeh, S. (2007). Effect of auxin and salt stress (NaCl) on seed germination of wheat cultivars (Triticum aestivum L.). Pak. J. Biol. Sci., 10, pp. 2557-2561. https://doi.org/10.3923/pjbs.2007.2557.2561

99. Wang, Q., Nian, F., Zhao, L., Li, F., Yang, H. & Yang, Y. (2013). Exogenous indole-3-acetic acid could reduce the accumulation of aluminum in root apex of wheat (Triticum aestivum L.) under Al stress. J. Soil Sci. Plant Nutr., 13 (3), pp. 534-543. https://doi.org/10.4067/S0718-95162013005000042

100. Ellouzi, H., Zorrig, W., Amraoui, S., Oueslati, S., Abdelly, C., Rabhi, M., Siddique, K.H.M. & Hessini, K. (2023) Seed priming with salicylic acid alleviates salt stress toxicity in barley by suppressing ROS accumulation and improving antioxidant defense systems, compared to halo- and gibberellin priming. Antioxidants, 12, 1779. https://doi.org/10.3390/antiox12091779

101. Sarwar, N., Atique-ur-Rehman, Farooq O., Mubeen, N., Wasaya, A., Nourman, W., Zafar Ali, M. & Shehzad, M. (2018). Exogenous application of gibberellic acid improves the maize crop productivity under scarce and sufficient soil moisture condition. Cercet. agron. in Moldova, 50 (4), 65. https://doi.org/10.1515/cerce-2017-0036

102. Ansari, O., Azadi, M.S., Sharif-Zadeh, F. & Younesi, E. (2013). Effect of hormone priming on germination characteristics and enzyme activity of mountain rye (Secale montanum) seeds under drought stress conditions. J. Stress Physiol. Biochem., 9 (3), pp. 61-71.

103. Arabshahi, M., Mobasser, H.R. & Rad, M.R.N. (2017). Effect of drought stress and gibberellin on some characteristics of wheat. J. Chem. Res., 2 (2), pp. 154-158.

104. Kaya, C., Tuna, A.L. & Alves, A. (2006). Gibberellic acid improves water deficit tolerance in maize plants. Acta Physiol. Plant., 28 (4), pp. 331-337. https://doi.org/10.1007/s11738-006-0029-7

105. Iqbal, M. & Ashraf, M. (2013). Gibberellic acid mediated induction of salt tolerance in wheat plants: growth, ionic partitioning, photosynthesis, yield and hormonal homeostasis. Environ. Exp. Bot., 86, pp. 76-85. https://doi.org/10.1016/j.envexpbot.2010.06.002

106. Amal, M.E. Abdel-Hamid & Heba, I.M. (2014). The effect of exogenous gibberellic acid on two salt stressed barley cultivars. Eur. Sci. J., 10 (6), pp. 1857-1881.

107. Siddiqui, M.H., Al-Whaibi, M.H. & Basalah, M.O. (2010). Interactive effect of calcium and gibberellin on nickel tolerance in relation to antioxidant systems in Triticum aestivum L. Protoplasma, 248 (3), pp. 503-511. https://doi.org/10.1007/s00709-010-0197-6

108. Ulfat, A., Majid, S.A. & Hameed, A. (2017). Hormonal seed priming improves wheat (Triticum aestivum L.) field performance under drought and non-stress conditions. Pak. J. Bot., 49, pp. 1239-1253.

109. Ma, H.Y., Zhao, D., Ning, Q., Wei, J., Li, Y., Wang, M., Liu, X., Jiang, C. & Liang, Z.A. (2018). Multi-year beneficial effect of seed priming with gibberellic acid-3 (GA3) on plant growth and production in a perennial grass, leymus chinensis. Sci. Rep., 8, 13214. https://doi.org/10.1038/s41598-018-31471-w

110. Sharma, A., Sidhu, G.P.S., Araniti, F., Bali, A.S., Shahzad, B., Tripathi, D.K., Brestic, M., Skalicky, M. & Landi, M. (2020). The role of salicylic acid in plants exposed to heavy metals. Molecules, 25, pp. 540-562. https://doi.org/10.3390/molecules25030540

111. Mohamed, H.E. & Hassan, A.M. (2019). Role of salicylic acid in alleviating cobalt toxicity in wheat (Triticum aestivum L.) seedlings. J. Agric. Sci., 11 (10), pp. 112-120. https://doi.org/10.5539/jas.v11n10p112

112. Mostofa, M.G., Rahman, M., Ansary, M., Uddin, M., Fujita, M. & Tran, L.-S.P. (2019). Interactive effects of salicylic acid and nitric oxide in enhancing rice tolerance to cadmium stress. Int. J. Mol. Sci., 20 (22), 5798. https://doi.org/10.3390/ijms20225798

113. Krantev, A., Yordanova, R., Janda, T., Szalai, G. & Popova, L. (2008). Treatment with salicylic acid decreases the effect of cadmium on photosynthesis in maize plants. J. Plant Physiol., 165, pp. 920-931. https://doi.org/10.1016/j.jplph.2006.11.014

114. Hussein, M., Balbaa, L. & Gaballah, M. (2007). Salicylic acid and salinity effects on growth of maize plants. RJABS, 3 (4), pp. 321-328.

115. Kang, G.Z., Li, G.Z. & Xu, W. (2012). Proteomics reveals the effects of salicylic acid on growth and tolerance to subsequent drought stress in wheat. J. Proteome Res., 11, 12, pp. 6066-6079. https://doi.org/10.1021/pr300728y

116. Kaydan, D., Yagmur, M. & Okut. N. (2007). Effects of Salicylic acid on the growth and some physiological characters in salt stressed wheat (Triticum aestivum L.). Tarim Bilimleri Dergisi, 13, 2, pp. 114-119. https://doi.org/10.1501/Tarimbil_0000000444

117. Tahjib-Ul-Arif, M., Siddiqui, M.N., Sohag, A.A.M., Sakil, M.A., Rahman, M.M., Polash, M.A.S., Mostofa, M.G. & Tran, L.-S.P. (2018). Salicylic acid-mediated enhancement of photosynthesis attributes and antioxidant capacity contributes to yield improvement of maize plants under salt stress. J. Plant Growth Regul., 37, pp. 1318-1330. https://doi.org/10.1007/s00344-018-9867-y

118. Fayez, K.A. & Bazaid, S.A. (2014). Improving drought and salinity tolerance in barley by application of salicylic acid and potassium nitrate. J. Saudi Soc. Agric. Sci., 13, pp. 45-55. https://doi.org/10.1016/j.jssas.2013.01.001