Fiziol. rast. genet. 2022, vol. 54, no. 2, 95-122, doi:

Effects of drought and high temperature on physiological and biochemical processes, and productivity of plants

Kiriziy D.A., Stasik O.O.

  • Institute of Plant Physiology and Genetics, National Academy of Sciences of Ukraine 31/17 Vasylkivska St., Kyiv, 03022, Ukraine

The review is devoted to the analysis and systematization of literature data, as well as the results of the original author’s work on the impact of the combined action of stressors on physiological and biochemical processes, and productivity of plants. The relevance of such studies is determined by the fact that, at the field, crops are usually exposed to a number of different abiotic stressors, among which drought and high temperatures are the most significant due to global climate change. Recent studies have shown that the response of plants to a combination of different abiotic stressors is unique and cannot be directly extrapolated from a simple study of each of the different stresses acting separately. Specific physiological responses, combinations of metabolites and proteins, and transcripts that are unique to specific combinations of stress have been identified. Among other issues, it was underlined the importance of studying the peculiarities of the photosynthetic apparatus, metabolism of reactive oxygen species (ROS), and the reaction of stomata under plant acclimation to the combination of drought and heat stress, development of methods for large-scale phenotyping of physiological and biochemical responses of plants during stress and subsequent phases of recovery in order to identify physiological markers of stress resilience as well as screening promising forms of agronomically important crops with increased tolerance to the combination of drought and heat stress to mitigate the negative impact of expected global climate change on agricultural production.

Keywords: drought, high temperature, photosynthesis, water relations, antioxidant protection, productivity

Fiziol. rast. genet.
2022, vol. 54, no. 2, 95-122

Full text and supplemented materials

Free full text: PDF  



2. https: //


4. Peters, G.P., Marland, G., Le Quere, C., Boden, T., Canadell, J.G. & Raupach, M.R. (2011). Rapid growth in CO2 emissions after the 2008-2009 global financial crisis. Nat. Clim. Chang., 2, pp. 2-4.

5. Turek-Hankins, L.L., de Perez, E.C., Scarpa, G., Ruiz-Diaz, R., Schwerdtle, P.N., Joe, E.T., Galappaththi, E.K., French, E.M., Austin, S.E., Singh, C., Sina, M., Siders, A.R., van Aalst, M.K., Templeman, S., Nunbogu, A.M., Berrang-Ford, L., Agrawal, T., the Global Adaptation Mapping Initiative team & Mach, K.J. (2021). Climate change adaptation to extreme heat: a global systematic review of implemented action. Oxford Open Climate Change, 1(1).

6. Fahad, S., Bajwa, A.A., Nazir, U., Anjum, S.A., Farooq, A., Zohaib, A., Sadia, S., Nasim, W., Adkins, S., Saud, S., Ihsan, M.Z., Alharby, H., Wu, C., Wang, D. & Huang, J. (2017). Crop Production under Drought and Heat Stress: Plant Responses and Management Options. Front. Plant Sci., 8, 1147.

7. Yadav, M.R., Choudhary, M., Singh, J., Lal, M.K., Jha, P.K., Udawat, P., Gupta, N.K., Rajput, V.D., Garg, N.K., Maheshwari, C., Hasan, M., Gupta, S., Jatwa, T.K., Kumar, R., Yadav, A.K. & Prasad, P.V.V. (2022). Impacts, Tolerance, Adaptation, and Mitigation of Heat Stress on Wheat under Changing Climates. Int. J. Mol. Sci., 23, 2838.

8. Mittler, R. & Blumwald, E. (2010). Genetic engineering for modern agriculture: challenges and perspectives. Annu Rev. Plant Biol., 61, pp. 443-462.

9. Zandalinas, S.I., Fritschi, F.B. & Mittler, R. (2021). Global Warming, Climate Change, and Environmental Pollution: Recipe for a Multifactorial Stress Combination Disaster. Trends in Plant Science, 26, No. 6.

10. Carmo-Silva, A.E., Gore, M.A., Andrade-Sanchez, P., French, A.N., Hunsaker, D.J. & Salvucci, M.E. (2012). Decreased CO2 availability and inactivation of Rubisco limit photosynthesis in cotton plants under heat and drought stress in the field. Environ. Exp. Bot., 83, pp. 1-11.

11. Daryanto, S., Wang, L. & Jacinthe, P.A. (2016). Global synthesis of drought effects on maize and wheat production. PLoS One, 11, e0156362.

12. Matiu, M., Ankerst, D.P. & Menzel, A. (2017). Interactions between temperature and drought in global and regional crop yield variability during 1961-2014. PLoS One, 12(5), e0178339.

13. Gray, S.B., Dermody, O., Klein, S.P., Locke, A.M., McGrath, J.M., Paul, R.E., Rosenthal, D.M., Ruiz-Vera, U.M., Siebers, M.H., Strellner, R., Ainsworth, E.A., Bernacchi, C.J., Long, S.P., Ort, D.R. & Leakey, A.D.B. (2016). Intensifying drought eliminates the expected benefits of elevated carbon dioxide for soybean. Nat. Plants, 2, 16132.

14. Morgun, V.V., Kiriziy, D.A. & Shadchina, T.M. (2010). Ecophysiological and genetic aspects of adaptation of cultivated plants to global climate changes. Physiol. biochem. cult. plants, 42, No. 1, pp. 3-22 [in Russian].

15. Danquah, A., de Zelicourt, A., Colcombet, J. & Hirt, H. (2014). The role of ABA and MAPK signaling pathways in plant abiotic stress responses. Biotechnol. Adv., 32, pp. 40-52.

16. Gilroy, S., Suzuki, N., Miller, G., Choi, W.-G., Toyota, M., Devireddy, A.R. & Mittler, R. (2014). A tidal wave of signals: calcium and ROS at the forefront of rapid systemic signaling. Trends Plant Sci., 19, pp. 623-630.

17. Kolupaev, Yu.E., Karpets, Y.V. & Dmitriev, A.P. (2015). Signal mediators in plants in response to abiotic stress: Calcium, reactive oxygen and nitrogen species. Cytol. Genet., 49(5), pp. 338-348.

18. Baxter, A., Mittler, R. & Suzuki, N. (2014). ROS as key players in plant stress signalling. J. Exp. Bot., 65, pp. 1229-1240.

19. Munoz-Espinoza, V.A., Lopez-Climent, M.F., Casaretto, J.A. & Gomez-Cadenas, A. (2015). Water stress responses of tomato mutants impaired in hormone biosynthesis reveal abscisic acid, jasmonic acid and salicylic acid interactions. Front. Plant Sci., 6, pp. 1-14.

20. Casaretto, J.A., El-kereamy, A., Zeng, B., Stiegelmeyer, S.M., Chen, X., Bi, Y.M. & Rothstein, S.J. (2016). Expression of OsMYB55 in maize activates stress-responsive genes and enhances heat and drought tolerance. BMC Genomics, 17, 312.

21. Suzuki, N., Rivero, R.M., Shulaev, V., Blumwald, E. & Mittler, R. (2014). Abiotic and biotic stress combinations. New Phytol., 203, pp. 32-43.

22. Ahmed, I.M., Nadira, U.A., Bibi, N., Cao, F., He, X., Zhang, G. & Wu, F. (2014). Secondary metabolism and antioxidants are involved in the tolerance to drought and salinity, separately and combined, in Tibetan wild barley. Environ. Exp. Bot., 111, pp. 1-12.

23. Zandalinas, S.I., Balfagon, D., Arbona, V., Gomez-Cadenas, A., Inupakutika, M.A. & Mittler, R. (2016). ABA is required for the accumulation of APX1 and MBF1c during a combination of water deficit and heat stress. J. Exp. Bot., 67, pp. 5381-5390.

24. Zandalinas, S.I., Rivero, R.M., Martinez, V., Gomez-Cadenas, A. & Arbona, V. (2016). Tolerance of citrus plants to the combination of high temperatures and drought is associated to the increase in transpiration modulated by a reduction in abscisic acid levels. BMC Plant Biol., 16, 105.

25. Zandalinas, S.I., Mittler, R., Balfagon, D., Arbona, V. & Gomez-Cadenas, A. (2018). Plant adaptations to the combination of drought and high temperatures. Physiologia Plantarum, 162, pp. 2-12.

26. Rasmussen, S., Barah, P., Suarez-Rodriguez, M.C., Bressendorff, S., Friis, P., Costantino, P., Bones, A.M., Nielsen, H.B. & Mundy, J. (2013). Transcriptome responses to combinations of stresses in Arabidopsis. Plant Physiol., 161, pp. 1783-1794.

27. Pandey, P., Ramegowda, V., & Senthil-Kumar, M. (2015). Shared and unique responses of plants to multiple individual stresses and stress combinations: physiological and molecular mechanisms. Front. Plant Sci., 6, pp. 1-14.

28. Zandalinas, S.I., Sengupta, S., Fritschi, F.B., Azad, R.K., Nechushtai, R. & Mittler, R. (2021).The impact of multifactorial stress combination on plant growth and survival. New Phytologist, 230, pp. 1034-1048.

29. Keles, Y. & Oncel, I. (2002). Response of antioxidative defence system to temperature and water stress combinations in wheat seedlings. Plant Sci. 163, pp. 783-790.

30. Ahmed, I.M., Dai, H., Zheng,W., Cao, F., Zhang, G., Sun, D. & Wu, F. (2013). Genotypic differences in physiological characteristics in the tolerance to drought and salinity combined stress between Tibetan wild and cultivated barley. Plant Physiol. Biochem., 63, pp. 49-60.

31. Giraud, E., Ho, L.H.M., Clifton, R., Carroll, A., Estavillo, G., Tan, Y.-F., Howell, K.A., Ivanova, A., Pogson, B.J., Millar, A.H. & Whelan, J. (2008). The absence of ALTERNATIVE OXIDASE1a in Arabidopsis results in acute sensitivity to combined light and drought stress. Plant Physiol., 147, pp. 595-610.

32. Haghjou, M.M., Shariati, M. & Smirnoff, N. (2009). The effect of acute high light and low temperature stresses on the ascorbate-glutathione cycle and superoxide dismutase activity in two Dunaliella salina strains. Physiol. Plant., 135, pp. 272-280.

33. Sales, C.R.G., Ribeiro, R.V., Silveira, J.A.G., Machado, E.C., Martins, M.O. & Lagoa, A.M.M.A. (2013). Superoxide dismutase and ascorbate peroxidase improve the recovery of photosynthesis in sugarcane plants subjected to water deficit and low substrate temperature. Plant Physiol. Biochem., 73, pp. 326-336.

34. Srivastava, G., Kumar, S., Dubey, G., Mishra, V. & Prasad, S.M. (2012). Nickel and ultraviolet-B stresses induce differential growth and photosynthetic responses in Pisum sativum L. seedlings. Biol. Trace Elem. Res., 149, pp. 86-96.

35. Wang, X., Li, Y., Lu, H. & Wang, S. (2016). Combined effects of elevated temperature and CO2 concentration on Cd and Zn accumulation dynamics in Triticum aestivum L. J. Environ. Sci., 47, pp. 109-119.

36. Cherif, J., Mediouni, C., Ben Ammar, W. & Jemal, F. (2011). Interactions of zinc and cadmium toxicity in their effects on growth and in antioxidative systems in tomato plants (Solanum lycopersicum). J. Environ. Sci., 23, pp. 837-844.

37. Alhdad, G.M., Seal, C.E., Al-Azzawi, M.J. & Flowers, T.J. (2013). The effect of combined salinity and waterlogging on the halophyte Suaeda maritima: the role of antioxidants. Environ. Exp. Bot., 87, pp. 120-125.

38. Castagna, A., Di Baccio, D., Ranieri, A.M., Sebastiani, L. & Tognetti, R. (2015). Effects of combined ozone and cadmium stresses on leaf traits in two poplar clones. Environ. Sci. Pollut. Res., 22, pp. 2064-2075.

39. Iyer, N.J., Tang, Y. & Mahalingam, R. (2013). Physiological, biochemical and molecular responses to a combination of drought and ozone in Medicago truncatula. Plant Cell Environ., 36, pp. 706-720.

40. Ainsworth, E.A., Rogers, A. & Leakey, A.D.B. (2008). Targets for crop biotechnology in a future high-CO2 and high-O3 world. Plant Physiol., 147, pp. 13-19.

41. Perez-Lopez, U., Miranda-Apodaca, J., Munoz-Rueda, A. & Mena-Petite, A. (2013). Lettuce production and antioxidant capacity are differentially modified by salt stress and light intensity under ambient and elevated CO2. J. Plant Physiol., 170, pp. 1517-1525.

42. Rivero, R.M., Mestre, T.C., Mittler, R., Rubio, F., Garcia-Sanchez, F. & Martinez, V. (2013). The combined effect of salinity and heat reveals a specific physiological, biochemical and molecular response in tomato plants. Plant Cell Environ., 37, pp. 1059-1073.

43. Nuccio, M.L., Wu, J., Mowers, R., Zhou, H.P., Meghji, M., Primavesi, L.F., Paul, M.J., Xi, C., Gao, Y., Haque, E., Basu, S.S. & Lagrimini, L.M. (2015). Expression of trehalose-6-phosphate phosphatase in maize ears improves yield in well-watered and drought conditions. Nat. Biotechnol., 33, pp. 862-869.

44. Lipiec, J., Doussan, C., Nosalewicz, A. & Kondracka, K. (2013). Effect of drought and heat stresses on plant growth and yield: a review. Int. Agrophys., 27, pp. 463-477.

45. Posch, B.C., Kariyawasam, B.C., Bramley, H., Coast, O., Richards, R.A., Reynolds, M.P., Trethowan, R. & Atkin, O.K. (2019). Exploring high temperature responses of photosynthesis and respiration to improve heat tolerance in wheat. J. Exp. Bot., 70, No. 19, pp. 5051-5069.

46. Landi, S., Hausman, J.F., Guerriero, G. & Esposito, S. (2017). Poaceae vs. abiotic stress: focus on drought and salt stress, recent insights and perspectives. Front. Plant Sci., 8, 1214.

47. Aprile, A., Havlickova, L., Panna, R., Mare, C., Borrelli, G.M., Marone, D., Perrotta, C., Rampino, P., De Bellis, L., Curn, V., Mastrangelo, A.M., Rizza, F. & Cattivelli, L. (2013). Different stress responsive strategies to drought and heat in two durum wheat cultivars with contrasting water use efficiency. BMC Genomics, 14, pp. 1-18.

48. Niinemets, U. (2015). Uncovering the hidden facets of drought stress: secondary metabolites make the difference. Tree Physiol., 36, pp. 129-132.

49. Zandalinas, S.I., Sales, C., Beltran, J., Gomez-Cadenas, A. & Arbona, V. (2017). Activation of secondary metabolism in citrus plants is associated to sensitivity to combined drought and high temperatures. Front. Plant Sci., 7, 1954.

50. Poorter, H., Niinemets, U., Poorter, L., Wright, I.J. & Villar, R. (2009). Causes and consequences of variation in leaf mass per area (LMA): a meta-analysis. New Phytol., 182, pp. 565-588.

51. Shahinnia, F., Le Roy, J., Laborde, B., Sznajder, B., Kalambettu, P., Mahjourimajd, S., Tilbrook, J. & Fleury, D. (2016). Genetic association of stomatal traits and yield in wheat grown in low rainfall environments. BMC Plant Biol., 16, 150.

52. De Boeck, H.J., Bassin, S., Verlinden, M., Zeiter, M. & Hiltbrunner, E. (2015). Simulated heat waves affected alpine grassland only in combination with drought. New Phytol., 209, pp. 531-541.

53. Handayani, T. & Watanabe, K. (2020). The combination of drought and heat stress has a greater effect on potato plants than single stresses. Plant, Soil and Environment, 66 (4), pp. 175-182.

54. Lamaoui, M., Jemo, M., Datla, R. & Bekkaoui, F. (2018). Heat and Drought Stresses in Crops and Approaches for Their Mitigation. Front. Chem., 6, 26.

55. Dwivedi, R., Prasad, S., Jaiswal, B., Kumar, A., Tiwari, A., Patel, S., Pandey, S. & Pandey, G. (2017). Evaluation of wheat genotypes (Triticum aestivum L.) at grain filling stage for heat tolerance. Int. J. Pure App. Biosci., 5 (2), pp. 971-975.

56. Kaushal, N., Awasthi, R., Gupta, K., Gaur, P., Siddique, K. H. & Nayyar, H. (2013). Heat-stress-induced reproductive failures in chickpea (Cicer arietinum) are associated with impaired sucrose metabolism in leaves and anthers. Funct. Plant Biol., 40, pp. 1334-1349.

57. Cairns, J.E., Sonder, K., Zaidi, P.H., Verhulst, N., Mahuku, G., Babu, R., Nair, S.K., Das, B., Govaerts, B., Vinayan, M.T., Rashid, Z., Noor, J.J., Devi P., San Vicente, F. & Prasanna, B.M. (2012). Maize production in a changing climate: impacts, adaptation, and mitigation strategies. Adv. Agron., 114, pp. 1-58.

58. Singh, V., Nguyen, C.T., Yang, Z., Chapman, C., van Oosterom, E.J. & Hammer, G.L. (2016). Genotypic differences in effects of short episodes of high-temperature stress during reproductive development in sorghum. Crop Sci., 56, pp. 1561-1572.

59. Prasad, P.V.V., Pisipati, S.R., Momcilovic, I. & Ristic, Z. (2011). Independent and combined effects of high temperature and drought stress during grain filling on plant yield and chloroplast EF-Tu expression in spring wheat. J. Agron. Crop Sci., 197, pp. 430-441.

60. Giorno, F., Wolters-Arts, M., Mariani, C. & Rieu, I. (2013). Ensuring reproduction at high temperatures: the heat stress response during anther and pollen development. Plants, 2, pp. 489-506.

61. Hedhly, A. (2011). Sensitivity of flowering plant gametophytes to temperature fluctuations. Environ. Exp. Bot., 74, pp. 9-16.

62. Cohen, I., Zandalinas, S.I., Huck, C.F., Fritschi, B. & Mittler, R. (2021). Meta-analysis of drought and heat stress combination impact on crop yield and yield components. Physiologia Plantarum, 171, Is. 1, pp. 66-76.

63. Tidy, A.C., Murchie, E.H., Wilson, Z.A. & Ferguson, J.N. (2021). The potential of resilient carbon dynamics for stabilizing crop reproductive development and productivity during heat stress. Plant Cell Environ., 44, pp. 2066-2089.

64. Moore, C.E., Meacham-Hensold, K., Lemonnier, P., Slattery, R.A., Benjamin, C., Bernacchi, C.J., Lawson, T. & Cavanagh, A.P. (2021). The effect of increasing temperature on crop photosynthesis: from enzymes to ecosystems. J. Exp. Bot., 72, No. 8, pp. 2822-2844.

65. Hirayama, T. & Shinozaki, K. (2010). Research on plant abiotic stress responses in the post-genome era: past, present and future. Plant J., 61, pp. 1041-1052.

66. Huber, A.E. & Bauerle, T.L. (2016). Long-distance plant signaling pathways in response multiple stressors: the gap in knowledge. J. Exp. Bot., 67, pp. 2063-2079.

67. Sicher, R.C., Timlin, D. & Bailey, B. (2012). Responses of growth and primary metabolism of water-stressed barley roots to rehydration. J. Plant Physiol., 169, pp. 686-695.

68. Goufo, P., Moutinho-Pereira, J.M., Jorge, T.F., Correia, C.M., Oliveira, M.R., Rosa, E.A.S., Antonio, C. & Trindade, H. (2017). Cowpea (Vigna unguiculata L.Walp.) metabolomics: osmoprotection as a physiological strategy for drought stress resistance and improved yield. Front. Plant Sci., 8, 586.

69. Lee, S.B. & Suh, M.C. (2013). Recent advances in cuticular wax biosynthesis and its regulation in Arabidopsis. Mol. Plant., 6, pp. 246-249.

70. Blum, A. (2017). Osmotic adjustment is a prime drought stress adaptive engine in support of plant production: osmotic adjustment and plant production. Plant Cell Environ., 40, pp. 4-10.

71. Khan, M.S., Kanwal, B. & Nazir, S. (2015). Metabolic engineering of the chloroplast genome reveals that the yeast ArDH gene confers enhanced tolerance to salinity and drought in plants. Front. Plant Sci., 6, 725.

72. Maurel, C., Boursiac, Y., Luu, D.-T., Santoni, V., Shahzad, Z. & Verdoucq, L. (2015). Aquaporins in plants. Physiol Rev., 95, pp. 1321-1358.

73. Vandeleur, R.K., Sullivan, W., Athman, A., Jordans, C., Gilliham, M., Kaiser, B.N. & Tyerman, S.D. (2014). Rapid shoot-to-root signalling regulates root hydraulic conductance via aquaporins. Plant Cell Environ., 37, pp. 520-538.

74. Arbona, V., Manzi, M., de Ollas, C. & Gomez-Cadenas, A. (2013). Metabolomics as a tool to investigate abiotic stress tolerance in plants. Int. J. Mol. Sci., 14, pp. 4885-4811.

75. Saibo, N.J., Lourenco, T. & Oliveira, M.M. (2009). Transcription factors and regulation of photosynthetic and related metabolism under environmental stresses. Ann. Bot., 103, pp. 609-623.

76. Rahnama, A., Poustini, K., Tavakkol-Afshari, R. & Tavakoli, A. (2010). Growth and stomatal responses of bread wheat genotypes in tolerance to salt stress. Int. J. Biol. Life Sci., 6, pp. 216-221.

77. Nishiyama, Y. & Murata, N. (2014). Revised scheme for the mechanism of photoinhibition and its application to enhance the abiotic stress tolerance of the photosynthetic machinery. Appl. Microbiol. Biotechnol., 98, pp. 8777-8796.

78. Abdelhakim, L.O.A., Rosenqvist, E., Wollenweber, B., Spyroglou, I., Ottosen, C.-O. & Panzarova, K. (2021). Investigating Combined Drought and Heat Stress Effects in Wheat under Controlled Conditions by Dynamic Image-Based Phenotyping. Agronomy, 11, 364.

79. Kedruk, A.C., Kiriziy, D.A., Sokolovska-Sergienko, O.G. & Stasik, O.O. (2021). Response of the photosynthetic apparatus of winter wheat varieties to the combined action of drought and high temperature. Fiziol. rast. genet., 53, No. 5, pp. 387-405 [in Ukrainian].

80. Tricker, P.J., ElHabti, A., Schmidt, J. & Fleury, D. (2018). The physiological and gene­tic basis of combined drought and heat tolerance in wheat. J. Exp. Bot., 69, No. 13, pp. 3195-3210.

81. Omae, H., Kumar, A. & Shono, M. (2012). Adaptation to High Temperature and Water Deficit in the Common Bean (Phaseolus vulgaris L.) during the Reproductive Period. Journal of Botany, 2012, article ID 803413.

82. Caverzan, A., Casassola, A. & Brammer, S.P. (2016). Antioxidant responses of wheat plants under stress. Genet. Mol. Biol., 39, No. 1, pp. 1-6.

83. Kolupaev, Yu.E. & Kokorev, A.I. (2019). Antioxidant system and plant resistance to water deficit. Fiziol. rast. genet., 51, No. 1, pp. 28-54 [in Russian].

84. Morgun, V.V., Stasik, O.O., Kiriziy, D.A. & Sokolovska-Sergiienko, O.G. (2019). Effect of drought on photosynthetic apparatus, activity of antioxidant enzymes, and productivity of modern winter wheat varieties. Regulatory Mechanisms in Biosystems, 10, No. 1, pp. 16-25.

85. Kumar, D., Kushwaha, S., Delvento, C., Liatukas, Z., Vivekanand, V., Svensson, J.T., Henriksson, T., Brazauskas, G. & Chawade, A. (2020). Affordable Phenotyping of Winter Wheat under Field and Controlled Conditions for Drought Tolerance. Agronomy, 10, 882.

86. Degen, G.E., Orr, D.J. & Carmo-Silva, E. (2021). Heat-induced changes in the abundance of wheat Rubisco activase isoforms. New Phytologist, 229, pp. 1298-1311.

87. Ruggiero, A., Punzo, P., Landi, S., Costa, A., VanOoosten, M. & Grillo, S. (2017). Improving plant water use efficiency through molecular genetics. Horticulturae, 3, 31.

88. Sikuku, P.A., Netondo, G.W., Onyango, J.C. & Musyimi, D.M. (2010). Chlorophyll fluorescence, protein and chlorophyll content of three NERICA rainfed rice varieties under varying irrigation regimes. ARPN J. Agr. Biol. Sci., 5, pp. 19-25.

89. Ellsworth, P.Z. & Cousins, A.B. (2016). Carbon isotopes and water use efficiency in C4 plants. Curr. Opin. Plant Biol., 31, pp. 155-161.

90. Correia, B., Hancock, R.D., Amaral, J., Gomez-Cadenas, A., Valledor, L. & Pinto, G. (2018). Combined Drought and Heat Activates Protective Responses in Eucalyptus globulus That Are Not Activated When Subjected to Drought or Heat Stress Alone. Front. Plant Sci., 9, 819.

91. Kromdijk, J., Glowacka, K., Leonelli, L., Gabilly, S.T., Iwai, M., Niyogi, K.K. & Long, S.P. (2016). Improving photosynthesis and crop productivity by accelerating recovery from photoprotection. Science, 354, pp. 857-861.

92. Ort, D.R., Merchant, S.S., Alric, J., Barkan, A., Blankenship, R.E., Bock, R., Croce, R., Hanson, M.R., Hibberd, J.M., Long, S.P., Moore, T.A., Moroney, J., Niyogi, K.K., Parry, M.A. J., Peralta-Yahya, P.P., Prince, R.C., Redding, K.E., Spalding, M.H., van Wijk, K.J., Vermaas, W.F. J., von Caemmerer, S., Weber, A.P. M., Yeates, T.O., Yuan, J.S. & Zhu, X.G. (2015). Redesigning photosynthesis to sustainably meet global food and bioenergy demand. Proc. Natl. Acad. Sci. USA, 112, pp. 8529-8536.

93. Balfagon, D., Zandalinas, S.I., Mittler, R. & Gomez-Cadenas, A. (2020). High temperatures modify plant responses to abiotic stress conditions. Physiol. Plant., 170 (3), pp. 335-344.

94. Zandalinas, S.I., Fichman, Y., Devireddy, A.R., Sengupta, S., Azad, R.K. & Mittler, R. (2020). Systemic signaling during abiotic stress combination in plants. Proc. Natl. Acad. Sci., 117, No. 24, pp. 13810-13820.

95. He, Z.H., Fujiki, M. & Kohorn, B.D. (1996). A cell wall-associated, receptor-like protein kinase. J. Biol. Chem., 271, pp. 19789-19793.

96. Walker, J.C. & Zhang, R. (1990). Relationship of a putative receptor protein kinase from maize to the S-locus glycoproteins of Brassica. Nature, 345, pp. 743-746.

97. Shulaev, V., Cortes, D., Miller, G. & Mittler, R. (2008). Metabolomics for plant stress response. Physiol. Plant., 132, pp. 199-208.

98. Lawson, T. & Matthews, J. (2020). Guard cell metabolism and stomatal function. Annu. Rev. Plant Biol., 71, pp. 273-302.

99. Wani, S.H., Kumar, V., Shriram, V. & Sah, S.K. (2016). Phytohormones and their metabolic engineering for abiotic stress tolerance in crop plants. Crop J., 4, No. 3, pp. 162-176.

100. Bauer, H., Ache, P., Lautner, S., Fromm, J., Hartung, W., Al-Rasheid Khaled, K., Sonnewald, A.S., Sonnewald, U., Kneitz, S., Lachmann, Ni., Mendel, R.R., Bittner, F., Hetherington, A.M. & Hedrich, R. (2013). The stomatal response to reduced relative humidity requires guard cell-autonomous ABA synthesis. Curr. Biol., 23, pp. 53-57.

101. Suzuki, N., Basil, E., Hamilton, J.S., Inupakutika, M.A., Zandalinas, S.I., Tripathy, D., Yuting, L., Dion, E., Fukui, G., Kumazaki, A., Nakano, R., Rivero, R.M., Verbeck, G.F., Azad, R.K., Blumwald, E. & Mittler, R. (2016). ABA is required for plant acclimation to a combination of salt and heat stress. PLoS One, 11, e0147625.

102. Suzuki, N., Miller, G., Salazar, C., Mondal, H.A., Shulaev, E., Cortes, D.F., Shuman, J.L., Luo, X., Shah, J., Schlauch, K., Shulaev, V. & Mittler, R. (2013). Temporal-spatial interaction between reactive oxygen species and abscisic acid regulates rapid systemic acclimation in plants. Plant Cell, 25, pp. 3553-3569.

103. Mittler, R. & Blumwald, E. (2015). The roles of ROS and ABA in systemic acquired acclimation. Plant Cell, 27, pp. 64-70.

104. Verma, V., Ravindran, P. & Kumar, P. P. (2016). Plant hormone mediated regulation of stress responses. BMC Plant Biol., 16, 86.

105. Pornsiriwong, W., Estavillo, G.M., Chan, K.X., Tee, E.E., Ganguly, D., Crisp, P.A., Phua, S.Y., Zhao, C., Qiu, J., Park, J., Yong, M.T., Nisar, N., Yadav, A.K., Schwessinger, B., Rathjen, J., Cazzonelli, C.I., Wilson, P.B., Gilliham, M., Chen, Z.-H. & Pogson, B.J. (2017). A chloroplast retrograde signal, 3'-phosphoadenosine-5'-phosphate, acts as a secondary messenger in abscisic acid signaling in stomatal closure and germination. elife, 6, e23361.

106. Zlatev, Z. & Lidon, F. C. (2012). An overview on drought induced changes in plant growth, water relations and photosynthesis. Emir. J. Food Agric. 24, pp. 57-72.

107. Gill, S.S. & Tuteja, N. (2010). Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol. Biochem., 48, pp. 909-930.

108. Kolupaev, Yu.E. (2016). Plant cell antioxidants and their role in ROS signaling and plant resistance. Uspekhi Sovrem. Biologii, 136 (2), pp. 181-198 [in Russian].

109. Kudla, J., Batistic, O. & Hashimoto, K. (2010). Calcium signals: the lead currency of plant information processing. Plant Cell, 22, pp. 541-563.

110. Reddy, A.S., Ali, G.S., Celesnik, H. & Day, I.S. (2011). Coping with stresses: roles of calciumand calcium/calmodulin-regulated gene expression. Plant Cell, 23, pp. 2010-2032.

111. Ashraf, M. & Harris, P.J.C. (2013). Photosynthesis under stressful environments: an overview. Photosynthetica, 51, pp. 163-190.

112. Wahid, A., Gelani, S., Ashraf, M. & Foolad, M.R. (2007). Heat tolerance in plants: an overview. Environ. Exp. Bot., 61, pp. 199-223.

113. Wahid, A. & Close, T.J. (2007). Expression of dehydrins under heat stress and their relationship with water relations of sugarcane leaves. Biol. Plantarum, 51, pp. 104-109.

114. Camejo, D., Rodriguez, P., Morales, M.A., Dell'Amico, J.M., Torrecillas, A. & Alarcon, J.J. (2005). High temperature effects on photosynthetic activity of two tomato cultivars with different heat susceptibility. J. Plant Physiol., 162, pp. 281-289.

115. Ahn, Y. J. & Zimmerman, J. (2006). Introduction of the carrot HSP17. 7 into potato (Solanum tuberosum L.) enhances cellular membrane stability and tuberization in vitro. Plant Cell Environ., 29, pp. 95-104.

116. Obata, T., Witt, S., Lisec, J., Palacios-Rojas, N., Florez-Sarasa, I., Araus, J.L., Cairns, J.E., Yousfi, S. & Fernie, A.R. (2015). Metabolite profiles of maize leaves in drought, heat and combined stress field trials reveal the relationship between metabolism and grain yield. Plant Physiol., 169, pp. 2665-2683.

117. Morales, C.G., Pino, M.T. & del Pozo, A. (2013). Phenological and physiological responses to drought stress and subsequent rehydration cycles in two raspberry cultivars. Sci. Hortic., 162, pp. 234-241.

118. Huang, J.-Z., Xu, S.-L., Ma, T.-C., Li, Y.-F., Fu, H.-W., Li, Z.-F. & Shu, Qi.-Y. (2021). Analysis of proline accumulation, antioxidant capacity and HSP expression in mutant rice lines with different heat tolerance. Australian Journal of Crop Science, Southern Cross Publishing, 15 No. 8, pp. 22-27.

119. Kolupaev, Yu. E., Vainer, A.A. & Yastreb, T.O. (2014). Proline: physiological functions and regulation of the content in plants under stress conditions. Visn. Hark. nac. agrar. univ., Ser. Biol., Iss. 2, pp. 6-22 [in Russian].

120. Szabados, L. & Savoure, A. (2010). Proline: a multifunctional amino acid. Trends in Plant Sci., 15, No. 2, pp. 89-97.

121. Rizhsky, L., Liang, H., Shuman, J., Shulaev, V., Davletova, S. & Mittler, R. (2004). When defense pathways collide. The response of Arabidopsis to a combination of drought and heat stress. Plant Physiol., 134, pp. 1683-1696.

122. Jin, R., Wang, Y., Liu, R., Gou, J. & Chan, Z. (2016). Physiological and metabolic changes of Purslane (Portulaca oleracea L.) in response to drought, heat, and combined stresses. Front. Plant Sci., 6, pp. 1-11.

123. Wang, G.-P., Hui, Z., Li, F., Zhao, M.-R., Zhang, J. & Wang, W. (2010). Improvement of heat and drought photosynthetic tolerance in wheat by overaccumulation of glycinebetaine. Plant Biotechnol. Rep., 4, pp. 213-222.

124. Quan, R., Shang, M., Zhang, H., Zhao, Y. & Zhang, J. (2004). Engineering of enhanced glycine betaine synthesis improves drought tolerance in maize. Plant Biotechnol. J., 2, pp. 477-486.

125. Su, J., Hirji, R., Zhang, L., He, C., Selvaraj, G. & Wu, R. (2006). Evaluation of the stress-inducible production of choline oxidase in transgenic rice as a strategy for producing the stress-protectant glycine betaine. J. Exp. Bot., 57, pp. 1129-1135.

126. Koussevitzky, S., Suzuki, N., Huntington, S., Armijo, L., Sha, W., Cortes, D., Shulaev, V. & Mittler, R. (2008). Ascorbate peroxidase 1 plays a key role in the response of Arabidopsis thaliana to stress combination. J. Biol. Chem., 283, pp. 34197-34203.

127. Fraser, C.M. & Chapple, C. (2011). The phenylpropanoid pathway in Arabidopsis. Arabidopsis Book, 9, e0152.

128. Alsamman, A.M., Bousba, R., Baum, M., Hamwieh, A. & Fouad, N. (2021). Comprehensive analysis of the gene expression profile of wheat at the crossroads of heat, drought and combined stress. Highlights in BioScience, 20, 4.

129. Rizhsky, L., Liang, H. & Mittler, R. (2002). The combined effect of drought stress and heat shock on gene expression in tobacco. Plant Physiol., 130, pp. 1143-1151.

130. Rampino, P., Mita, G., Fasano, P., Borrelli, G.M., Aprile, A., Dalessandro, G., De Bellis, L. & Perrotta, C. (2012). Novel durum wheat genes up-regulated in response to a combination of heat and drought stress. Plant Physiol. Biochem., 56, pp. 72-78.

131. Johnson, S.M., Lim, F.-L., Finkler, A., Fromm, H., Slabas, A.R. & Knight, M.R. (2014). Transcriptomic analysis of Sorghum bicolor responding to combined heat and drought stress. BMC Genomics, 15, 456.

132. Bi, A., Fan, J., Hu, Z., Wang, G., Amombo, E., Fu, J. & Hu, T. (2016). Differential acclimation of enzymatic antioxidant metabolism and photosystem II photochemistry in tall fescue under drought and heat and the combined stresses. Front. Plant Sci., 7, 453.

133. Morgun, V.V., Dubrovna, O.V. & Morgun, B.V. (2016). The modern biotechnologies of producing wheat plants resistant to stresses. Fiziol. rast. genet., 48, No. 3, pp. 196-213 [in Ukrainian].

134. Corrales, A.R., Carrillo, L., Lasierra, P., Nebauer, S.G., Dominguez-Figueroa, J., Renau-Morata, B., Pollmann, S., Granell, A., Molina, R.-V., Vicente-Carbajosa, J. & Medina, J. (2017). Multifaceted role of cycling Dof Factor 3 (CDF3) in the regulation of flowering time and abiotic stress responses in Arabidopsis. Plant Cell Environ., 40, pp. 748-764.

135. Kulkarni, M., Soolanayakanahally, R., Ogawa, S., Uga, Y., Selvaraj, M.G. & Kagale, S. (2017). Drought response in wheat: key genes and regulatory mechanisms controlling root system architecture and transpiration efficiency. Front. Chem., 5, 106.

136. He, G.H., Xu, Y.J., Wang, X.Y., Liu, M.J., Li, S.P., Chen, M., Ma, Y.-Z. & Xu, Z.-S. (2016). Drought-responsive WRKY transcription factor genes TaWRKY1 and TaWRKY33 from wheat confer drought and/or heat resistance in Arabidopsis. BMC Plant Biol., 16, 116.

137. Hasanuzzaman, M., Nahar, K., Hossain, M.S., Mahmud, J.A., Rahman, A., Inafuku, M., Oku, H. & Fujita, M. (2017). Coordinated actions of glyoxalase and antioxidant defense systems in conferring abiotic stress tolerance in plants. Int. J. Mol. Sci., 18, 200.

138. Kiriziy, D.A., Kedruk, A.S., Sokolovska-Sergiienko, O.G., Dubrovna, O.V. & Stasik, O.O. (2021). Responses of photosynthetic apparatus of genetically modified wheat plants containing a double-stranded RNA suppressor of the proline dehydrogenase gene to drought and high temperature. Fisiol. rast. genet., 53, No. 6, pp. 532-549.

139. Kishchenko, O., Stepanenko, A. & Borisjuk, M. (2021). Induced mutagenesis in wheat: from ionizing radiation to site-specific gene editing. Fiziol. rast. genet., 53, No. 1, pp. 29-54 [in Ukrainian].

140. da Costa, M.V.J., Ramegowda, Y., Ramegowda, V., Karaba, N.N., Sreeman, S.M. & Udayakumar, M. (2021). Combined Drought and Heat Stress in Rice: Responses, Phenotyping and Strategies to Improve Tolerance. Rice Science, 28 (3), pp. 233-242.

141. Pequeno, D.N.L., Hernґandez-Ochoa, I.M., Reynolds, M., Sonder, K., MoleroMilan, A., Robertson, R.D., Lopes, M.S., Xiong, W., Kropff, M. & Asseng, S. (2021). Climate impact and adaptation to heat and drought stress of regional and global wheat production. Environ. Res. Lett., 16, 054070.

142. Waraich, E.A., Ahmad, R., Halim, A. & Aziz, T. (2012). Alleviation of temperature stress by nutrient management in crop plants: a review. J. Soil Sci. Plant Nut., 12, pp. 221-244.

143. Gautam, P., Lal, B., Tripathi, R., Shahid, M., Baig, M.J., Raja, R., Maharana, S. & Nayak, A. (2016). Role of silica and nitrogen interaction in submergence tolerance of rice. Environ. Exp. Bot., 125, pp. 98-109.

144. Ma, D., Sun, D., Wang, C., Qin, H., Ding, H., Li, Y. & Guo, T. (2016). Silicon application alleviates drought stress in wheat through transcriptional regulation of multiple antioxidant defense pathways. J. Plant Growth Regul., 35, pp. 1-10.

145. Kosakivska, I.V., Vasyuk, V.A. & Voytenko, L.V. (2019). Effect of exogenous abscisic acid on morphological characteristics of winter wheat and spelt under hyperthermia. Fiziol. rast. genet., 51, No. 4, pp. 324-337 [in Ukrainian].

146. Vedenicheva, N.P. & Kosakivska, I.V. (2020). Cytokinins in cereals ontogenesis and adaptation. Fiziol. rast. genet., 52. No. 1, pp. 3-30 [in Ukrainian].