Fiziol. rast. genet. 2022, vol. 54, no. 4, 279-310, doi: https://doi.org/10.15407/frg2022.04.279

Cadmium stress in plants: toxicity and resistance mechanisms

Levenets T.V.1, Smirnov O.E.1.2, Taran N.Yu.1, Mykhalska L.M.2, Schwartau V.V.2

  1. Educational and Scientific Centre «Institute of Biology and Medicine» of Taras Shevchenko Kyiv National University  64/13, Volodymyrska St., Kyiv, 01601, Ukraine
  2. Institute of Plant Physiology and Genetics, National Academy of Sciences of Ukraine 31/17, Vasylkivska St., Kyiv, 03022, Ukraine

Increasing levels of cadmium contamination of ecocenoses, primarily due to the application of phosphorus fertilizers and industrial activity requires research into the mechanisms of manifestation of its toxicity for plants at all levels of the organization of the plant organism, starting from the general morpho-anatomical changes of individual organs to the regulation of gene expression of individual proteins. Differences in the ability of different species, varieties and individual representatives within populations to absorb, accumulate, translocate and redistribute cadmium, as well as the difference in the degree of their Cd-tolerance in practice, very often turns out to be related to the presence or absence, features of the structure, expression and localization certain transporters of the element. Mechanisms of regulation of the toxic effect of cadmium on plants at the cellular level are considered. It has been shown that plants resistant to cadmium are able to limit the absorption of the element and/or have powerful systems for its detoxification. Such plants direct a part of the pool of assimilated carbon to the root secretion of organic compounds that chelate the toxic element. The translocation of cadmium from roots to shoots is inhibited in the endoderm zone. After the element enters the cell, plants use various mechanisms to detoxify cadmium. Synthesis of metal-chelating peptides or Cys-proteins in plants that bind to cadmium and reduce its toxicity is important. Another mechanism of detoxification is realized by the regulation of cadmium transport through the plasma membrane and tonoplast. Antioxidants and cellular antioxidant activity are also important in increasing plant resistance to cadmium. Expression of genes that encode enzymes involved in the repair of ROS-induced damage increases tolerance to cadmium. Thus, it is shown that the increase in the levels of cadmium contamination of ecocenoses, primarily due to the application of phosphorus fertilizers and industrial activity, forms a dangerous factor of toxic effects on plants. The development of an adaptive response to cadmium stress is a complex phenomenon and manifests itself at all levels of the organization of the plant organism. Generalization of data on stress mechanisms singles out the features of cadmium impact and its localization in plant tissues, as well as ways of forming resistance to cadmium. The presented material can be the basis for controlling the phytotoxicity of cadmium, developing approaches to phytoremediation, and forming ecologically safe agrophytocenoses.

Keywords: cadmium, stress, phytotoxicity, mechanisms of resistance, phytoremediation

Fiziol. rast. genet.
2022, vol. 54, no. 4, 279-310

Full text and supplemented materials

Free full text: PDF  

References

1. Agency for Toxic Substances and Disease Registry (ATSDR). (2012). Toxicological Profile for Cadmium. Atlanta, GA: U.S. Department of Health and Human Services, Public Health Service. Available at: https://wwwn.cdc.gov/TSP/ToxProfiles/ ToxProfiles.aspx?id=48&tid=15 (Accessed: 31 March 2022).

2. Genchi, G., Sinicropi, M.S., Lauria, G., Carocci, A. & Catalano, A. (2020). The effects of cadmium toxicity. International Journal of Environmental Research and Public Health, 17(11), 3782. https://doi.org/10.3390/ijerph17113782

3. Zhong, Q., Zhou, Y., Tsang, D. C. W., Liu, J., Yang, X., Yin, M., Wu, S., Wang, J., Xiao, T. & Zhang, Z. (2020). Cadmium isotopes as tracers in environmental studies. A review. Sci. Total Environ, 736, 139585. https://doi.org/10.1016/j.scitotenv.2020.139585

4. Robertsa, T.L. (2014). Cadmium and phosphorous fertilizers. The issues and the science. Procedia Engineering, 83, pp. 52-59. https://doi.org/10.1016/j.proeng.2014.09.012

5. Smolders, E. (2013). Revisiting and updating the effect of phosphorus fertilisers on cadmium accumulation in European agricultural soils. International Fertiliser Society, 724, pp. 1-33.

6. Park, H., Song, B. & Morel, F.M.M. (2007). Diversity of the cadmium-containing carbonic anhydrase in marine diatoms and natural waters. Environmental Microbiology, 9 (2), pp. 403-413. https://doi.org/10.1111/j.1462-2920.2006.01151.x

7. Melnichuk, Yu.P. (1990). Effect of cadmium ions on cell division and plant growth. Kyiv: Naukova dumka [in Russian].

8. Melnichuk, Yu.P., Lyshko, A.K. & Kalinin, F.L. (1984). Effect of cadmium on nucleic acid and protein synthesis in S- and M-phases of the first cell cycle of pea root meristem. Fiziologiya i biokhimiya kulturnykh rastenii. 16(4). pp. 387-390 [in Russian].

9. Fedenko, V.S. & Shemet, S.A. (2009) Cyanidin accumulation in maize seedlings under toxic action of acetochlor combinations with lead and cadmium ions. Fiziologiya i biokhimiya kulturnykh rastenii. 41(5). pp. 430-438 [in Ukrainian].

10. Guralchuk, Zh.Z. (1994). Mechanisms of plant resistance to heavy metals. Fiziologiya i biokhimiya kulturnykh rastenii. 26(2). pp. 107-117 [in Russian].

11. Guralchuk, Zh.Z., del Val, C., Barea, J.M &, Azcon-Aguilar, C. (2007). The influence of arbuscular mycorrhizal fungi on alfalfa resistance against pollution with heavy metals and arsenicum. Silskohospodarska mikrobiolohiia, 5. pp. 7-14. https://doi.org/10.35868/1997-3004.5.7-14

12. Mikhyeyev, O.M. & Lapan, O.V. (2019). The effect of cadmium ions on the growth processes of the bioplato plant component. Fiziol. rast. genet., 51(4). pp. 338-346 [in Ukrainian]. https://doi.org/10.15407/frg2019.04.338

13. European Food Safety Authority (EFSA). (2012). Cadmium dietary exposure in the European population. Scientific Report of EFSA. EFSA Journal, 10(1), pp. 2551(1-37). https://doi.org/10.2903/j.efsa.2012.2551

14. Carvalho, M., Piotto, F., Franco, M., Borges, K., Gaziola, S., Castro, P., & Azevedo, R. (2018). Cadmium toxicity degree on tomato development is associated with disbalances in B and Mn status at early stages of plant exposure. Ecotoxicology, 10, pp. 1293-1302. https://doi.org/10.1007/s10646-018-1983-8

15. Huang, L., Wang, Q., Zhou, Q., Ma, L., Wu, Y., Liu, Q., Wang, S. & Feng, Y. (2020). Cadmium uptake from soil and transport by leafy vegetables: a meta-analysis. Environmental Pollution, 264, p. 114677. https://doi.org/10.1016/j.envpol.2020.114677

16. Kim, R.Y., Yoon, J.K., Kim, T.S. Yang, J.E., Owens, G. & Kim, K.R. (2015). Bioavailability of heavy metals in soils: definitions and practical implementations - a critical review. Environmental Geochemistry and Helth, 37(6), pp. 1041-1046. https://doi.org/10.1007/s10653-015-9695-y

17. Hussain, B., Ashraf, M.N., Rahman, S.-U., Abbas, A., Li, J. & Farooq, M. (2021). Cadmium stress in paddy fields: effects of soil conditions and remediation strategies. Sci. Total Environ., 754, p. 142188. https://doi.org/10.1016/j.scitotenv.2020.142188

18. KiciХska, A., PomykaУa, R. & Izquierdo-Diaz, M. (2022). Changes in soil pH and mobility of heavy metals in contaminated soils. European Journal of Soil Science, 73(1), p. e13203. https://doi.org/10.1111/ejss.13203

19. Simek, J. & Tuma, J. (2016). Response of Phaseolus vulgaris plants to cadmium with different accompanying anions exposure. Fresenius Environmental Bulletin, 25(9), pp. 3781-3788.

20. Pirлelov«, B. & Ondruлkov«, E. (2021). Effect of cadmium chloride and cadmium nitrate on growth and mineral nutrient content in the root of Fava bean (Vicia faba L.). Plants, 10(5), p. 1007. https://doi.org/10.3390/plants10051007

21. Koren, ћ., Ar№on, I., Kump, P., Ne№emer, M. & Vogel-Mikuл K. (2013). Influence of CdCl2 and CdSO4 supplementation on Cd distribution and ligand environment in leaves of the Cd hyperaccumulator Noccaea (Thlaspi) praecox. Plant and Soil, 370(1-2), pp. 125-148. https://doi.org/10.1007/s11104-013-1617-0

22. Raza, A., Habib, M., Kakavand, S. N., Zahid, Z., Zahra, N., Sharif, R. & Hasanuzzaman, M. (2020). Phytoremediation of cadmium: physiological, biochemical, and molecular mechanisms. Biology (Basel), 9(7), p. 177. https://doi.org/10.3390/biology9070177

23. Iqbal, N., Hayat, M.T., Zeb, B.S., Abbas, Z. & Ahmed, T. (2019). Phytoremediation of Cd-Contaminated soil and water. Chapter 21. Cadmium Toxicity and Tolerance in Plants: From Physiology to Remediation, pp. 531-543. https://doi.org/10.1016/B978-0-12-814864-8.00021-8

24. Wiggenhauser, M., Moore, R.E.T., Wang, P., Bienert, G. P., Laursen, K.H. & Blotevogel, S. (2022). Stable isotope fractionation of metals and metalloids in plants: a Review. Frontiers in Plant Science, 13, p. 840941. https://doi.org/10.3389/fpls.2022.840941

25. Chen, X., Ouyang, Y., Fan, Y., Qiu, B., Zhang, G. & Zeng, F. (2018). The pathway of transmembrane cadmium influx via calcium-permeable channels and its spatial characteristics along rice root. Journal of Experimental Botany, 69(21), pp. 5279-5291. https://doi.org/10.1093/jxb/ery293

26. Kohanov«, J., Martinka, M., VaculНk, M., White, P.J., Hauser, M.-T. & Lux, A. (2018). Root hair abundance impacts cadmium accumulation in Arabidopsis thaliana shoots. Annals of Botany, 122(5), pp. 903-914. https://doi.org/10.1093/aob/mcx220

27. Stritsis, C. & Claassen, N. (2013). Cadmium uptake kinetics and plants factors of shoot Cd concentration, Plant and Soil. Springer, 367(1-2), pp. 591-603. https://doi.org/10.1007/s11104-012-1498-7

28. Moon, J.Y., Belloeil, C., Ianna, M.L. & Shin, R. (2019). Arabidopsis CNGC family members contribute to heavy metal ion uptake in plants. International Journal of Molecular Sciences, 20(2), pp. 413. https://doi.org/10.3390/ijms20020413

29. Zheng, X., Chen, L. & Li, X. (2018). Arabidopsis and rice showed a distinct pattern in ZIPs genes expression profile in response to Cd stress. Botanical Studies. Springer, Berlin, Heidelberg, 59(1), pp. 1-10. https://doi.org/10.1186/s40529-018-0238-6

30. Pottier, M., Oomen, R., Picco, C., Giraudat, J., Scholz-Starke, J., Richaud, P., Carpaneto, A. & Thomine, S. (2015). Identification of mutations allowing natural resistance associated macrophage proteins (NRAMP) to discriminate against cadmium. The Plant Journal, 83(4), pp. 625-637. https://doi.org/10.1111/tpj.12914

31. Feng, S., Tan, J., Zhang, Y., Liang, S., Xiang, S., Wang, H. & Chai, T. (2017). Isolation and characterization of a novel cadmium-regulated yellow stripe-like transporter (SnYSL3) in Solanum nigrum. Plant Cell Reports, 36(2), pp. 281-296. https://doi.org/10.1007/s00299-016-2079-7

32. Zhang, J., Zhu, Y., Yu, L., Yang, M., Zou, X., Yin, C. & Lin, Y. (2022). Research advances in cadmium uptake, transport and resistance in rice (Oryza sativa L.). Cells, 11(3), pp. 569. https://doi.org/10.3390/cells11030569

33. Yamaguchi, N., Mori, S., Baba, K., Kaburagi-Yada, S., Arao, T., Kitajima, N., Hokura, A. & Terada, Y. (2011). Cadmium distribution in the root tissues of solanaceous plants with contrasting root-to-shoot Cd translocation efficiencies. Environmental and Experimental Botany, 71(2), pp. 198-206. https://doi.org/10.1016/j.envexpbot.2010.12.002

34. Tefera, W., Liu, T., Lu, L., Ge, J., Webb, S. M., Seifu, W. & Tian, S. (2020). Micro-XRF mapping and quantitative assessment of Cd in rice (Oryza sativa L.) roots. Ecotoxicology and Environmental Safety, 193, pp. 110245. https://doi.org/10.1016/j.ecoenv.2020.110245

35. Akhter, M.., Omelon, C.R., Gordon, R.A., Moser, D. & Macfie, S.M. (2014). Localization and chemical speciation of cadmium in the roots of barley and lettuce, Environmental and Experimental Botany, 100, pp. 10-19. https://doi.org/10.1016/j.envexpbot.2013.12.005

36. Wiggenhauser, M., Aucour, A.-M., Telouk, P., Blommaert, H. & Sarret, G. (2021). Changes of cadmium storage forms and isotope ratios in rice during grain filling. Frontiers in Plant Science, 12, 645150. https://doi.org/10.3389/fpls.2021.645150

37. Gao, W., Nan, T., Tan, G., Zhao, H., Tan, W., Meng, F., Li, Z., Li, Q.X. & Wang, B. (2015). Cellular and subcellular immunohistochemical localization and quantification of cadmium ions in wheat (Triticum aestivum). PLoS One, 10(5), pp. e0123716-e0123779. https://doi.org/10.1371/journal.pone.0123779

38. Baldantoni, D., Morra, L., Zaccardelli, M. & Alfani, A. (2016). Cadmium accumulation in leaves of leafy vegetables. Ecotoxicology and Environmental Safety, 123, pp. 89-94. https://doi.org/10.1016/j.ecoenv.2015.05.019

39. Reeves, R.D., Baker, A.J. M., Jaffrѕ, T., Erskine, P.D., Echevarria, G. & van der Ent, A. (2018). A global database for plants that hyperaccumulate metal and metalloid trace elements. New Phytologist, 218(2), pp. 407-411. https://doi.org/10.1111/nph.14907

40. University of Queensland. (2021). Global Hyperaccumulator Database. Available at: http://hyperaccumulators.smi.uq.edu.au/collection/ (Accessed: 2 April 2022).

41. Tian, S., Lu, L., Labavitch, J., Yang, X., He, Z., Hu, H., Sarangi, R., Newville, M., Commisso, J. & Brown, P. (2011). Cellular sequestration of cadmium in the hyperaccumulator plant species Sedum alfredii. Plant Physiology, 157(4), pp. 1914-1925. https://doi.org/10.1104/pp.111.183947

42. Tian, S., Xie, R., Wang, H., Hu, Y., Hou, D., Liao, X., Brown, P. H., Yang, H., Lin, X., Labavitch, J. M. & Lu, L. (2017). Uptake, sequestration and tolerance of cadmium at cellular levels in the hyperaccumulator plant species Sedum alfredii. Journal of Experimental Botany, 68(9), pp. 2387-2398. https://doi.org/10.1093/jxb/erx112

43. Leitenmaier, B. & Kтpper, H. (2013). Compartmentation and complexation of metals in hyperaccumulator plants. Frontiers in Plant Science, 4, p. 374. https://doi.org/10.3389/fpls.2013.00374

44. Gao, W., Guo, C., Hu, J., Dong, J. & Zhou, L.H. (2021). Mature trichome is the earliest sequestration site of Cd ions in Arabidopsis thaliana leaves. Heliyon, 7(7), e07501. https://doi.org/10.1016/j.heliyon.2021.e07501

45. Ismael, M.A., Elyamine, A.M., Moussa, M.G., Cai, M., Zhao, X. & Hu, C. (2019). Cadmium in plants: uptake, toxicity, and its interactions with selenium fertilizers. Metallomics, 11(2), pp. 255-277. https://doi.org/10.1039/C8MT00247A

46. Li, D., He, T., Saleem, M. & He, G. (2022). Metalloprotein-specific or critical amino acid residues: perspectives on plant-precise detoxification and recognition mechanisms under cadmium stress. International Journal of Molecular Sciences, 23, p. 1734. https://doi.org/10.3390/ijms23031734

47. Tang, Z., Cai, H., Li, J., Lv, Y., Zhang, W. & Zhao, F.-J. (2017). Allelic variation of NtNramp5 associated with cultivar variation in cadmium accumulation in Tobacco. Plant Cell Physiology, 58(9), pp. 1583-1593. https://doi.org/10.1093/pcp/pcx087

48. Friedman, R. (2014). Structural and computational insights into the versatility of cadmium binding to proteins. Journal of the Chemical Society. Dalton Transactions. The Royal Society of Chemistry, 43(7), pp. 2878-2887. https://doi.org/10.1039/C3DT52810C

49. Filipi№, M. (2012). Mechanisms of cadmium induced genomic instability. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis. Mutation Research, pp. 69-77. https://doi.org/10.1016/j.mrfmmm.2011.09.002

50. Ronzan, M., Ronzan, M., Piacentini, D., Fattorini, L., Della Rovere, F., Eiche, E., Riemann, M., Altamura, M.M. & Falasca, G. (2018). Cadmium and arsenic affect root development in Oryza sativa L. negatively interacting with auxin. Environmental and Experimental Botany, 151, pp. 64-75. https://doi.org/10.1016/j.envexpbot.2018.04.008

51. O'Lexy, R., Kasai, K., Clark, N., Fujiwara, T., Sozzani, R. & Gallagher, K.L. (2018). Exposure to heavy metal stress triggers changes in plasmodesmatal permeability via deposition and breakdown of callose. Journal of Experimental Botany, 69(15), pp. 3715-3728. https://doi.org/10.1093/jxb/ery171

52. Shi, Q., Wang, J., Zou, J., Jiang, Z., Wu, H., Wang, J., Jiang, W. & Liu, D. (2016). Cadmium localization and its toxic effects on root tips of barley. Zemdirbyste-Agriculture, 103(2), pp. 151-158. https://doi.org/10.13080/z-a.2016.103.020

53. Pizzaia, D., Nogueira, M. L., Mondin, M., Carvalho, M.E.A., Piotto, F.A., Rosario, M.F. & Azevedo, R.A. (2019). Cadmium toxicity and its relationship with disturbances in the cytoskeleton, cell cycle and chromosome stability. Ecotoxicology, 28(9), pp. 1046-1055. https://doi.org/10.1007/s10646-019-02096-0

54. Ёabka, A., Winnicki, K., Polit, J.T., WrЩblewski, M. & Maszewski, J. (2021). Cadmium (II)-induced oxidative stress results in replication stress and epigenetic modifications in root meristem cell nuclei of Vicia faba. Cells, 10(3), 640. https://doi.org/10.3390/cells10030640

55. Fan, J.L., Wei, X.Z., Wan, L.C., Zhang, L.Y., Zhao, X.Q., Liu, W.Z., Hao, H.-Q. & Zhang, H.-Y. (2011). Disarrangement of actin filaments and Ca2+ gradient by CdCl2 alters cell wall construction in Arabidopsis thaliana root hairs by inhibiting vesicular trafficking. Journal of Plant Physiology, 168(11), pp. 1157-1167. https://doi.org/10.1016/j.jplph.2011.01.031

56. Sychta, K., SУomka, A. & Kuta, E. (2021). Insights into Plant Programmed Cell Death Induced by Heavy Metals-Discovering a Terra Incognita. Cells, 10(1), pp. 65. https://doi.org/10.3390/cells10010065

57. Bruno, L., Pacenza, M., Forgione, I., Lamerton, L.R., Greco, M., Chiappetta, A. & Bitonti, M.B. (2017). In Arabidopsis thaliana cadmium impact on the growth of primary root by altering SCR expression and auxin-cytokinin cross-talk. Frontiers in Plant Science, 8, p. 1323. https://doi.org/10.3389/fpls.2017.01323

58. Piacentini, D., Rovere, F.D., Sofo, A., Fattorini, L., Falasca, G. & Altamura, M.M. (2020). Nitric Oxide Cooperates with Auxin to Mitigate the Alterations in the Root System Caused by Cadmium and Arsenic. Frontiers in Plant Science, 11, p. 1182. https://doi.org/10.3389/fpls.2020.01182

59. Yuan, H.M. & Huang, X. (2016). Inhibition of root meristem growth by cadmium involves nitric oxide-mediated repression of auxin accumulation and signalling in Arabidopsis. Plant Cell and Environment, 39(1), pp. 120-135. https://doi.org/10.1111/pce.12597

60. Bahmani, R., Kim, D.G., Modareszadeh, M. & Hwang, S. (2022). Cadmium enhances root hair elongation through reactive oxygen species in Arabidopsis. Environmental and Experimental Botany, 196, p. 104813. https://doi.org/10.1016/j.envexpbot.2022.104813

61. Chmielowska-B·k, J., Gzyl, J., RuciХska-Sobkowiak, R., Arasimowicz-Jelonek, M. & Deckert, J. (2014). The new insights into cadmium sensing. Frontiers in Plant Science, 5:245. https://doi.org/10.3389/fpls.2014.00245

62. Pereira, M.P., CorrГa, F.F., Castro, E.M., Oliveira, J.P.V. & Pereira, F.J. (2017). Leaf ontogeny of Schinus molle L. plants under cadmium contamination: the meristematic origin of leaf structural changes. Protoplasma, Springer, 254(6), pp. 2117-2126. https://doi.org/10.1007/s00709-017-1103-2

63. Hatamian, M., Rezaei Nejad, A., Kafi, M., Souri, M.K. & Shahbazi, K. (2020). Interaction of lead and cadmium on growth and leaf morphophysiological characteristics of European hackberry (Celtis australis) seedlings. Chemical and Biological Technologies in Agriculture, Springer, 7, pp. 9. https://doi.org/10.1186/s40538-019-0173-0

64. RuciХska-Sobkowiak, R. (2016). Water relations in plants subjected to heavy metal stresses. Acta Physiologiae Plantarum, Springer, 38, pp. 257. https://doi.org/10.1007/s11738-016-2277-5

65. Huybrechts, M., Hendrix, S., Kyndt, T., Demeestere, K., Vandamme, D. & Cuypers, A. (2021). Short-term effects of cadmium on leaf growth and nutrient transport in rice plants. Plant Science, 313. https://doi.org/10.1016/j.plantsci.2021.111054

66. Dobrikova, A.G. & Apostolova, E.L. (2019). Damage and protection of the photosynthetic apparatus under cadmium stress. In Cadmium Toxicity and Tolerance in Plants, pp. 275-298. https://doi.org/10.1016/B978-0-12-814864-8.00011-5

67. Song, X., Yue, X., Chen, W., Jiang, H., Han, Y. & Li, X. (2019). Detection of cadmium risk to the photosynthetic performance of Hybrid Pennisetum. Frontiers in Plant Science, 10, pp. 798. https://doi.org/10.3389/fpls.2019.00798

68. Guo, H., Hong, C., Chen, X., Xu, Y., Liu, Y., Jiang, D. & Zheng, B. (2016). Different growth and physiological responses to cadmium of the three miscanthus species. PLoS ONE, 11(4), p. e0153475. https://doi.org/10.1371/journal.pone.0153475

69. Huang, M., Zhu, H., Zhang, J., Tang, D., Han, X., Chen, L., Du, D., Yao, J., Chen, K. & Sun, J. (2017). Toxic effects of cadmium on tall fescue and different responses of the photosynthetic activities in the photosystem electron donor and acceptor sides. Scientific Reports, 7(1), p. 14387. https://doi.org/10.1038/s41598-017-14718-w

70. Paunov, M., Koleva, L., Vassilev, A., Vangronsveld, J. & Goltsev, V. (2018). Effects of different metals on photosynthesis: Cadmium and zinc affect chlorophyll fluorescence in durum wheat. International Journal of Molecular Sciences, 19(3), p. 787. https://doi.org/10.3390/ijms19030787

71. Grajek, H., RydzyХski, D., Piotrowicz-Cieнlak, A., Herman, A., Maciejczyk, M. & Wieczorek, Z. (2020). Cadmium ion-chlorophyll interaction - Examination of spectral properties and structure of the cadmium-chlorophyll complex and their relevance to photosynthesis inhibition. Chemosphere, 261, p. 127434. https://doi.org/10.1016/j.chemosphere.2020.127434

72. Sarangthem, J., Jain, M. & Gadre, R. (2011). Inhibition of d-aminolevulinic acid dehydratase activity by cadmium in excised etiolated maize leaf segments during greening. Plant, Soil and Environment. Czech Academy of Agricultural Sciences, 57(7), pp. 332-337. https://doi.org/10.17221/45/2011-PSE

73. Mourato, M., Pinto, F., Moreira, I., Sales, J., Leit±o, I. & Martins, L.L. (2018). The Effect of Cd Stress in Mineral Nutrient Uptake in Plants. In Cadmium Toxicity and Tolerance in Plants: From Physiology to Remediation, pp. 327-348. https://doi.org/10.1016/B978-0-12-814864-8.00013-9

74. Qin, S., Liu, H., Nie, Z., Rengel, Z., Gao, W., Li, C. & Zhao, P. (2020). Toxicity of cadmium and its competition with mineral nutrients for uptake by plants: A review. Pedosphere, 30, pp. 168-180. https://doi.org/10.1016/S1002-0160(20)60002-9

75. Ali, E., Hassan, Z., Irfan, M., Hussain, S., Rehman, H-u., Shah, J.M., Shahzad, A.N., Ali, M., Alkahtani, S., Abdel-Daim, M.M., Bukhari, S.A. H. & Ali, S. (2020). Indigenous tocopherol improves tolerance of oilseed rape to cadmium stress. Frontiers in Plant Science, 11, p. 547133. https://doi.org/10.3389/fpls.2020.547133

76. Hassan, M.J., Raza, M.A., Rehman, S.U., Ansar, M., Gitari, H., Khan, I., Wajid, M., Ahmed, M., Shah, G.A., Peng, Y. & Li, Z. (2020). Effect of cadmium toxicity on growth, oxidative damage, antioxidant defense system and cadmium accumulation in two sorghum cultivars. Plants (Basel), 9(11), pp. 1575. https://doi.org/10.3390/plants9111575

77. Manqui«n-Cerda, K., Cruces, E., Escudey, C., Zусiga, G. & CalderЩn, R. (2018). Interactive effects of aluminum and cadmium on phenolic compounds, antioxidant enzyme activity and oxidative stress in blueberry (Vaccinium corymbosum L.) plantlets cultivated in vitro. Ecotoxicology and Environmental Safety, 150, pp. 320-326. https://doi.org/10.1016/j.ecoenv.2017.12.050

78. Dresler, S., Strzemski, M., Kov«№ik, J., Sawicki, J., Staniak, M., WЩjciak, M., Sowa, I. & Hawrylak-Nowak, B. (2020). Tolerance of facultative metallophyte Carlina acaulis to cadmium relies on chelating and antioxidative metabolites. International Journal of Molecular Sciences, 21(8), pp. 2828. https://doi.org/10.3390/ijms21082828

79. Irfan, M., Ahmad, A. & Hayat, S. (2014). Effect of cadmium on the growth and antioxidant enzymes in two varieties of Brassica juncea. Saudi Journal of Biological Sciences, 21(2), pp. 125-131. https://doi.org/10.1016/j.sjbs.2013.08.001

80. Borges, K.L.R., Salvato, F., Alc­ntara, B.K., Nalin, R.S., Piotto, F.". & Azevedo, R.A. (2018). Temporal dynamic responses of roots in contrasting tomato genotypes to cadmium tolerance. Ecotoxicology. Springer, 27(3), pp. 245-258. https://doi.org/10.1007/s10646-017-1889-x

81. Yu, R., Tang, Y., Liu, C., Du, X., Miao, C. & Shi, G. (2017). Comparative transcriptomic analysis reveals the roles of ROS scavenging genes in response to cadmium in two pak choi cultivars. Scientific Reports, 7(1), pp. 9217. https://doi.org/10.1038/s41598-017-09838-2

82. Pearson, S.A. & Cowan, J.A. (2021). Glutathione-coordinated metal complexes as substrates for cellular transporters. Metallomics: integrated biometal science. Oxford University Press, 13(5), p. 15. https://doi.org/10.1093/mtomcs/mfab015

83. Zhao, Y., Li, Y., Wiggenhauser, M., Yang, J., Sarret, G., Cheng, Q., Liu, J. & Shi, Y. (2021). Theoretical isotope fractionation of cadmium during complexation with organic ligands. Chemical Geology, 571, p. 120178. https://doi.org/10.1016/j.chemgeo.2021.120178

84. Luo, J. S., Yang, Y., Gu, T., Wu, Z. & Zhang, Z. (2019b). The Arabidopsis defensin gene AtPDF2.5 mediates cadmium tolerance and accumulation. Plant, Cell & Environment, 42(9), pp. 2681-2695. https://doi.org/10.1111/pce.13592

85. Wu, Z., Liu, D., Yue, N., Song, H., Luo, J. & Zhang, Z. (2021). Pdf1.5 enhances adaptation to low nitrogen levels and cadmium stress. International Journal of Molecular Sciences, 22(19), pp. 10455. https://doi.org/10.3390/ijms221910455

86. Luo, J. S., Gu, T.Y., Yang, Y. & Zhang, Z.H. (2019a). A non-secreted plant defensin AtPDF2.6 conferred cadmium tolerance via its chelation in Arabidopsis. Plant Molecular Biology, 100(4-5), pp. 561-569. https://doi.org/10.1007/s11103-019-00878-y

87. Leszczyszyn, O.I., Imam, H.T. & Blindauer, C.A. (2013). Diversity and distribution of plant metallothioneins: A review of structure, properties and functions. Metallomics, 5, pp. 1146-1169. https://doi.org/10.1039/c3mt00072a

88. Singh, G., Tripathi, S., Shanker, K. & Sharma, A. (2019). Cadmium-induced conformational changes in type 2 metallothionein of medicinal plant Coptis japonica: insights from molecular dynamics studies of apo, partially and fully metalated forms. Journal of Biomolecular Structure and Dynamics, 37(6), pp. 1520-1533. https://doi.org/10.1080/07391102.2018.1461688

89. Zhang, J., Zhang, M., Tian, S., Lu, L., Shohag, M.J. & Yang, X. (2014). Metallothionein 2 (SaMT2) from Sedum alfredii hance confers increased Cd tolerance and accumulation in yeast and tobacco. PLoS ONE, 9(7), p. e102750. https://doi.org/10.1371/journal.pone.0102750

90. Rono, J.K., Wang, L.L., Wu, X.C., Cao, H.W., Zhao, Y.N., Khan, I.U. & Yang, Z.M. (2021). Identification of a new function of metallothionein-like gene OsMT1e for cadmium detoxification and potential phytoremediation. Chemosphere, 265, p. 129136. https://doi.org/10.1016/j.chemosphere.2020.129136

91. Zhang, H., Lv, S., Xu, H., Hou, D., Li, Y. & Wang, F. (2017). H2O2 is involved in the metallothionein-mediated rice tolerance to copper and cadmium toxicity. International Journal of Molecular Sciences, 18(10). p. 2083. https://doi.org/10.3390/ijms18102083

92. Hasanuzzaman, M., Nahar, K., Anee, T.I. & Fujita, M. (2017). Glutathione in plants: biosynthesis and physiological role in environmental stress tolerance. Physiology and Molecular Biology of Plants, 23(2), pp. 249-268. https://doi.org/10.1007/s12298-017-0422-2

93. Jacquart, A., Brayner, R., El Hage Chahine, J.M. & Ha-Duong, N.T. (2017). Cd2+ and Pb2+ complexation by glutathione and the phytochelatins. Chemico-Biological Interactions, 267, pp. 2-10. https://doi.org/10.1016/j.cbi.2016.09.002

94. W·tУy, J., ˜uczkowski, M., Padjasek, M. & KrДьel, A. (2021). Phytochelatins as a dynamic system for Cd(II) buffering from the micro- to femtomolar range. Inorganic Chemistry, 60(7), pp. 4657-4675. https://doi.org/10.1021/acs.inorgchem.0c03639

95. Rea, P.A. (2012). Phytochelatin synthase: of a protease a peptide polymerase made. Physiology Plantarum, 145(1), pp. 154-164. https://doi.org/10.1111/j.1399-3054.2012.01571.x

96. Devez, A., Achterberg, E. & Gledhill, M. (2009). Metal ion-binding properties of phytochelatins and related ligands. Metal Ions in Life Sciences, 5, pp. 441-482. https://doi.org/10.1515/9783110436273-020

97. Zitka, O., Krystofova, O., Sobrova, P., Adam, V., Zehnalek, J., Beklova, M., & Kizek, R. (2011). Phytochelatin synthase activity as a marker of metal pollution. Journal of Hazardous Materials, 192(2), pp. 794-800. https://doi.org/10.1016/j.jhazmat.2011.05.088

98. Klsa, D. (2019). Responses of phytochelatin and proline-related genes expression associated with heavy metal stress in Solanum lycopersicum. Acta Botanica Croatica, 78(1), pp. 9-16. https://doi.org/10.2478/botcro-2018-0023

99. Fan, W., Guo, Q., Liu, C., Liu, X., Zhang, M., Long, D., Xiang, Z. & Zhao, A. (2018). Two mulberry phytochelatin synthase genes confer zinc/cadmium tolerance and accumulation in transgenic Arabidopsis and Tobacco. Gene, 645, pp. 95-104. https://doi.org/10.1016/j.gene.2017.12.042

100. Zhang, X., Rui, H., Zhang, F., Hu, Z., Xia, Y. & Shen, Z. (2018). Overexpression of a functional Vicia sativa PCS1 homolog increases cadmium tolerance and phytochelatins synthesis in Arabidopsis. Frontiers in Plant Science, 9, p. 107. https://doi.org/10.3389/fpls.2018.00107

101. Zhu, S., Shi, W. & Jie, Y. (2021). Overexpression of BnPCS1, a novel phytochelatin synthase gene from ramie (Boehmeria nivea), enhanced Cd tolerance, accumulation, and translocation in Arabidopsis thaliana. Frontiers in Plant Science, 12, p. 639189. https://doi.org/10.3389/fpls.2021.639189

102. Lee, B.D. & Hwang, S. (2015). Tobacco phytochelatin synthase (NtPCS1) plays important roles in cadmium and arsenic tolerance and in early plant development in tobacco. Plant Biotechnology Reports. Springer Tokyo, 9(3), pp. 107-114. https://doi.org/10.1007/s11816-015-0348-5

103. Ebbs, S., Lau, I., Ahner, B. & Kochian, L.V. (2002). Phytochelatin synthesis is not responsible for Cd tolerance in the Zn/Cd hyperaccumulator Thlaspi caerulescens (J. & C. Presl). Planta, 214(4), pp. 635-640. https://doi.org/10.1007/s004250100650

104. Sun, Q., Ye, Z.H., Wang, X.R. & Wong, M.H. (2007). Cadmium hyperaccumulation leads to an increase of glutathione rather than phytochelatins in the cadmium hyperaccumulator Sedum alfredii. Journal of Plant Physiology, 164(11), pp. 1489-1498. https://doi.org/10.1016/j.jplph.2006.10.001

105. Zhang, Z.C., Chen, B.X. & Qiu, B.S. (2010). Phytochelatin synthesis plays a similar role in shoots of the cadmium hyperaccumulator Sedum alfredii as in non-resistant plants. Plant, Cell and Environment, 33(8), pp. 1248-1255. https://doi.org/10.1111/j.1365-3040.2010.02144.x

106. Huguet, S., Bert, V., Laboudigue, A., BarthАs, V., Isaure, M.-P., Llorens, I., Schat, H. & Sarret, G. (2012). Cd speciation and localization in the hyperaccumulator Arabidopsis halleri. Environmental and Experimental Botany, 82, pp. 54-65. https://doi.org/10.1016/j.envexpbot.2012.03.011

107. Vogel-Mikuл, K., Ar№on, I. & Kodre, A. (2010). Complexation of cadmium in seeds and vegetative tissues of the cadmium hyperaccumulator Thlaspi praecox as studied by X-ray absorption spectroscopy. Plant and Soil, 331(1), pp. 439-451. https://doi.org/10.1007/s11104-009-0264-y

108. Meyer, C.-L., Juraniec, M., Huguet, S., Chaves-Rodriguez, E., Salis, P., Isaure, M.-P., Goormaghtigh, E. & Verbruggen, N. (2015). Intraspecific variability of cadmium tolerance and accumulation, and cadmium-induced cell wall modifications in the metal hyperaccumulator Arabidopsis halleri. J. Exp. Bot., 66(11), pp. 3215-3227. https://doi.org/10.1093/jxb/erv144

109. Isaure, M.-P., Huguet, S., Meyer, C.-L., Castillo-Michel, H., Testemale, D., Vantelon, D., Saumitou-Laprade, P., Verbruggen, N. & Sarret, G. (2015). Evidence of various mechanisms of Cd sequestration in the hyperaccumulator Arabidopsis halleri, the non-accumulator Arabidopsis lyrata, and their progenies by combined synchrotron-based techniques. Journal of Experimental Botany, 66(11), pp. 3201-3214. https://doi.org/10.1093/jxb/erv131

110. Brunetti, P., Zanella, L., De Paolis, A., Di Litta, D., Cecchetti, V., Falasca, G., Barbieri, M., Altamura, M.M., Costantino, P. & Cardarelli, M. (2015). Cadmium-inducible expression of the ABC-type transporter AtABCC3 increases phytochelatin-mediated cadmium tolerance in Arabidopsis. Journal of Experimental Botany, 66(13), pp. 3815-3829. https://doi.org/10.1093/jxb/erv185

111. Song, W.Y., Mendoza-Cуzatl, D.G., Lee, Y., Schroeder, J.I., Ahn, S.N., Lee, H.S., Wicker, T. & Martinoia, E. (2014). Phytochelatin-metal(loid) transport into vacuoles shows different substrate preferences in barley and Arabidopsis. Plant, Cell & Environment, 37(5), pp. 1192-1201. https://doi.org/10.1111/pce.12227

112. Yang, G., Fu, S., Huang, J., Li, L., Long, Y., Wei, Q., Wang, Z., Chen, Z. & Xia, J. (2021). The tonoplast-localized transporter OsABCC9 is involved in cadmium tolerance and accumulation in rice. Plant Science, 307, pp. 110894. https://doi.org/10.1016/j.plantsci.2021.110894

113. Fu, S., Lu, Y., Zhang, X., Yang, G., Chao, D., Wang, Z., Shi, M., Chen, J., Chao, D.-Y., Li, R., Ma, J. F. & Xia, J. (2019). The ABC transporter ABCG36 is required for cadmium tolerance in rice. Journal of Experimental Botany, 70(20), pp. 5909-5918. https://doi.org/10.1093/jxb/erz335

114. Kim, D.Y., Bovet, L., Maeshima, M., Martinoia, E. & Lee, Y. (2007). The ABC transporter AtPDR8 is a cadmium extrusion pump conferring heavy metal resistance. Plant Journal, 50(2), pp. 207-218. https://doi.org/10.1111/j.1365-313X.2007.03044.x

115. Zhang, M., Zhang, J., Lu, L.L., Zhu, Z.Q. & Yang, X.E. (2016). Functional analysis of CAX2-like transporters isolated from two ecotypes of Sedum alfredii. Biologia Plantarum, 60(1), pp. 37-47. https://doi.org/10.1007/s10535-015-0557-3

116. Baliardini, C., Meyer, C.-L., Salis, P., Saumitou-Laprade, P. & Verbruggen, N. (2015). hyperaccumulator Arabidopsis halleri and plays a role in limiting oxidative stress in Arabidopsis spp. Plant Physiology, 169(1), pp. 549-559. https://doi.org/10.1104/pp.15.01037

117. Zou, W., Chen, J., Meng, L., Chen, D., He, H. & Ye, G. (2021). The rice cation/H+ exchanger family involved in Cd tolerance and transport. International Journal of Molecular Sciences, 22(15), pp. 8186. https://doi.org/10.3390/ijms22158186

118. Sun, C., Yang, M., Li, Y., Tian, J., Zhang, Y., Liang, L., Liu, Z., Chen, K., Li, Y., Lv, K. & Lian, X. (2019). Comprehensive analysis of variation of cadmium accumulation in rice and detection of a new weak allele of OsHMA3. Journal of Experimental Botany, 70(21), pp. 6389-6400. https://doi.org/10.1093/jxb/erz400

119. Chao, D.Y., Silva, A., Baxter, I., Huang, Y.S., Nordborg, M., Danku, J., Lahner, B., Yakubova, E. & Salt, D.E. (2012). Genome-wide association studies identify heavy metal ATPase3 as the primary determinant of natural variation in leaf cadmium in Arabidopsis thaliana. PLoS Genetics., 8(9), p. е1002923. https://doi.org/10.1371/journal.pgen.1002923

120. Ueno, D., Milner, M.J., Yamaji, N., Yokosho, K., Koyama, E., Zambrano, M.C., Kaskie, M., Ebbs, S., Kochian, L.V. & Ma, J.F. (2011). Elevated expression of TcHMA3 plays a key role in the extreme Cd tolerance in a Cd-hyperaccumulating ecotype of Thlaspi caerulescens. Plant Journal, 66(5), pp. 852-862. https://doi.org/10.1111/j.1365-313X.2011.04548.x

121. Liu, H., Zhao, H.X., Wu, L.H., Liu, A.N., Zhao, F.J. & Xu, W.Z. (2017). Heavy metal ATPase 3 (HMA3) confers cadmium hypertolerance on the cadmium/zinc hyperaccumulator Sedum plumbizincicola. New Phytology, 215(2), pp. 687-698. https://doi.org/10.1111/nph.14622

122. Mills, R.F., Valdes, B., Duke, M., Peaston, K.A., Lahner, B., Salt, D.E. & Williams, L.E. (2010). Functional significance of AtHMA4 c-terminal domain in Planta. PLoS ONE, 5(10), p. e13388. https://doi.org/10.1371/journal.pone.0013388

123. O'Lochlainn, S., Bowen, H.C., Fray, R.G., Hammond, J.P., King, G.J., White, P.J., Graham, N.S. & Broadley, M.R. (2011). Tandem quadruplication of HMA4 in the zinc (Zn) and cadmium (Cd) hyperaccumulator Noccaea caerulescens. PLoS ONE, 6(3), p. е17814. https://doi.org/10.1371/journal.pone.0017814

124. Wang, F., Tan, H., Han, J., Zhang, Y., He, X., Ding, Y., Chen, Z. & Zhu, C. (2019). A novel family of PLAC8 motif-containing/PCR genes mediates Cd tolerance and Cd accumulation in rice. Environmental Sciences Europe, 31(1), pp. 1-13. https://doi.org/10.1186/s12302-019-0259-0

125. Kim, Y.-Y., Kim, D.-Y., Shim, D., Song, W.-Y., Lee, J., Schroeder, J.I., Kim, S., Moran, N. & Lee, Y. (2008). Expression of the novel wheat gene TM20 confers enhanced cadmium tolerance to bakers' yeast. Journal of Biological Chemistry, 283(23), pp. 15893-15902. https://doi.org/10.1074/jbc.M708947200

126. Hart, B.A., Lee, C.H., Shukla, G.S., Shukla, A., Osier, M., Eneman, J.D. & Chiu, J.F. (1999). Characterization of cadmium-induced apoptosis in rat lung epithelial cells: evidence for the participation of oxidant stress. Toxicology, 133(1), pp. 43-58. https://doi.org/10.1016/S0300-483X(99)00013-X

127. Sandalio, L.M., Dalurzo, H.C., Gomez, M., Romero-Puertas, M.C. & del Rio, L.A. (2001). Cadmium-induced changes in the growth and oxidative metabolism of pea plants. J. of Exp. Bot., 52, pp. 2115-2126. https://doi.org/10.1093/jexbot/52.364.2115

128. Koizumi, T., Shirakura, H., Kumagai, H., Tatsumoto, H. & Suzuki, K.T. (1996). Mechanism of cadmium-induced cytotoxicity in rat hepatocytes: Cadmium- induced active oxygen-related permeability changes of the plasma membrane. Toxicology, 114(2), pp. 125-134. https://doi.org/10.1016/S0300-483X(96)03477-4

129. Knox, R.E., Pozniak, C.J., Clarke, F.R., Clarke, J.M., Houshmand, S. & Singh, A.K. (2009). Chromosomal location of the cadmium uptake gene (Cdu1) in durum wheat. Genome, 52(3), pp. 741-747. https://doi.org/10.1139/G09-042

130. Boominathan, R. & Doran, P.M. (2003). Cadmium tolerance and antioxidative defenses in hairy roots of the cadmium hyperaccumulator, Thlaspi caerulescens. Biotechnology and Bioengineering, 83(2), pp. 158-167. https://doi.org/10.1002/bit.10656

131. Kupper, H., Lombi, E., Zhao, F.J. & McGrath, S.P. (2000). Cellular compartmentation of cadmium and zinc in relation to other elements in the hyperaccumulator Aradidopsis halleri. Planta, 212, pp. 75-84. https://doi.org/10.1007/s004250000366

132. Nigam, R., Srivastava, S., Prakash, S. & Srivastava, M.M. (2001). Cadmium mobilization and plant availability - the impact of organic acids. Plant and Soil, 230, pp. 107-113. https://doi.org/10.1023/A:1004865811529

133. Lux, A., Sottnikova, A., Opatrna, J. & Greger, M. (2004). Differences in structure of adventitious roots in Salix clones with contrasting characteristics of cadmium accumulation and sensitivity. Physiology Plantarum, 120, pp. 537-545. https://doi.org/10.1111/j.0031-9317.2004.0275.x

134. Mehdi, K., Thierie, J. & Penninckx, M. J. (2001). g-Glutamyl transpeptidase in the yeast Saccharomyces cerevisiae and its role in the vacuolar transport and metabolism of glutathione. Biochem. J. 359(3), pp. 631-637. https://doi.org/10.1042/bj3590631

135. Ranieri, A., Castagna, A., Scebba, F., Careri, M., Zagnoni, I., Predieri, G., Pagliari, M. & di Toppi, L. S. (2005). Oxidative stress and phytochelatin characterisation in bread wheat exposed to cadmium excess. Plant Physiology and Biochemistry, 43, pp. 45-54. https://doi.org/10.1016/j.plaphy.2004.12.004

136. Petrovic, S., Pascolo, L., Gallo, R., Cupelli, F., Ostrow, J. D., Goffeau, A., Tiribelli, C. & Bruschi, C.V. (2000). The products of YCF1 and YLL015w (BPT1) cooperate for the ATP-dependent vacuolar transport of unconjugated bilirubin in Saccharomyces cerevisiae. Yeast, 16(6), pp. 561-571. https://doi.org/10.1002/(SICI)1097-0061(200004)16:6<561::AID-YEA551>3.0.CO;2-L https://doi.org/10.1002/(SICI)1097-0061(200004)16:6<561::AID-YEA551>3.0.CO;2-L

137. Rea, P.A., Li, Z.S., Lu, Y.P., Drozdowicz, Y.M. & Martinoia, E. (1998). From vacuolar GS-X pumps to multispecific ABC transporters. Annual Review of Plant Physiology and Plant Molecular Biology, 49, pp. 727-760. https://doi.org/10.1146/annurev.arplant.49.1.727

138. Tommasini, R., Vogt, E., Fromenteau, M., Hortensteiner, S., Matile, P., Amrhein, N. & Martinoia, E. (1998). An ABC-transporter of Arabidopsis thaliana has both glutathione-conjugate and chlorophyll catabolite transport activity. Plant Journal, 13(6), pp. 773-780.