Fiziol. rast. genet. 2018, vol. 50, no. 4, 279-298, doi:


Rybalka A.I.1,2, Morgun B.V.2,3, Polyshchuk S.S.1

  1. Plant Breeding and Genetics Institute—National Center of Seed and Cultivars Investigation, National Academy of Agrarian Sciences of Ukraine 3 Ovidiopolska Road, Odesa, 65036, Ukraine
  2. Institute of Plant Physiology and Genetics, National Academy of Sciences of Ukraine 31/17 Vasylkivska St., Kyiv, 03022, Ukraine
  3. Institute of Cell Biology and Genetic Engineering, National Academy of Sciences of Ukraine 148 Zabolotnogo St., Kyiv, 03143, Ukraine

Grain protein content enhancement in wheat continues to be as one of the strategic purposes of the modern breeding. However, grain protein content is a quantitative polygenic trait highly depended of the agronomic and climate environments of growth. Therefore, it is complicated for efficient control and managing in the course of breeding. In the wild emmer T. turgidum ssp. dicoccoides accession of national funds of germplasm in Israel the wild-type gene Gpc-B1 (grain protein concentration) located on chromosome 6B was identified. The functional Gpc-B1 is associated with essential enhancement of grain protein content and simultaneously several key micronutrients due to enforcement of physiological plant senescence and more efficient nitrogen remobilization from vegetative mass to grain. Gene Gpc-B1 causes minor negative effects on some structural yield elements such as grain and grain test weight with no considerable penalty on grain yield per ce. Gene Gpc-B1 was successfully cloned and its molecular structure and functionality were studied in details. The experiments carried out in many countries on the different genetic background and under contrast growth environments evidenced the high efficiency of the gene Gpc-B1 use in breeding programs aimed on grain protein and minerals content enhancement as well as wheat baking and nutrition quality amelioration.

Keywords: wheat, protein content, minerals, chromosome 6B, gene Gpc-B1 (NAM-B1), senescence, nitrogen remobilization, T. turgidum ssp. dicoccoides.

Fiziol. rast. genet.
2018, vol. 50, no. 4, 279-298

Full text and supplemented materials

Free full text: PDF  


1. Alexandratos, N. & Bruinsma, J. (2012). World Agriculture: towards 2030/2050. The 2012 revision. ESA working paper No. 12-03 (Food Agric Org, Rome).

2. Henchion, M., Hayes, M., Mullen, A., Fenelon, M. & Tiwari, B. (2017). Future protein supply and demand: strategies and factors influencing a sustainable equilibrium. A review. Foods, pp. 1-21.

3. Johnson, V., Mattern, P., Peterson, C. & Kuhr, S. (1985). Improvement of wheat protein by traditional breeding and genetic techniques. Cereal Chemistry, 62(5), p. 350-355.

4. Simmonds, N. (1995). The relation between yield and protein in cereal grain. J. Sci. Food Agric., 67, pp. 309 -315.

5. Levy, A. & Feldman, M. (1989). Location of genes for high grain protein percentage and other quantitative traits in wild wheat, T. turgidum var. dicoccoides. Euphytica, 41, pp. 113-122.

6. Snape, J., Hyne, V. & Aitken, K. (1995). Targeting genes in wheat using marker-mediated approaches. In: ZS Li, Xin ZY (eds) Proc. 8th Int. wheat genetics symposium, Beijing, 20–25 July 1993. China Agric Scientech Press, Beijing, China, pp. 749-759.

7. Joppa, L., Du, C., Hart, G. & Hareland, G. (1997). Mapping genes for grain protein in tetraploid wheat (Triticum turgidum L.) using a population of recombinant inbred chromosome lines. Crop Sci., 37, pp. 1586-1589.

8. Terasawa, Y., Ito, M., Tabiki, T., Nagasawa, K., Hatta, K. & Nishio, Z. (2016). Mapping of major QTL associated with protein content on chromosome 2B in hard red winter wheat (Triticum aestivum L.). Breed. Sci., 66, pp. 471-480.

9. McIntosh, R.A., Dubcovsky, J., Rogers, W.J., Rogers, W.J., Morris, C., Appels, R. & Xia, X.C. (2013). Catalogue of Gene Symbols for Wheat. 12th Int. Wheat Genet. Symp. 8—13 Sept.,Yokohama, Japan.

10. Zhao, F. & McGrath, S. (2009). Biofortification and phytoremediation. Curr. Opin. Plant Biol., 12, pp. 373- 380.

11. FAO, WHO, Rome declaration on nutrition. In: Second Int. Conference on Nutrition. Rome, Italy, 2014.

12. Hirschi, K.D. (2009). Nutrient biofortification of food crops. Annu. Rev. Nutr., 29, pp. 401-421.

13. Mitrofanova, O.P. & Khakimova, А.G. (2016). New genetic resources in wheat breeding for an increased grain protein content. Vavilovskii zhurnal genetiki i selektsii, 20, No. 4, pp. 545-554. doi: https://doi:10.18699/VJ16.177 [in Russian].

14. Avivi, L. (1978). High protein content in wild tetraploid Triticum dicoccoides Korn. Proc. 5th Int. Wheat Genet. Symp. Ed. S. Ramanujam. Indian Soc. of Genet. and Plant Breed., New Delhi, India, pp. 372-380.

15. Joppa, L. & Cantrell, R. (1990). Chromosomal location of genes for grain protein content of wild tetraploid wheat. Crop Sci., 30, pp. 1059-1064.

16. Chee, P., Elias, E., Anderson, J. & Kianian, S. (2001). Evaluation of a high grain protein QTL from Triticum turgidum L. var. dicoccoides in an adapted durum wheat background. Crop Sci., 41, pp. 295-301.

17. Uauy, C., Distelfeld, A., Fahima, T., Blechl, A. & Dubcovsky, J. (2006). A NAC gene regulating senescence improves grain protein, zinc and iron content in wheat. Science, 314, pp. 1298-1301.

18. Distelfeld, A., Uauy, C., Fahima, T. & Dubcovsky, J. (2006). Physical map of the wheat high-grain protein content gene Gpc-B1 and development of a high-throughput molecular marker. New Phytol., 169, pp. 753-763.

19. Guo, Y. & Gan, S. (2006). AtNAP, a NAC family transcription factor, has an important role in leaf senescence. Plant J., 46, pp. 601-612.

20. Hagenblad, J., Asplund, L., Balfourier, F., Ravel, C. & Leino, M. (2012). Strong presence of the high grain protein content allele of NAM-B1 in Fennoscandian wheat. Theor. and Appl. Genet., 125, pp. 1677-1686.

21. Waters, B., Uauy, C., Dubcovsky, J. & Grusak, M. (2009). Wheat (Triticum aestivum) NAM proteins regulate the translocation of iron, zinc, and nitrogen compounds from vegetative tissues to grain. J. Expt. Bot., 60, pp. 4263-4274.

22. Distelfeld, A., Avni, R. & Fischer, A. (2014). Senescence, nutrient remobilization, and yield in wheat and barley. J. Expt. Bot., 65, No. 14, pp. 3783-3798. doi: https://doi:10.1093/jxb/ert477

23. Dubcovsky, J., Fahima, T., Uauy, C. & Distelfeld, A. (2010). NAC from wheat for increasing grain protein content. United States Patent No.: US 7820882B2. Oct. 26.

24. Kade, M., Barneix, J., Olmos, S. & Dubcovsky, J. (2005). Nitrogen uptake and remobilization in tetraploid Langdon durum wheat and a recombinant substitution line with the high grain protein gene Gpc-B1. Plant Breed., 124, pp. 343-349.

25. Distelfeld, A., Cakmak, I., Peleg, Z., Ozturk, L., Yazici, A.M., Budak, H., Saranga, Y. & Fahima, T. (2007). Multiple QTL-effects of wheat Gpc-B1 locus on grain protein and micronutrient concentrations. Physiol. Plantarum, 129, pp. 635-643.

26. Distelfeld, A., Korol, A., Dubcovsky, J., Uauy, C., Blake, T. & Fahima, T. (2008). Colinearity between the barley grain protein content (GPC) QTL on chromosome arm 6HS and the wheat Gpc-B1 region. Mol. Breed., 22, pp. 25-38.

27. Distelfeld, A., Pearce, S., Avni, R., Scherer, B., Uauy, C., Piston, F., Slade, A., Zhao, R. & Dubcovsky, J. (2012). Divergent functions of orthologous NAC transcription factors in wheat and rice. Plant Mol. Biol., 78, pp. 515-524.

28. Mickelson, S., See, D., Meyer, F., Garner, J., Foster, C., Blake, T. & Fischer, A. (2003). Mapping of QTL associated with nitrogen storage and remobilization in barley (Hordeum vulgare L.) leaves. J. Expt. Bot., 54, pp. 801-812.

29. See, D., Kanazin, V., Kephart, K. & Blake, T. (2002). Mapping genes controlling variation in barley grain protein concentration. Crop Sci., 42, pp. 680-685.

30. Jukanti, A. & Fischer, A. (2008). A high-grain protein content locus on barley (Hordeum vulgare) chromosome 6 is associated with increased flag leaf proteolysis and nitrogen remobilization. Physiol. Plantarum, 132, pp. 426 -439.

31. Jamar, C., Loffet, F., Frettinger, P., Ramsay, L., Fauconnier, M.-L. & du Jardin, P. (2010). NAM-1 gene polymorphism and grain protein content in Hordeum. J. Plant Physiol., 167, pp. 497-501.

32. Tabbita, F., Pearce, S. & Barneix, A. (2017). Breeding for increased grin protein and micronutrient content in wheat: Ten years of the GPC-B1 gene. J. Cereal Sci., 73, pp. 183-191.

33. Asplund, L., Hagenblad, J. & Leino, M. (2010). Re-evaluating the history of the wheat do­mestication gene NAM-B1 using historical plant material. J. Archaeol. Sci., 37, pp. 2303-2307.

34. Leino, M., Hagenblad, J., Edqvist, J. & Strese, E. (2009). DNA preservation and utility of a historic seed collection. Seed Sci. Res., 19, pp. 125-135.

35. Abedi, T., Alemzadeh, A. & Kazemeini, S. (2011). Wheat yield and grain protein response to nitrogen amount and timing. Aust. J. Crop Sci., 5, pp. 330-336.

36. Tea, I., Genter, T., Naulet, N., Boyer, V., Lummerzheim, M. & Kleiber, D. (2004). Effect of foliar sulfur and nitrogen fertilization on wheat storage protein composition and dough mixing properties. Cereal Chem., 81, pp. 759-766.

37. Kumar, J., Jaiswal, V., Kumar, A., Kumar, N., Mir, R., Kumar, S., Dhariwal, R., Tyagi, S., Khandelwal, M., Prabhu, K., Prasad, R., Balyan, H. & Gupta, P. (2011). Introgression of a major gene for high grain protein content in some Indian breadwheat cultivars. Crop. Res., 123, pp. 226-233.

38. Mishra, V., Pushpendra, K., Balasubramaniam, A., Ramesh, C., Neeraj, K., Manish, K., Punam, S. & Arun, K. (2015). Introgression of a gene for high grain protein content (Gpc-B1) into two leading cultivars of wheat in Eastern Gangetic Plains of India through marker assisted backcross breeding. J. Plant Breed. Crop Sci., 7, pp. 292-300.

39. Vishwakarma, M., Arun, B., Mishra, V., Yadav, P., Kumar, H. & Joshi, A. (2016). Marker-assisted improvement of grain protein content and grain weight in Indian bread wheat. Euphytica, 208, pp. 313-321.

40. Vishwakarma, M., Mishra, V., Gupta, P., Yadav, P., Kumar, H. & Joshi, A. (2014). Introgression of the high grain protein gene Gpc-B1 in an elite wheat variety of Indo-Gangetic Plains through marker assisted backcross breeding. Current Plant Biol., 1, pp. 60-67.

41. Tabbita, F., Lewis, S., Vouilloz, J., Ortega, M., Kade, M., Abbate, P. & Barneix, A. (2012). Effect of the Gpc-B1 locus on high grain protein content introgressed into Argentinean wheat germplasm. Plant Breed., 132, pp. 48-52.

42. Uauy, C., Brevis, J. & Dubcovsky, J. (2006). The high grain protein content gene Gpc-B1 accelerates senescence and has pleiotropic effects on protein content in wheat. J. Exp. Bot., 57, pp. 2785-2794.

43. Cantu, D., Pearce, S., Distelfeld, A., Christiansen, M., Uauy, C., Akhunov, E., Fahima, T. & Dubcovsky, J. (2011). Effect of the down-regulation of the high Grain Protein Content (GPC) genes on the wheat transcriptome during monocarpic senescence. BMC Genomics, 12, pp. 2-17.

44. Pearce, S., Tabbita, F., Cantu, D., Buffalo, V., Avni, R., Vazquez-Gross, H., Zhao, R., Conley, C., Distelfeld, A. & Dubcovksy, J. (2014). Regulation of Zn and Fe transporters by the GPC1 gene during early wheat monocarpic senescence. BMC Plant Biol., 14, pp. 2-23.

45. Brevis, J. & Dubcovsky, J. (2010). Effects of the chromosome region including the Gpc-B1 locus on wheat grain and protein yield. Crop Sci., 50, pp. 93-104.

46. Carter, A., Santra, D. & Kidwell, K. (2012). Assessment of the effects of the Gpc-B1 allele on senescence rate, grain protein concentration and mineral content in hard red spring wheat (Triticum aestivum L.) from the Pacific Northwest Region of the USA. Plant Breed., 131, pp. 62-68.

47. Tabbita, F., Lewis, S., Vouilloz, J., Ortega, M., Kade, M., Abbate, P. & Barneix, A. (2013). Effects of the Gpc-B1 locus on high grain protein content introgressed into Argentinean wheat germplasm. Plant Breed., 132, pp. 48-52.

48. Raboy, V., Noaman, M., Taylor, G. & Pickett, S. (1991). Grain phytic acid and protein are highly correlated in winter wheat. Crop Sci., 31, pp. 631-635.

49. Feil, B. & Bдnziger, M. (1993). Nitrogen and cultivar effects on the mineral element concentration in the grain of spring wheat. Eur. J. Agron., 2, pp. 205-212.

50. Feil, B. & Fossati, D. (1995). Mineral composition of triticale grains as related to grain yield and grain protein. Crop Sci., 35, pp. 1426-1431.

51. Asplund, L., Bergkvist, G., Leino, M., Westerbergh, A. & Weih, M. (2013). Swedish spring wheat varieties with the rare high grain protein allele of NAM-B1 differ in leaf senescence and grain mineral content. PLoS One, 8, pp. 1-11.

52. Avni, R., Zhao, R., Pearce, S., Jun, Y., Uauy, C., Tabbita, F., Fahima, T., Slade, A., Dubcovsky, J. & Distelfeld, A. (2014). Functional characterization of GPC-1 genes in hexaploid wheat. Planta, 239, pp. 313-324.

53. Gonzбlez, F., Miralles, D. & Slafer, G. (2011). Wheat floret survival as related to pre-anthesis spike growth. J. Exp. Bot., 62, pp. 4889-4901.

54. Borrill, P., Fahy, B., Smith, A. & Uauy, C. (2015). Wheat grain filling is limited by grain filling capacity rather than the duration of flag leaf photosynthesis: a case study using NAM RNAi plants. PLoS One, 10, No. 8, pp. e0134947. doi: https://doi:org/10.1371/journal.pone.0134947

55. Kovacs, M., Howes, N., Clarke, J. & Leisle, D. (1998). Quality characteristics of durum wheat lines deriving high protein from a Triticum dicoccoides (6b) substitution. J. Cereal Sci., 27, pp. 47-51.

56. Mesfin, A., Frohberg, R., Khan, K. & Olson, T. (2010). Increased grain protein content and its association with agronomic and end-use quality in two hard red spring wheat populations derived from Triticum turgidum L. var. dicoccoides. Euphytica, 116, pp. 237-242.

57. Kuhn, J., Stubbs, T. & Carter, A. (2016). Effect of the allele in hard red winter wheat in the US Pacific Northwest. Crop Sci., 56, pp. 1009-1016.

58. Brevis, J., Morris, C., Manthey, F. & Dubcovsky, J. (2010). Effect of the grain protein content locus Gpc-B1 on bread and pasta quality. J. Cereal Sci., 51, pp. 357-365.

59. Souza, E., Martin, J., Guttieri, M., O'Brien, K., Habernicht, D., Lanning, S., McLean, R., Carlson, G. & Talbert, L. (2004). Influence of genotype, environment, and nitrogen management on spring wheat quality. Crop Sci., 44, pp. 425-432.

60. Snape, J., Quarrie, S. & Laurie, D. (1996). Comparative mapping and its use for the genetic analysis of agronomic characters in wheat. Euphytica, 89, pp. 27-31.

61. Kulwal, P., Kumar, N., Kumar, A., Gupta, R., Balyan, H. & Gupta, P. (2005). Gene networks in hexaploid wheat: interacting quantitative trait loci for grain protein content. Funct. Integr. Genomics, 5, pp. 254-259.

62. Johnson, A., Kyriacou, B., Callahan, D., Carruthers, L., Stangoulis, J., Lombi, E. & Tester, M. (2011). Constitutive overexpression of the OsNAS gene family reveals single-gene strategies for effective iron- and zinc-biofortification of rice endosperm. PLoS One, 6, No. 9, pp. e24476.

63. Lee, S., Persson, D., Hansen, T., Husted, S., Schjoerring, J., Kim, Y., Jeon, U., Kim, Y., Kakei, Y., Masuda, H., Nishizawa, N. & An, G. (2011). Bio-available zinc in rice seeds is increased by activation tagging of nicotianamine synthase. Plant Biotechnol. J., 9, pp. 865-873.

64. Masuda, H., Kobayashi, T., Ishimaru, Y., Takahashi, M., Aung, M., Nakanishi, H., Mori, S. & Nishizawa, N. (2013). Iron-biofortification in rice by the introduction of three barley genes participated in mugineic acid biosynthesis with soybean ferritin gene. Front. Plant Sci., 4, pp. 132.

65. Masuda, H., Usuda, K., Kobayashi, T., Ishimaru, Y., Kakei, Y., Takahashi, M., Higuchi, K., Nakanishi, H., Mori, S. & Nishizawa, N. (2009). Overexpression of the barley nicotianamine synthase gene HvNAS1 increases iron and zinc concentrations in rice grains. Rice, 2, pp. 155-166.

66. Takagi, S., Nomoto, K. & Takemoto, T. (2008). Physiological aspect of mugineic acid, a possible phytosiderophore of graminaceous plants. J. Plant Nutr., 7, pp. 469-477.

67. Takahashi, M. (2003). Role of nicotianamine in the intracellular delivery of metals and plant reproductive development. Plant Cell, 15, pp. 1263-1280.

68. White, P. & Broadley, M. (2011). Physiological limits to zinc biofortification of edible crops. Front. Plant Sci., 2, p. 80.

69. Ishimaru, Y., Masuda, H., Bashir, K., Inoue, H., Tsukamoto, T., Takahashi, M., Nakanishi, H., Aoki, N., Hirose, T., Ohsugi, R. & Nishizawa, N. (2010). Rice metalnicotianamine transporter, OsYSL2, is required for the long-distance transport of iron and manganese. Plant J., 62, No. 3, pp. 379-390.

70. Lee, S., Chiecko, J., Kim, S., Walker, E., Lee, Y., Guerinot, M. & An., G. (2009). Disruption of OsYSL15 leads to iron inefficiency in rice plants. Plant Physiol., 150, pp. 786-800.

71. Tiong, J., Mcdonald, G., Genc, Y., Pedas, P., Hayes, J., Toubia, J., Langridge, P. & Huang, C. (2014). HvZIP7 mediates zinc accumulation in barley (Hordeum vulgare) at moderately high zinc supply. New Phytol., 201, pp. 131-143.

72. Goto, F., Yoshihara, T., Shigemoto, N., Toki, S. & Takaiwa, F. (1999). Iron fortification of rice seed by the soybean ferritin gene. Nat. Biotechnol., 17, pp. 282-286.

73. Oliva, N., Chadha-Mohanty, P., Poletti, S., Abrigo, E., Atienza, G., Torrizo, L., Garcia, R., Dueсas, C., Poncio, M., Balindong, J., Manzanilla, M., Montecillo, F., Zaidem, M., Barry, G., Hervй, P., Shou, H. & Slamet-Loedin, I. (2014). Large-scale production and evaluation of marker-free indica rice IR64 expressing phytoferritin genes. Mol. Breed., 33, pp. 23-37.

74. Paul, S., Ali, N., Datta, S. & Datta, K. (2014). Development of an iron-enriched highyieldings indica rice cultivar by introgression of a high-iron trait from transgenic iron-biofortified rice. Plant Foods Hum. Nutr., 69, pp. 203-208.

75. Vasconcelos, M., Datta, K., Oliva, N., Khalekuzzaman, M., Torrizo, L., Krishnan, S., Oliveira, M., Goto, F. & Datta, S. (2003). Enhanced iron and zinc accumulation in transgenic rice with the ferritin gene. Plant Sci., 164, pp. 371-378.

76. Zhang, Y., Xu, Y., Yi, H. & Gong, J. (2012). Vacuolar membrane transporters OsVIT1 and OsVIT2 modulate iron translocation between flag leaves and seeds in rice. Plant J., 72, pp. 400-410.

77. Borrill, P., Connorton, J., Balk, J., Miller, A., Sanders, D. & Uauy, C. (2014). Biofortification of wheat grain with iron and zinc: integrating novel genomic resources and knowledge from model crops. Front. Plant Sci., 5, Article 53, pp. 1-8.