Fiziol. rast. genet. 2025, vol. 57, no. 1, 64-82, doi: https://doi.org/10.15407/frg2025.01.064

Characteristics of flag leaf stomata in relation to gas exchange rate and drought tolerance in related spring wheat species

Rymar Yu.Yu.1, Pronina O.V.1, Kiri­ziy D.A.2, Duplij V.P.1,2, Morgun B.V.1,2, Stasik O.O.2

  1. Institute of Cell Biology and Genetic Engineering, National Academy of Sciences of Ukraine 148 Akademika Zabolotnogo St., 03143, Kyiv, Ukraine
  2. Institute of Plant Physiology and Genetics, National Academy of Sciences of Ukraine 31/17 Vasylkivska St., 03022, Kyiv, Ukraine

In a pot experiment, the stomata characteristics of bread wheat Triticum aestivum L. (variety Zymoyarka) and its relatives: spelt T. spelta L. and emmer T. dicoccum (Schuebl.) Schrank, which have a number of important adaptive traits to abiotic stresses, were studied. The research was conducted on the flag leaf at the flowering stage. It was established that emmer plants had the largest stomata density on both sides of the leaf, however the size of guard cells, length, width and area of one pore aperture are the smallest compared to spelt and Zymoyarka variety. As a result, the total area of stomatal pore aperture on the adaxial side of emmer leaf was similar to the values in Zymoyarka and spelt, and on the abaxial surface the value of this index in emmer was the largest. Under optimal soil moisture conditions (70 % of field capacity (FC)), emmer plants had higher stomatal conductance and transpiration rate, but the studied wheat genotypes did not differ significantly in photosynthetic activity. Drought (reduction in soil moisture to 30 % FC) for 7 days reduced stomatal conductance, transpiration and photosynthesis rate in emmer (by 60, 40 and 34 %, respectively) more than in bread wheat (by 38, 35 and 21 %) and spelt (by 42, 28 and 28 %). At the same time, the water use efficiency at photosynthesis (WUEi) increased by 6 % in bread wheat and 11 % in emmer. A greater degree of photosynthesis inhibition in emmer was associated with a significant (60 %) increase in the photorespiration activity. The analysis of the relationships between the morphological features of the stomata and gas exchange characteristics in wheat genotypes revealed that a higher stomata density in emmer contributes to higher stomatal conductance and transpiration rate, though somewhat lower WUEi at photosynthesis under conditions of high light intensity and optimal watering. Due to the strong negative correlation between the stomata density and their size, the larger guard cells in spelt and bread wheat negatively correlated with the gas exchange rate under optimal conditions. Under short-term soil drought, a greater number of smaller stomata in emmer was associated with a significant decrease in stomatal conductance, but an increase in WUEi and photorespiration rate — important components of adaptation to conditions of limited water supply.

Keywords: Triticum aestivum L., Triticum spelta L., Triticum dicoccum (Schuebl.) Schrank, stomata, stomatal conductance, transpiration, photosynthesis, photorespiration, soil drought

Fiziol. rast. genet.
2025, vol. 57, no. 1, 64-82

Full text and supplemented materials

Free full text: PDF  

References

1. Hetherington, A.M. & Woodward, F.I. (2003). The role of stomata in sensing and driving environmental change. Nature, 424 (6951), pp. 901-908. https://doi.org/10.1038/nature01843

2. Kiriziy, D.A. & Stasik, O.O. (2022). Effects of drought and high temperature on physiological and biochemical processes, and productivity of plants. Fiziol. rast. genet., 54 (2), pp. 95-122 [in Ukrainian]. https://doi.org/10.15407/frg2022.02.095

3. Buckley, T.N. & Mott, K.A. (2013). Modelling stomatal conductance in response to environmental factors. Plant Cell Environ., 36 (9), pp. 1691-1699. https://doi.org/10.1111/pce.12140

4. Hepworth, C., Doheny-Adams, T., Hunt, L., Cameron, D.D. & Gray, J.E. (2015). Manipulating stomatal density enhances drought tolerance without deleterious effect on nutrient uptake. New Phytol., 208 (2), pp. 336-341. https://doi.org/10.1111/nph.13598

5. Rico, C., Pittermann, J., Polley, H.W., Aspinwall, M.J. & Fay, P.A. (2013). The effect of subambient to elevated atmospheric CO2 concentration on vascular function in Helianthus annuus: Implications for plant response to climate change. New Phytol., 199 (4), pp. 956-965. https://doi.org/10.1111/nph.12339

6. Harrison, E.L., Arce Cubas, L., Gray, J.E. & Hepworth, C. (2020). The influence of stomatal morphology and distribution on photosynthetic gas exchange. The Plant J., 101 (4), pp. 768-779. https://doi.org/10.1111/tpj.14560

7. Haworth, M., Marino, G., Loreto, F. & Centritto, M. (2021). Integrating stomatal physiology and morphology: Evolution of stomatal control and development of future crops. Oecologia, 197, pp. 867-883. https://doi.org/10.1007/s00442-021-04857-3

8. Moore, C.E., Meacham-Hensold, K., Lemonnier, P., Slattery, R.A., Benjamin, C., Bernacchi, C.J., Lawson, T. & Cavanagh, A.P. (2021). The effect of increasing temperature on crop photosynthesis: From enzymes to ecosystems. J. Exp. Bot., 72 (8), pp. 2822-2844. https://doi.org/10.1093/jxb/erab090

9. Abdelhakim, L.O. A., Rosenqvist, E., Wollenweber, B., Spyroglou, I., Ottosen, C.-O. & Panzarov«, K. (2021). Investigating combined drought- and heat stress effects in wheat under controlled conditions by dynamic image-based phenotyping. Agronomy, 11 (2), p. 364. https://doi.org/10.3390/agronomy11020364

10. Xiong, W., Reynolds, M. P., Montes, C., Crossa, J., Snapp, S., Akin, B., Mesut, K., Ozdemir, F., Li, H., He, Z., Wang, D. & Chen, F. (2024). New wheat breeding paradigms for a warming climate. Nat. Clim. Chang., pp. 869-875. https://doi.org/10.1038/s41558-024-02069-0

11. Balla, M.Y., Gorafi, Y.S. A., Kamal, N.M., Abdalla, M.G. A., Tahir, I.S.A. & Tsujimoto, H. (2022). Harnessing the diversity of wild emmer wheat for genetic improvement of durum wheat. Theor. Appl. Genet., 135, pp. 1671-1684. https://doi.org/10.1007/s00122-022-04062-7

12. Babenko, L.M., Hospodarenko, H.M., Rozhkov, R.V., Pariy, Y.F., Pariy, M.F., Babenko, A.V. & Kosakivska, I.V. (2018). Triticum spelta: Origin, biological characteristics and perspectives for use in breeding and agriculture. Regul. Mech. Biosyst., 9 (2), pp. 250-257 [in Ukrainian]. https://doi.org/10.15421/021837

13. Morgun, V.V., Sichkar, S.M., Pochinok, V.M., Ninieva, A.K. & Chugunkova, T.V. (2016). Characterization of spelt collection samples (Triticum spelta L.) by elements of plant productivity structure and baking quality. Fiziol. rast. genet., 48 (2), pp. 112-119 [in Ukrainian]. https://doi.org/10.15407/frg2016.02.112

14. Babenko, L.M., Rozhkov, R.V., Pariy, Y.F., Pariy, M.F., Vodka, M.V. & Kosakisvska, I.V. (2017). Triticum dicoccum (Schrank) Schuebl.: Origin, biological characteristics and perspectives of use in breeding and agriculture. Visn. Hark. Nac. Agrar. Univ., Ser. Biol, 2017 (2), pp. 92-102 [in Ukrainian]. https://doi.org/10.35550/vbio2017.02.092

15. Vasyliev, S.V. (2017). Kharakterystyka polby yak perspektyvnoi zernovoi kultury ta osnovni problemy yii pislia zbyralnoho obroblennia. GPMF, 17 (1), pp. 188-195 [in Ukrainian]. https://doi.org/10.15673/gpmf.v17i1.309

16. Franks, P.J., W. Doheny-Adams, T., Britton-Harper, Z.J. & Gray, J.E. (2015). Increasing water-use efficiency directly through genetic manipulation of stomatal density. New Phytol., 207 (1), pp. 188-195. https://doi.org/10.1111/nph.13347

17. Busch, F.A., Ainsworth, E.A., Amtmann, A., Cavanagh, A.P., Driever, S.M., Ferguson, J.N., Kromdijk, J., Lawson, T., Leakey, A.D.B, Matthews, J.S.A., Meacham-Hensold, K., Vath, R.L., Vialet-Chabrand, S., Walker, B.J. & Papanatsiou, M. (2024) A guide to photosynthetic gas exchange measurements: Fundamental principles, best practice and potential pitfalls. Plant Cell Environ., 47 (9), pp. 3344-3364. https://doi.org/10.1111/pce.14815

18. Liang, J., Krauss, K.W., Finnigan, J., Stuart-Williams, H., Farquhar, G.D. & Ball, M.C. (2023). Linking water use efficiency with water use strategy from leaves to communities. New Phytol., 240 (5), pp. 1735-1742. https://doi.org/10.1111/nph.19308

19. Stasik, O.O (2007). The response of photosynthetic apparatus of C3 plants to water deficits. Fiziol. biokh. kul'tur. rast., 39 (1), pp. 14-27.

20. Fernie, A.R., Bauwe, H., Eisenhut, M., Florian, A., Hanson, D.T., Hagemann, M., Keech, O., Mielewczik, M., Nikoloski, Z., Peterh¬nsel, C., Roje, S., Sage, R., Timm, S., von Cammerer, S., Weber, A.P.M. & Westhoff, P. (2012). Perspectives on plant photorespiratory metabolism. Plant Biol., 15 (4), pp. 748-753. https://doi.org/10.1111/j.1438-8677.2012.00693.x

21. Stasik, O.O. (2014). Photorespiration: Metabolism and the Physiological Role. Modern Photosynth. Prob., Moskow-Izhevsk: Institute for Computer Research (2), pp. 505-535.

22. Zahra, N., Hafeez, M.B., Kausar, A., Al Zeidi, M., Asekova, S., Siddique, K.H.M. & Farooq, M. (2023). Plant photosynthetic responses under drought stress: Effects and management. J. Agron. Crop Sci., 209, pp. 651-672 https://doi.org/10.1111/jac.12652

23. Walker, B., Schmiege, S.C. & Sharkey, T.D. (2024). Re-evaluating the energy balance of the many routes of carbon flow through and from photorespiration. Plant Cell Environ., 47 (9), pp. 3365-3374. https://doi.org/10.1111/pce.14949

24. Drake, J.E., Tjoelker, M.G., VЇrhammar, A., Medlyn, B.E., Reich, P.B., Leigh, A., Pfautsch, S., Blackman, C.J., LЩpez, R., Aspinwall, M.J., Crous, K.Y., Duursma, R.A., Kumarathunge, D., De Kauwe, M.G., Jiang, M., Nicotra, A.B., Tissue, D.T., Choat, B., Atkin, O.K. & Barton, C.V.M. (2018). Trees tolerate an extreme heatwave via sustained transpirational cooling and increased leaf thermal tolerance. Glob. Change Biol., 24 (6), pp. 2390-2402. https://doi.org/10.1111/gcb.14037

25. Pitaloka, M.K., Caine, R.S., Hepworth, C., Harrison, E.L., Sloan, J., Chutteang, C., Phunthong, C., Nongngok, R., Toojinda, T., Ruengphayak, S., Arikit, S., Gray, J.E. & Vanavichit, A. (2022). Induced genetic variations in stomatal density and size of rice strongly affects water use efficiency and responses to drought stresses. Front. Plant Sci, 13, 801706. https://doi.org/10.3389/fpls.2022.801706

26. Dow, G.J., Bergmann, D.C. & Berry, J.A. (2014) An integrated model of stomatal development and leaf physiology. New Phytol., 201, pp. 1218-1226. https://doi.org/10.1111/nph.12608

27. Ochoa, M.E., Henry, C., John, G., Medeiros, C., Pan, R., Scoffoni, C., Buckley, T.N. & Sack, L. (2024). Pinpointing the causal influences of stomatal anatomy and behavior on minimum, operational, and maximum leaf surface conductance. Plant Physiol., 196 (1), pp. 51-66. https://doi.org/10.1093/plphys/kiae292

28. Stasik, O.O. (2007). Photosynthetic traits and grain productivity in species and varieties of spring wheat. Fiziol. biokh. kul'tur. rast., 39 (3), pp. 200-206.

29. Stasik, O.O. (2009). The role of photorespiration in the regulation of photosynthesis, productivity and resistance of plants to abiotic stresses [Extended abstract of Doctor thesis]. Institute of Plant Physiology and Genetics [in Ukrainian].