Fiziol. rast. genet. 2022, vol. 54, no. 3, 214-232, doi: https://doi.org/10.15407/frg2022.03.214

Morphogenesis, photosyn­thesis, and productivity of pepper (Capsicum annuum L.) under the impact of growth substances with different directions and mechanisms of action

Rogach V.V.1, Kiriziy D.A.2, Kuryata V.G.1, Rogach T.I.1

  1. Vinnytsia Mykhailo Kotsiubynskyi State Pedagogical University 32 Ostrozhsky St., Vinnytsia, 21100, Ukraine
  2. Institute of Plant Physiology and Genetics, National Academy of Sciences of Ukraine 31/17 Vasylkivska St., Kyiv, 03022, Ukraine

The peculiarities of growth processes, leaves formation, their mesostructure, photosynthesis, respiration, transpiration, as well as productivity of sweet pepper plants under the impact of synthetic analogues of growth stimulant hormones, and retardants, which differ in mechanisms of action, were studied. It was shown that treatment with growth stimulants increased, and gibberellin inhibitors — decreased the linear size of sweet pepper plants Antey variety. It was found that 6-benzylaminopurine (6-BAP), gibberellic acid (GA3) and tebuconazole (EW-250) increased the number of leaves on the plant, while under the treatment by ethephon (2-chloroethylphosphonic acid, 2-CEPA) and chloromequate chloride (ССС-750) this index was lower than the control, and the action of 1-naphthaleneacetic acid (1-NAA) did not change it. All growth stimulants, and retardants EW-250 and CCC-750 increased the leaves, stems and roots fresh weight, as well as the dry mass of the whole plant, while the treatment with 2-CEPA reduced them. All growth regulators (except 2-CEPA) increased the average leaf area and the total leaf area on the plant during the fruit formation stage. Gibberellin inhibitors and 6-BAP significantly increased the amount of chlorophyll in pepper leaves. Under the action of GA3 this index decreased, and the treatment by 1-NAA did not significantly change it. 2-CEPA, EW-250, CCC-750, and 6-BAP thickened the pepper leaves chlorenchyma. Under the action of all growth substances (except 1-NAA) the columnar parenchyma cells volume increased, and under the influence of GA3, 6-BAP and EW-250, the spongy parenchyma cells size increased also. Growth promotors 1-NAA and GA3, and retardants EW-250 and CCC-750 significantly reduced the number of stomatal cells on leafe surface, and treatment by 6-BAP and 2-CEPA showed a tendency to reduce them. Photosynthesis, photo- and dark respiration rates showed a steady tendency to increase under the action of growth substances (except GA3), while transpiration, on the contrary — to decrease. In general, treatment with growth substances (except 2-CEPA) intensified the flowering of plants and increased their economic productivity. The use of 6-BAP and EW-250 was the most effective.

Keywords: Capsicum annuum L., pepper, growth promotors, retardants, morphogenesis, leaf apparatus, mesostructure, chlorophyll, photosynthesis, respiration, productivity

Fiziol. rast. genet.
2022, vol. 54, no. 3, 214-232

Full text and supplemented materials

Free full text: PDF  

References

1. Poprotska, I.V., Kuryata, V.G., Polyvanyi, S.V., Golunova, L.A. & Prysedsky, Y.G. (2019). Effect of gibberellin and retardants on the germination of seeds with different types of reserve substances under the conditions of skoto- and photomorphogenesis. Biologija, 65, No. 4, pp. 296-307. https://doi.org/10.6001/biologija.v65i4.4123

2. Kuryata, V.G., Shevchuk, O.A., Kiriziy, D.A. & Gulyaev, B.I. (2002). Structural and functional organization of sugar beet leaf under the action of retardants, 34, No. 1, pp. 11-16 [in Ukrainian].

3. Kiriziy, D.A. (2004). Photosynthesis and plant growth in the aspect of source-sink relationships. Kyiv: Logos [in Russian].

4. Kiriziy, D.A., Stasik, O.O., Pryadkina, G.A. & Shadchina, T.M. (2014). Photosynthesis (Vol. 2) Assimilation of CO2 and the mechanisms of its regulation. Kyiv: Logos [in Russian].

5. Stasik, O.O., Kiriziy, D.A. & Priadkina, G.O. (2016). Photosynthesis and crop productivity. Fiziol. rast. genet., 48, No. 3, pp. 232-251 [in Russian]. https://doi.org/10.15407/frg2016.03.232

6. Kuriata, V.G., Rohach, V.V., Rohach, T.I. & Khranovska, T.V. (2016). The use of antigibberelins with different mechanisms of action on morphogenesis and production process regulation in the plant Solanum melongena (Solanaceae). Visn. Dnipropetr. Univ. Ser. Biol. Ekol., 24 (1). pp. 221-224. https://doi.org/10.15421/011628

7. Rogach, V.V. & Rogach, T.I. (2015). Influence of synthetic growth stimulators on morphological and physiological characteristics and biological productivity of potato culture. Visn. Dnipropetr. Univ. Ser. Biol. Ekol., 23 (2), pp. 221-224 [in Ukrainian]. https:// doi.org/10.15421/011532

8. Rogach, V. V., Poprotska, I. V., & Kuryata, V.G. (2016). Effect of gibberellin and retardants on morphogenesis, photosynthetic apparatus and productivity of the potato. Visn. Dnipropetr. Univ. Ser. Biol. Ekol., 24 (2), pp. 416-420 [in Ukrainian]. https://doi.org/10.15421/011656

9. Kuryata, I.V. & Kiriziy, D.A. (2008). Regulation of source-sink relations in the system assimilate depot-growth in pumpkin seedlings by the influence of gibberellin and chlormequat chloride under conditions of skoto - and photomorphogenesis. Fiziologia i biokhimiya kult. rastenij, 40, No. 5, pp. 448-456 [in Ukrainian].

10. Polyvanyi, S.V. (2018). Anatomical and morphological features of the poppy plants leaf apparatus structure under the action of growth promoters. Naukovi zapysky Ternopilskoho natsionalnoho pedahohichnoho universytetu imeni V. Hnatyuka. Ser. Biolohiya, No. 3-4, pp. 21-27 [in Ukrainian].

11. Khodanitska, O.O. & Kuryata, V.G. (2011). The effect of treptolem on seed yield and quality characteristics of flax seed oil. Kormy i kormovyrobnyctvo, No. 70, pp. 54-59 [in Ukrainian].

12. Tkachuk, O.O. (2015). Effect of paclobutrazole on anatomical and morphological parameters of potato plants. Naukovyy visnyk Skhidnoyevropeyskoho natsionalnoho universytetu imeni Lesi Ukrayinky, No. 2, pp. 47-50 [in Ukrainian]. https:// doi.org/10.29038/2617-4723-2015-302-47-50

13. Dospekhov, B.A. (1985). Methods of field experiment. Moscow: Agropromizdat [in Russian].

14. Kazakov, E.A. (2000). Methodological bases of the experiment on plant physiology. Kyiv: Phytosociocenter [in Ukrainian].

15. Mokronosov, A.T. & Borzenkova, R.A. (1978). Method for quantitative assessment of the structure and functional activity of photosynthetic tissues and organs. Trudy po prikladnoj botanike, genetike i selekcii, 61, No. 3, pp. 119-131 [in Russian].

16. Kuryata, V.G. (1998). The effect of retardants on the mesostructure of raspberry leaves. Fiziologija i biokhimija kul't. rastenij, 30, No. 2, pp. 144-149 [in Russian].

17. Gavrilenko, V.F., Ladygina, M.E. & Handobina, M.N. (1975). Great workshop on plant physiology. Moscow: Vysshaya shkola [in Russian].

18. Mokronosov, A.T. & Kovalev, A.G. (Eds.). (1989). Photosynthesis and Bioproductivity: Methods of Determination. Moskow: Agropromizdat [in Russian].

19. Akter, N., Islam, M. R., Karim, M. A. & Hossain, T. (2014). Alleviation of drought stress in maize by exogenous application of gibberellic acid and cytokinin. Journal of Crop Science and Biotechnology, 17, pp. 41-48. https://doi.org/10.1007/s12892-013-0117-3

20. Sabale, S. S., Lahane, G. R. & Dhakulkar, S. J. (2017). Effect of various plant growth regulators on growth and yield of cotton (Gossypium hirsutum). Int. J. Curr. Microbiol. App. Sci, 6 (11), pp. 978-989. https://doi.org/10.20546/ijcmas.2017.611.115

21. Zhao, H., Cao, H.H., Pan, M.Z., Sun, Y.X. & Liu, T.X. (2017). The role of plant growth regulators in a plant-aphid-parasitoid tritrophic system. Journal of Plant Growth Regulation, 36 (4), pp. 868-876. https://doi.org/10.1007/s00344-017-9689-3

22. Kumar, A., Biswas, T.K., Singh, N. & Lal, E.P. (2014). Effect of Gibberellic Acid on Growth, Quality and Yield of Tomato (Lycopersicon esculentum Mill.). IOSR Journal of Agriculture and Veterinary Science, 7, pp. 28-30. https://doi.org/10.9790/2380-07742830

23. Deepak Jakhar, T., Nain, S. & Jakhar, N. (2018). Effect of Plant Growth Regulator on Growth, Yield & Quality of Tomato (Solanum lycopericum) Cultivar 'Shivaji'under Punjab Condition. Int. J. Curr. Microbiol. App. Sci, 7 (6), pp. 2630-2636. https://doi.org/10.20546/ijcmas.2018.706.311

24. Basem, M.A.Je. (2011). Eggplant productivity depending on the use of insecticides and growth regulators. (Extended abstract of candidate thesis). Astrakhan State University, Astrahan, Russia [in Russian].

25. Altintas, S. (2011). Effects of chlormequat chloride and different rates of prohexadione-calcium on seedling growth,?owering, fruit development and yield of tomato. Afr. J. Biotechnol., 10, pp. 17160-17169. https://doi.org/10.5897/AJB11.2706

26. Hussein, M.M., Bakheta, M.A. & Zaki, S.N.S. (2014). Influence of uniconazole on growth characters, photosynthetic pigments, total carbohydrates and total soluble sugars of Hordeum vulgare L. plants grown under salinity stress. Int J Sci Res, 3, pp. 2208-2213.

27. Doddamani, M.B., Dinesh, K., Mummigatti, U.V., Kuloigod, V.B., & Chetti, M.B. (2010). Effect of growth regulators on physiological and bio-chemical traits and yield in sunflower (Helianthus annus L.). Environment and Ecology, 28 (1B), pp. 697-702.

28. Sashidhar, M.D. & Shivanand, M.R. (2018). Effect of Growth Regulators on Growth and Yield of Turmeric var. Suroma. Int. J. Curr. Microbiol. App. Sci., 7 (1), pp. 3156-3158. https://doi.org/10.20546/ijcmas.2018.701.374

29. Rao, K. G., Ashok, P., Swami, D. V. & Sasikala, K. (2017). Influence of plant growth regulators on growth, root tuber yield and quality of orange flesh sweet potato (Ipomoea batatas L.) varieties. Int. J. Curr. Microbiol. App. Sci., 6 (6), pp. 2017-2025. https://doi.org/10.20546/ijcmas.2017.606.237

30. Yan, Y., Wan, Y., Liu, W., Wang, X., Yong, T., Yang, W. & Zhao, L. (2015). Influence of seed treatment with uniconazole powder on soybean growth, photosynthesis, dry matter accumulation after flowering and yield in relay strip intercropping system. Plant Production Science, 18 (3), pp. 295-301. https://doi.org/10.1626/pps.18.295

31. Demir, S. & Celikel, F.G. (2019). Effects of plant growth regulators on the plant height and quantitative properties of Narcissus tazetta. Turkish journal of agriculture and forestry, 2019. 43. pp. 105-114. https://doi.org/10.3906/tar-1802-106

32. Maboko, M.M. & Du Plooy, C.P. (2015). Effect of plant growth regulators on growth, yield, and quality of sweet pepper plants grown hydroponically. HortScience, 50 (3), pp. 383-386. https://doi.org/10.21273/HORTSCI.50.3.383

33. Ransing, S.K., Kengare, R.A., Chavan, C.K., & Totre, A.S. (2018). Effect of growth regulators on yield and yield contributing characters of sunflower (Helianthus annuus L.) variety Phule Bhaskar during kharif season. Int. J. Chem. Stud., 6 (6), pp. 967-968.

34. Kreslavskij, V.D., Ljubimov, V.Ju., Kotova, L.M. & Kotov, A.A. (2011). Influence of pretreatment with chlorocholine chloride on the resistance of PS II bean plants to UV-B radiation, the content of phytohormones and hydrogen peroxide. Fiziologija rastenij, 58, No. 2, pp. 262-267 [in Russian]. https://doi.org/10.1134/S1021443711020087

35. Yin, B., Zhang, Y. & Zhang, Y. (2011). Effects of plant growth regulators on growth and yields characteristics in adzuki beans (Phaseolus angularis). Front. Agric. China, 5 (4), pp. 519-523. https://doi.org/10.1007/s11703-011-1150-y

36. Singh, S. & Prasad, S.M. (2014). Growth, photosynthesis and oxidative responses of Solanum melongena L. seedlings to cadmium stress: mechanism of toxicity amelioration by kinetin. Scientia Horticulturae, 176, pp. 1-10. https://doi.org/10.1016/j.scienta.2014.06.022

37. Chen, J., Wu, X., Yao, X., Zhu, Z., Xu, S. & Zha, D. (2016). Exogenous 6-benzylaminopurine confers tolerance to low temperature by amelioration of oxidative damage in eggplant (Solanum melongena L.) seedlings. Brazilian Journal of Botany, 39 (2), pp. 409-416. https://doi.org/10.1007/s40415-015-0241-z

38. Kamran, M., Danish, M., Saleem, M. H., Malik, Z., Parveen, A., Abbasi, G. H., Jamil, M., Ali, S., Afzal, S., Riaz, M., Rizwan, M., Ali, M. & Zhou, Y. (2021). Application of abscisic acid and 6-benzylaminopurine modulated morpho-physiological and antioxidative defense responses of tomato (Solanum lycopersicum L.) by minimizing cobalt uptake. Chemosphere, 263, p. 128169. https://doi.org/10.1016/j.chemosphere.2020.128169

39. Ouzounidou, G., Ilias, I., Giannakoula, A. & Papadopoulou, P. (2010). Comparative study on the effects of various plant growth regulators on growth, quality and physiology of Capsicum annuum L. Pak. J. Bot, 42 (2), pp. 805-814.

40. Wang, H., Li, Hesong., Liu, F. & Xiao, L. (2009). Chlorocholine chloride application effects on photosynthetic capacity and photoassimilates partitioning in potato (Solanum tuberosum L.). Scientia Horticulturae, 119 (2), pp. 113-116. https://doi.org/10.1016/j.scienta.2008.07.019

41. Wang, H.S. & Sun, H.M. (2012). The Research on Plant Growth Retardants Improving Drought Resistance of Solanum Integrifolium Poir. Chin. Agric. Sci. Bull. 28, pp. 126-132.

42. Sarker, B.C. & Rahim, M.A. (2018). Influence of paclobutrazol on growth, yield and quality of mango. Bangladesh Journal of Agricultural Research, 43 (1), pp. 1-12. https://doi.org/10.3329/bjar.v43i1.36154

43. Rogach, V.V., Kuryata, V.G. & Polyvanyi, S.V. (2016). The influence of retardants on morphogenesis, productivity and composition of higher fat acids of oil of winter rape. Vinnytsia: TOV 'Nilan-LTD' [in Ukrainian].

44. Rogach, V.V., Kravets, O.V., Buinaya, O.I. & Kuryata, V.G. (2018). Dynamics of accumulation and redistribution of different forms of carbohydrates and nitrogen in organs of tomato plants under the action of retardants. Regulatory Mechanisms in Biosystems, 9, No. 2, pp. 293-299 [in Ukrainian]. https://doi.org/10.15421/021843

45. Ren, B., Zhang, J., Dong, S., Liu, P. & Zhao, B. (2017). Regulations of 6-benzyladenine (6-BA) on leaf ultrastructure and photosynthetic characteristics of waterlogged summer maize. J. Plant Growth Regul., 36 (3), pp. 743-754. https://doi.org/10.1007/s00344-017-9677-7

46. Rogach, T.I. (2012). Influence of a mixture of chloromethochloride and treptolem on the morphogenesis and productivity of sunflower. Zbirnyk naukovykh prats VNAU, Ser. Silskohospodarski nauky, Iss. 1 (57), pp. 121-127 [in Ukrainian].

47. Luo, Y., Yang, D., Yin, Y., Cui, Z, Li, Y., Chen, J., Zheng, M., Wang, Y., Pang, D., Li, Y. & Wang, Z. (2016). Effects of exogenous 6-BA and nitrogen fertilizers with varied rates on function and fluorescence characteristics of wheat leaves post anthesis. Scientia Agriculturalura Sinica, 49, No. 6, pp. 1060-1083. https://doi.org/10.3864/ j.issn.0578-1752.2016.06.004

48. Xiaotao, D., Yuping, J., Hong, W., Haijun, J., Hongmei, Z., Chunhong, C. & Jizhu, Y. (2013). Effects ofcytokinin on photosynthetic gas exchange, chlorophyll fluorescence parameters, antioxidative system and carbohydrate accumulation in cucumber (Cucumis sativus L.) under low light. Acta Physiologiae Plantarum, 35, No. 5, pp. 1427-1438. https://doi.org/10.1007/s11738-012-1182-9

49. Mesejo, C., Rosito, S., Reig, C., Martinez-Fuentes, A. & Agusti, M. (2012). Synthetic auxin 3,5,6-TPA provokes Citrus clementina (Hort. ex Tan) fruitlet abscission by reducing photosynthate availability. J. Plant Growth Regul., 31 (2), pp. 186-194. https://doi.org/10.1007/s00344-011-9230-z

50. Khan, M.N. & Mohammad, F. (2013). Effect of GA3, N and P ameliorate growth, seed and fibre yield by enhancing photosynthetic capacity and carbonic anhydrase activity of linseed. Journal of Integrative Agriculture, 12 (7), pp. 1183-1194. https://doi.org/10.1016/S2095-3119(13)60443-8

51. Yooyongwech, S., Samphumphuang, T., Tisarum, R., Theerawitaya, C. & Chaum, S. (2017). Water-deficit tolerance in sweet potato (Ipomoea batatas (L.) Lam.) by foliar application of paclobutrazol: role of soluble sugar and free proline. Frontiers in Plant Sci., 8, 1400 p. https://doi.org/10.3389/fpls.2017.01400

52. Liu, Y., Fang, Y., Huang, M., Jin, Y., Sun, J., Tao, X., Zhang, G., He, K., Zhao, Y. & Zhao, H. (2015). Uniconazole-induced starch accumulation in the bioenergy crop duckweed (Landoltia punctata) I: transcriptome analysis of the effects of uniconazole on chlorophyll and endogenous hormone biosynthesis. Biotechnol Biofuels, 8, 57. https://doi.org/10.1186/s13068-015-0246-7

53. Zhang, W., Xu, F., Cheng, H., Li, L., Cao, F. & Cheng, S. (2013). Effect of chlorocholine chloride on chlorophyll, photosynthesis, soluble sugar and flavonoids of Ginkgo biloba. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 41 (1), pp. 97-103. https://doi.org/10.15835/nbha4118294

54. Stasik, O.O. (2014). Photorespiration: metabolism and physiological role. In Modern problems of photosynthesis (Vol. 2, pp. 505-535). Moskow-Izhevsk: Institute of Computer Research [in Russian].