en   ru   uk  
Fiziol. rast. genet. 2019, vol. 51, no. 1, 28-54, doi: https://doi.org/10.15407/frg2019.01.028

Antioxidant system and plant resistance to water deficit

Kolupaev Yu.E.1,2, Kokorev A.I.1

  1. V.V. Dokuchaev Kharkiv National Agrarian University p/o Dokuchaevske-2, Kharkiv, 62483, Ukraine
  2. V.N. Karazin Kharkiv National University  4, Svoboda Square, Kharkiv, 61022, Ukraine

Drought is one of the main environmental factors limiting plant growth and productivity. The review analyzes the causes of enhanced generation of reactive oxygen species (ROS) during drought in chloroplasts, mitochondria, peroxisomes, and cell walls. Value of NADPH oxidase, extracellular peroxidase and superoxide dismutase in the formation of ROS signaling pool under conditions of osmotic stress, and inducing protective reactions of plants is considered. Characteristics of components of the antioxidant system is given. Contribution of the main antioxidant enzymes and low-molecular-weight antioxidants to maintenance of redox homeostasis during drought is assessed. Role of proline and other compatible osmolytes in antioxidant plant protection is considered separately. Functional interaction of antioxidant enzymes, low-molecular-weight antioxidants, and osmolytes with antioxidant properties under drought conditions is analyzed. The possibility of increasing plant resistance to water deficiency by use of exogenous antioxidants, priming with signaling molecules and stress phytohormones, as well as by transforming with genes of antioxidant enzymes or enzymes involved in the regulation of low-molecular-weight protectors is considered. It is noted that progress in the study of antioxidant system will become more dynamic when using methods of in vivo analysis of antioxidants in certain cellular compartments and in real time.

Keywords: drought, reactive oxygen species, antioxidant system, antioxidant enzymes, low molecular weight antioxidants, proline

Fiziol. rast. genet.
2019, vol. 51, no. 1, 28-54

Full text and suplimented materials

Free full text: PDF  


1. Gerten, D., Schaphoff, S. & Lucht, W. (2007). Potential future changes in water limitations of the terrestrial biosphere. Climatic Change, 80 (3-4), pp. 277-299. https://doi.org/10.1007/s10584-006-9104-8

2. Chaves, M.M. & Oliveira, M.M. (2004). Mechanisms underlying plant resilience to water deficits: Prospects for water saving agriculture. J. Exp. Bot., 55, pp. 2365-2384. https://doi.org/10.1093/jxb/erh269

3. Wilkinson, S. & Davies, W. (2010). Drought, ozone, ABA and ethylene: new insights from cellto plant to community. Plant Cell Environ., 33, pp. 510-525. https://doi.org/10.1111/j.1365-3040.2009.02052.x

4. Li, X. & Liu, F. (2016). Drought stress memory and drought stress tolerance in plants: biochemical and molecular basis. In Hossain, M., Wani, S., Bhattacharjee, S., Burritt, D., Tran, L.S. (Eds). Drought Stress Tolerance in Plants, Vol. 1 (pp. 17-44). Springer, Cham. https://doi.org/10.1007/978-3-319-28899-4_2

5. Zagorchev, L., Teofanova, D. & Odjakova, M. (2016). Ascorbate-glutathione cycle: Controlling the redox environment for drought tolerance. In Hossain, M., Wani, S., Bhattacharjee, S., Burritt, D., Tran, L.S. (Eds.). Drought Stress Tolerance in Plants, Vol. 1. Springer, Cham, pp. 187-226. https://doi.org/10.1007/978-3-319-28899-4_8

6. Suzuki, N. & Mittler, R. (2006). Reactive oxygen species and temperature stresses: A delicate balance between signaling and destruction. Physiol. Plant., 126, pp. 45-51. https://doi.org/10.1111/j.0031-9317.2005.00582.x

7. Liang, X., Zhang, L., Natarajan, S.K. & Becker, D.F. (2013). Proline mechanisms of stress survival. Antioxid. Redox Signal. 19, pp. 998-1011. https://doi.org/10.1089/ars.2012.5074

8. Yang, J., Wu, F., Gao, J. & Wang, G. (2014). Polyamine-induced nitric oxide generation and its potential requirement for peroxide in suspension cells of soybean cotyledon node callus. Plant Physiol. Biochem., 79, pp. 41-47. https://doi.org/10.1016/j.plaphy.2014.02.025

9. Carvalho, K., Campos, M.K., Domingues, D.S.,Pereira, L.F. & Vieira, L.G. (2013). The accumulation of endogenous proline induces changes in gene expression of several antioxidant enzymes in leaves of transgenic Swingle citrumelo. Mol. Biol. Rep., 40, pp. 3269-3279. https://doi.org/10.1007/s11033-012-2402-5

10. Szalai, G., Janda, K., Dark, E., Janda, T., Peeva, V. & Pl, M. (2017). Comparative analysis of polyamine metabolism in wheat and maize plants. Plant Physiol. Biochem., 112, pp. 239-250. https://doi.org/10.1016/j.plaphy.2017.01.012

11. Gautam, V., Kaur, R., Kohli, S.K., Verma, V., Kaur, P., Singh, R., Saini, P., Arora, S., Thukral, A.K., Karpets, Y.V., Kolupaev, Y.E. & Bhardwaj, R. (2017). ROS compartmentalization in plant cells under abiotic stress condition. In: Khan, M.I.R. & Khan, N.A. (Eds.) Reactive oxygen species and antioxidant systems in plants: role and regulation under abiotic stress (pp. 89-114). Springer Nature Singapore Pte Ltd. https://doi.org/10.1007/978-981-10-5254-5_4

12. Foyer, C.H. & Noctor, G. (2009). Redox regulation in photosynthetic organisms: signaling, acclimation, and practical implications. Antioxid. Redox Signal., 11, pp. 861-906. https://doi.org/10.1089/ars.2008.2177

13. Foyer, C.H. & Shigeoka, S. (2011). Understanding oxidative stress and antioxidant functions to enhance photosynthesis. Plant Physiol., 155, pp. 93-100. https://doi.org/10.1104/pp.110.166181

14. Schmitt, F.J., Renger, G., Friedrich, T., Kreslavski, V.D., Zharmukhamedov, S.K., Los, D.A., Kuznetsov, V.V. & Allakhverdiev, S.I. (2014). Reactive oxygen species: re-evaluation of generation, monitoring and role in stress-signaling in phototrophic organisms. Biochim. Biophys. Acta, 1837 (6), pp. 835-848. https://doi.org/10.1016/j.bbabio.2014.02.005

15. Trchounian, A., Petrosyan, M. & Sahakyan, N. (2016). Plant cell redox homeostasis and reactive oxygen species. In Gupta, D.K. et al. (Eds.). Redox State as a Central Regulator of Plant-Cell Stress Responses (pp. 25-50). Springer International Publishing Switzerland. https://doi.org/10.1007/978-3-319-44081-1_2

16. Kreslavski, V.D., Allakhverdiev, S.I., Los, D.A. & Kuznetsov, V.V. (2012). Signaling role of reactive oxygen species in plants under stress. Russ. J. Plant Physiol., 59, pp. 141-154. https://doi.org/10.1134/S1021443712020057

17. Stasik, O.O. & Jones, H.G. (2011). The role of photorespiration in response of photosynthesis to temperature increase in wheat leaves. Fiziol. Biochim. Kult. Rast., 43 (1), pp. 38-46 [in Ukrainian].

18. Cruz, M. & de Carvalho, H. (2008). Drought stress and reactive oxygen species production, scavenging and signalling. Plant Signal Behav., 3(3), pp. 156-165. https://doi.org/10.4161/psb.3.3.5536

19. Cvetkovska, M. & Vanlerberghe, G.C. (2013). Alternative oxidase impacts the plant response to biotic stress by influencing the mitochondrial generation of reactive oxygen species. Plant Cell Environ., 36, pp. 721-732. https://doi.org/10.1111/pce.12009

20. Rhoads, D.M., Umbach, A.L., Subbaiah, C.C. & Siedow, J.N. (2006). Mitochondrial reactive oxygen species. Contribution to oxidative stress and interorganellar signaling. Plant Physiol., 141, pp. 357-366. https://doi.org/10.1104/pp.106.079129

21. Bartoli, C.G., Gomez, F., Martinez, D.E. & Guiamet, J.J. (2004). Mitochondria are the main target for oxidative damage in leaves of wheat (Triticum aestivum L.). J. Exp. Bot., 55, pp. 1663-1669. https://doi.org/10.1093/jxb/erh199

22. Sharova, E.I. & Medvedev, S.S. (2017). Redox reactions in apoplast of growing cells. Russ. J. Plant Physiol., 64(1), pp. 1-14. https://doi.org/10.1134/S1021443717010149

23. Sagi, M.& Fluhr, R. (2006). Production of reactive oxygen species by plant NADPH oxidases. Plant Physiol., 141, pp. 336-340. https://doi.org/10.1104/pp.106.078089

24. Glyan'ko, A.K. & Ischenko, A.A. (2010). Structural and functional characteristics of plant NADPH oxidase: A review. Appl. Biochem. Microbiol., 46, pp. 463-471. https://doi.org/10.1134/S0003683810050017

25. Kolupaev, Yu.E., Karpets, Y.V. & Dmitriev, A.P. (2015). Signal mediators in plants in responseto abiotic stress: Calcium, reactive oxygen and nitrogen species. Cytol. Genet., 49(5), pp. 338-348. https://doi.org/10.3103/S0095452715050047

26. Kolupaev, Yu.E. & Karpets, Yu.V. (2013). Participation of reactive oxygen species in formation of induced resistances of plants to abiotic stressors. In Suzuki, M. & Yamamoto, S. (Eds.). Handbook on Reactive Oxygen Species (ROS): Formation Mechanisms, Physiological Roles and Common Harmful Effects (pp. 109-136). New York: Nova Science Publishers.

27. Oboznyi, A.I., Kolupaev, Yu.E., Vayner, A.A. & Yastreb, T.O. (2013). The role of superoxide dismutase in inducing of wheatseedlings tolerance to osmotic shock. J. Stress Physiol. Biochem., 9(3), pp. 251-261.

28. Minibayeva, F., Kolesnikov, O., Chasov, A. Beckett, R.P., Lüthje S., Vylegzhanina, N., Buck, F. & Böttger, M. (2009). Wound-induced apoplastic peroxidase activities: their roles in the production and detoxification of reactive oxygen species. Plant Cell Environ., 32, pp. 497-508. https://doi.org/10.1111/j.1365-3040.2009.01944.x

29. Oboznyi, A.I. & Kolupaev, Yu.E. (2012). Participation of the enzymatic systems generating reactive oxygen species, in formation cross-tolerance of plantlets of wheat to the hyperthermia and osmotic shock. Fiziol. Biokhim. Kult. Rast., 44 (4), pp. 347-354 [in Russian].

30. Gill, S.S. & Tuteja, N. (2010). Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol. Biochem., 48, pp. 909-930. https://doi.org/10.1016/j.plaphy.2010.08.016

31. Blokhina, O., Virolainen, E. & Fagerstedt, K.V. (2003). Antioxidants, oxidative damage and oxygen deprivation stress: A review. Ann. Bot., 91, pp. 179-194. https://doi.org/10.1093/aob/mcf118

32. Pradedova, E.V., Isheeva, O.D. & Salyaev, R.K. (2011). Classification of the antioxidant defense system as the ground for reasonable organization of experimental studies of the oxidative stress in plants. Russ. J. Plant Physiol., 58, pp. 210-217. https://doi.org/10.1134/S1021443711020166

33. Kolupaev, Yu.E. (2016). Plant cell antioxidants and their role in ROS signaling and plant resistance. Uspekhi Sovrem. Biologii, 136 (2), pp. 181-198 [in Russian].

34. Das, K. & Roychoudhury, A. (2014). Reactive oxygen species (ROS) and response of antioxidants as ROS-scavengers during environmental stress in plants. Front. Environ. Sci. 2: 53. https://doi.org/10.3389/fenvs.2014.00053

35. Alscher, R.G., Erturk, N. & Heath, L.S. (2002). Role of superoxide dismutases (SODs) in controlling oxidative stress in plants. J. Exp. Bot., 53, pp. 1331-1341. https://doi.org/10.1093/jexbot/53.372.1331

36. Ogawa, K., Kanematsu, S. & Asada, K. (1996). Intra-and extra-cellular localization of "cytosolic" Cu/Zn-superoxide dismutase in spinach leaf and hypocotyls. Plant Cell Physiol., 37, pp. 790-799. https://doi.org/10.1093/oxfordjournals.pcp.a029014

37. Kuzniak, E. & Sklodowska, M. (2004). The effect of Botrytic cinerea infection on the antioxidant proline of mitochondria from tomato leaves. J. Exp. Bot., 55, pp. 605-612. https://doi.org/10.1093/jxb/erh076

38. del Río, L.A., Corpas, F.J., Sandalio, L.M., Palma, J.M. & Barroso, J.B. (2003). Plant peroxisomes, reactive oxygen metabolism and nitric oxide. IUBMB Life, 55(2), pp. 71-81. https://doi.org/10.1080/1521654031000094694

39. Guo, Z., Ou, W., Lu, S. & Zhong, Q. (2006). Differential responses of antioxidative system to chilling and drought in four rice cultivars differing in sensitivity. Plant Physiol. Biochem., 44 (11-12), pp. 828-836. https://doi.org/10.1016/j.plaphy.2006.10.024

40. Samota, M.K., Sasi, M. & Singh, A. (2017). Impact of seed priming on proline content andantioxidant enzymes to mitigate drought stress in rice genotype. Int. J. Curr. Microbiol. App. Sci., 6(5), pp. 2459-2466. https://doi.org/10.20546/ijcmas.2017.605.275

41. Mamenko, T.P. & Yaroshenko, O.A. (2012). Response of antioxidant system in contrasting by drought resistance winter wheat cultivars to water deficit. Fiziol. Biochim. Kult. Rast., 44 (4), pp. 323-330 [in Ukrainian].

42. Sokolovska-Sergienko, O.G. & Kiriziy, D.A. (2010). Intensity of photosynthesis and activity of chloroplast superoxide dismutase in wheat flag leaves during ripening. Fiziol. Biochim. Kul't. Rast., 42(1), pp. 67-72 [in Ukrainian].

43. Anjum, S.A., Ashraf, U., Tanveer, M., Khan, I., Hussain, S., Shahzad, B., Zohaib, A., Abbas, F., Saleem, M.F., Ali, I. & Wang, L.C. (2017). Drought induced changes in growth, osmolyte accumulation and antioxidant metabolism of three maize hybrids. Front. Plant Sci. 6: 69. https://doi.org/10.3389/fpls.2017.00069

44. Kumari, N., Avtar, R., Kumari, A., Sharma, B., Rani, B. & Sheoran, R.K. (2018). Antioxidative response of Indian mustard subjected to drought stress. J. Oilseed Brassica., 9(1), pp. 40-44.

45. Zandalinas, S.I., Balfagn, D., Arbona, V. & Gmez-Cadenas, A. (2017). Modulation of antioxidant defense system is associated with combined drought and heat stress tolerance in citrus. Front. Plant Sci. 8:953. https://doi.org/10.3389/fpls.2017.00953

46. Mandi, S., Kumar, P.A., Nath, R. & Hembram, S. (2018). ROS scavenging and nitrate reductase enzyme activity in mungbean [Vigna radiata (L.) Wilczek] under drought stress. Int. J. Curr. Microbiol. App. Sci., 7 (4), pp. 1031-1039. https://doi.org/10.20546/ijcmas.2018.704.113

47. Tina, R.R., Shan, X.R., Wang, Y., Guo, S.Y., Mao, B., Wang, W., Wu, H.Y. & Zhao, T.H. (2017). Response of antioxidant system to drought stress and rewatering in Alfalfa during branching. IOP Conf. Series: Earth and Environ. Sci. 94 01212. https://doi.org/10.1088/1755-1315/94/1/012129

48. Haider, M.S., Kurjogi, M.M., Khalil-Ur-Rehman, M., Fiaz, M., Pervaiz, T., Jiu S., Haifeng, J., Chen, W. & Fang, J. (2017). Grapevine immune signaling network in response to drought stress as revealed by transcriptomic analysis. Plant Physiol. Biochem., 121, pp. 187-195. https://doi.org/10.1016/j.plaphy.2017.10.026

49. Willekens, H., Chamnongpol, S., Davey, M., Schraudner, M., Langebartels, C., Van Montagu, M., Inzé, D. & Van Camp, W. (1997). Catalase is a sink for H2O2 and is indispensable for stress defense in C3 plants. EMBO J., 16, pp. 4806-4816. https://doi.org/10.1093/emboj/16.16.4806

50. Guan, L.M. & Scandalios, J.G. (2000). Hydrogen peroxide-mediated catalase gene expression in response to wounding. Free Radical Biol. Med., 28, pp. 1182-1190. https://doi.org/10.1016/S0891-5849(00)00212-4

51. Nyathi, Y. & Baker, A. (2006). Plant peroxisomes as a source of signalling molecules. Biochim. Biophys. Acta, 1763, pp. 1478-1495. https://doi.org/10.1016/j.bbamcr.2006.08.031

52. Chakrabarty, A., Aditya, M., Dey, N., Bani, N. & Bhattacharjee, S. (2016). Antioxidant signaling and redox regulation in drought — and salinity-stressed plants. In Hossain, M. et al. (Eds.). Drought Stress Tolerance in Plants, Vol. 1 (pp. 465-498). Springer, Cham. https://doi.org/10.1007/978-3-319-28899-4_20

53. Landi, S., De Lillo, A., Nurcato, R., Grillo, S. & Esposito, S. (2017). In-field study on traditional Italian tomato landraces: The constitutive activation of the ROS scavenging machinery reduces effects of drought stress. Plant Physiol Biochem., 118, pp. 150-160. https://doi.org/10.1016/j.plaphy.2017.06.011

54. Smertenko, A. (2017). Can peroxisomes inform cellular response to drought? Trend Plant Sci., 22(12), pp. 1005-1007. https://doi.org/10.1016/j.tplants.2017.09.021

55. Noctor, G., Mhamdi, A. & Foyer, C.H. (2014). The roles of reactive oxygen metabolism in drought: not so cut and dried. Plant Physiol., 164, pp. 1636-1648. https://doi.org/10.1104/pp.113.233478

56. Caverzan, A., Passaia, G., Rosa, S.B., Ribeiro, C.W., Lazzarotto, F. & Margis-Pinheiro, M. (2012). Plant responses to stresses: role of ascorbate peroxidase in the antioxidant protection. Genet. Mol. Biol., 35(4), pp. 1011-1019. https://doi.org/10.1590/S1415-47572012000600016

57. Secenji, M., Hideg, E., Bebes, A. & Gyorgyey, J. (2010). Transcriptional differences in gene families of the ascorbate-glutathione cycle in wheat during mild water deficit. Plant Cell Rep., 29 (1), pp. 37-50. https://doi.org/10.1007/s00299-009-0796-x

58. Zhang, Z., Zhang, Q., Wu, J., Zheng, X., Zheng, S., Sun, X., Qiu, Q. & Lu, T. (2013). Gene knockout study reveals that cytosolic ascorbate peroxidase 2 (OsAPX2) plays a critical role in growth and reproduction in rice under drought, salt and cold stresses. PLoS One, 8 (2), e57472. https://doi.org/10.1371/journal.pone.0057472

59. Guo, Y.Y., Tian, S.S., Liu, S.S. Wang, W.Q. & Sui, N. (2018). Energy dissipation and antioxidant enzyme system protect photosystem II of sweet sorghum under drought stress. Photosynthetica, 56 (3), pp. 861-872. https://doi.org/10.1007/s11099-017-0741-0

60. Tognolli, M., Penel, C., Greppin, H. & Simon, P. (2003). Analysis and expression of the class III peroxidase large gene family in Arabidopsis thaliana. Gene, 288, pp. 129-138. https://doi.org/10.1016/S0378-1119(02)00465-1

61. Ivanov, S., Konstantinova, T., Parvanova, D., Todorova, D., Djilianov, D. & Alexieva, V. (2001). Effect of high temperatures on the growth, free proline content and some antioxidants in tobacco plants. Comptes Rendus de l'Academie Bulgare des Sciences, 54 (7), pp. 71-74.

62. Hussain, S., Khalid, M.F., Saqib, M., Ahmad, S., Zafar, W., Rao, M.J., Morillon, R. & Anjum, M.A. (2018). Drought tolerance in citrus rootstocks is associated with better antioxidant defense mechanism. Acta Physiol. Plant, 40, p. 135. https://doi.org/10.1007/s11738-018-2710-z

63. Romero-Puertas, M.C., Corpas, F.J., Sandalio, L.M., Leterrier, M., Rodríguez-Serrano, M., Del Río, L.A. & Palma, J.M. (2006). Glutathione reductase from pea leaves: response to abiotic stress and characterization of the peroxisomal isozyme. New Phytol., 170, pp. 432-452. https://doi.org/10.1111/j.1469-8137.2006.01643.x

64. Ozkur, O., Ozdemir, F., Bor, M. & Turkan, I. (2009). Physiochemical and antioxidant responses of the perennial xerophyte Capparis ovata Desf. to drought. Environ. Exp. Bot., 66(3), pp. 487-492. https://doi.org/10.1016/j.envexpbot.2009.04.003

65. Creissen, G.P., Broadbent, P., Kular, B. & Reynolds, H. (1994). Manipulation of glutathione reductase in transgenic plants: implications for plant responses to environmental stress. Proceedings of the Royal Society of Edinburgh, Section B: Biological Sciences., 102B, pp. 167-175. https://doi.org/10.1017/S0269727000014081

66. Marrs, K.A. (1996). The functions and regulation of glutathione S-transferases in plants. Ann. Rev. Plant Physiol. Plant Mol. Biol., 47, pp. 127-158. https://doi.org/10.1146/annurev.arplant.47.1.127

67. Baimuhametova, E.A., Taipova, R.M. & Kuluev, B.R. (2016). Glutathione and glutathione s-transferases: key componentsof the antioxidant protection system of plants. Biomics., 8(4), pp. 311-322 [in Russian].

68. Liu, L., Liu, Y., Rao, J., Wang, G., Li, H., Ge, F. & Chen, C. (2013). Overexpression of the glutathione S-transferase gene from Pyrus pyrifolia fruit improves tolerance to abiotic stress in transgenic tobacco plants. Mol. Biol. (Mosk.), 47(4), pp. 591-601. https://doi.org/10.1134/S0026893313040109

69. Kaur, R. & Nayyar, H. (2014). Ascorbic acid a potent defender against environmental stresses. In Ahmad P. (Ed.) Oxidative Damage to Plants Antioxidant Networks and Signaling (pp. 235-287). San Diego: Elsevier. https://doi.org/10.1016/B978-0-12-799963-0.00008-3

70. Putilina, F.E., Galkina, O.V., Yeshchenko, N.D., Dizhe, G.P. & Krasovskaya, I.E. (2008). Svobodnoradikal'noye okisleniye (Free radical oxidation). St. Petersburg: St. Petersburg University publishing house [in Russian].

71. Millar, A.H., Mittova, V., Kiddle, G., Heazlewood, J.L., Bartoli, C.G., Theodoulou, F.L. & Foyer, C.H. (2003). Control of ascorbate synthesis by respiration and its implications for stress responses. Plant Physiol., 133, pp. 443-447. https://doi.org/10.1104/pp.103.028399

72. Miyaji, T., Kuromori, T., Takeuchi, Y., Yamaji, N., Yokosho, K., Shimazawa, A., Sugimoto, E., Omote, H., Ma, J.F. & Shinozaki, K. (2015.) AtPHT4; 4 is a chloroplast-localized ascorbate transporter in Arabidopsis. Nat. Commun. 6:5928. https://doi.org/10.1038/ncomms6928

73. Foyer, C.H. & Noctor, G. (2005). Redox homeostis and antioxidant signaling: a metabolic interface between stress perception and physiological responses. Plant Cell., 17, pp. 1866-1875. https://doi.org/10.1105/tpc.105.033589

74. Singh, S., Gupta, A. K. & Kaur, N. (2012). Differential responses of antioxidative defence system to long-term field drought in wheat (Triticum aestivum L.) genotypes differing in drought tolerance. J. Agron. Crop Sci., 198, pp. 185-195. https://doi.org/10.1111/j.1439-037X.2011.00497.x

75. Cao, B.L., Ma, Q., Zhao, Q., Wang, L. & Xu, K. (2015). Effects of silicon on absorbed light allocation, antioxidant enzymes and ultrastructure of chloroplasts in tomato leaves under simulated drought stress. Sci. Hortic., 194, pp. 53-62. https://doi.org/10.1016/j.scienta.2015.07.037

76. Le Martret, B., Poage, M., Shiel, K., Nugent, G.D. & Dix, P.J. (2011). Tobacco chloroplast transformants expressing genes encoding dehydroascorbate reductase, glutathione reductase, and glutathione-S-transferase, exhibit altered anti-oxidant metabolism and improved abiotic stress tolerance. Plant Biotechnol. J., 9 (6), pp. 661-673. https://doi.org/10.1111/j.1467-7652.2011.00611.x

77. Farooq, M., Irfan, M., Aziz, T., Ahmad, I. & Cheema, S.A. (2013). Seed priming with ascorbic acid improves drought resistance of wheat. J. Agron. Crop Sci., 199, pp. 12-22. https://doi.org/10.1111/j.1439-037X.2012.00521.x

78. Wang, H., Zhang, L., Ma, J., Li, X., Li, Y., Zhang, R. & Wang R. (2010). Effects of water stress on reactive oxygen species generation and protection system in rice during grain-filling stage. Agr. Sci. China, 9, pp. 633-641. https://doi.org/10.1016/S1671-2927(09)60138-3

79. Malik, S. & Ashraf, M. (2012). Exogenous application of ascorbic acid stimulates growth and photosynthesis of wheat (Triticum aestivum L.) under drought. Soil Environ., 31, pp. 72-77.

80. Baghizadeh, A. & Hajmohammadrezaei, M. (2011). Effect of drought stress and its interaction with ascorbate and salicylic acid on okra (Hibiscus esculents L.) germination and seedling growth. J. Stress Physiol. Biochem., 7, pp. 55-65.

81. Noctor, G., Gomez, L., Vanacker, H. & Foyer, C.H. (2002). Interactions between biosynthesis, compartmentation and transport in the control of glutathione homeostasis and signalling. J. Exp. Bot., 53, pp. 1283-1304. https://doi.org/10.1093/jexbot/53.372.1283

82. Szalai, G., Kellos, T., Galib, G. & Kocsy, G. (2009). Glutathione as an antioxidant and regulatory molecule in plants under abiotic stress conditions. J. Plant Growth Regul., 28, pp. 66-80. https://doi.org/10.1007/s00344-008-9075-2

83. Del Rio, L.A., Corpas, J., Sandalio, L.M., Palma, J.M., Gmez, M. & Barroso, J.B. (2002). Reactive oxygen species, antioxidant systems and nitric oxide in peroxisomes. J. Exp. Bot., 53, pp. 1255-1272. https://doi.org/10.1093/jxb/53.372.1255

84. Chen, K.-M., Gong, H.-J., Chen, G.-C., Wang, S.-M. & Zhang, C.-L. (2004). Gradual drought under field conditions influences the glutathione metabolism, redox balance and energy supply in spring wheat. J. Plant Growth Regul., 23, pp. 20-28. https://doi.org/10.1007/s00344-003-0053-4

85. Lascano, H.R., Antonicelli, G.E., Luna, C.M., Melchiorre, M.N., Gomez, L.D., Racca, R.W., Trippi, V.S. & Casano, L.M. (2001). Antioxidant system response of different wheat cultivars under drought: field and in vitro studies. Austr. J. Plant Physiol., 28, pp. 1095-1102. https://doi.org/10.1071/PP01061

86. Waskiewicz, A., Beszterda, M., & Golinski, P. (2014). Nonenzymatic antioxidants in plants. Oxidative Damage to Plants (pp. 201-234). Elsevier Inc. doi:10.1016/b978-0-12-799963-0.00007-1 https://doi.org/10.1016/B978-0-12-799963-0.00007-1

87. Tarakhovskiy, Yu.S., Kim, Yu.A., Abdrasilov, B.S. & Muzafarov, E.N. (2013). Flavonoids: biochemistry, biophysics, medicine. Pushchino: Snchrobook [in Russian].

88. Harborne, J.B. & Williams, C.A. (2000). Advances in flavonoid research since 1992. Phytochemistry, 55, pp. 481-504. https://doi.org/10.1016/S0031-9422(00)00235-1

89. Ververidis, F., Trantas, E., Douglas, C., Vollmer, G., Kretzschmar, G. & Panopoulos, N. (2007). Biotechnology of flavonoids and other phenylpropanoid-derived natural products. Pt I: Chemical diversity, impacts on plant biology and human health. Biotechnol. J., 2, pp. 1214-1234. https://doi.org/10.1002/biot.200700084

90. Olenichenko, N.A., Zagoskina, N.V., Astakhova, N.V., Trunova, T.I. & Kuznetsov, Yu.V. (2008). Primary and secondary metabolism of winter wheat under cold hardening and treatment with antioxidants. Appl Biochem. Microbiol., 44 (5), pp. 535-540. https://doi.org/10.1134/S0003683808050141

91. Winkel, B.S.J. The biosynthesis of flavonoids.In Grotewold P.E. (2008). (Ed.) The science of flavonoids (pp. 71-95). New York: Springer.

92. Es-Safi, N.E., Ghidouche, S. & Ducrot, P.H. (2007). Flavonoids: hemisynthesis, reactivity, characterization and free radical scavenging activity. Molecules, 12, pp. 2228-2258. https://doi.org/10.3390/12092228

93. Khlestkina, E.K. (2013). The adaptive role of flavonoids: emphasis on cereals. Cereal Res. Commun., 41, pp. 185-198. https://doi.org/10.1556/CRC.2013.0004

94. Gould, K.S. & Lister, C. (2006). Flavonoid functions in plants. In Andersen, O.M. & Markham, K.R. (Eds.). Flavonoids: Chemistry, Biochemistry, and Applications (pp. 397-442). London: CRC Press.

95. Havaux, M. & Kloppstech, K. (2001). The protective functions of carotenoid and flavonoids pigments against excess visible radiation at chilling temperature investigated in Arabidopsis npq and tt mutants. Planta, 213 (6), pp. 953-966. https://doi.org/10.1007/s004250100572

96. Munne-Bosch, S. & Alegre, L. (2002). The function of tocopherols and tocotrienols in plants. Crit. Rev. Plant Sci., 21, pp. 31-57. https://doi.org/10.1080/0735-260291044179

97. Ghanbari, F. & Sayyari, M. (2018). Controlled drought stress affects the chilling-hardening capacity of tomatoseedlings as indicated by changes in phenol metabolisms, antioxidantenzymes activity, osmolytes concentration and abscisic acid accumulation. Sci. Horticult., 229, pp. 167-174. https://doi.org/10.1016/j.scienta.2017.10.009

98. Ma, D., Sun, D., Wang, C., Li, Y. & Guo, T. (2014). Expression of flavonoid biosynthesis genes and accumulation of flavonoid in wheat leaves in response to drought stress. Plant Physiol. Biochem., 80, pp. 60-66. https://doi.org/10.1016/j.plaphy.2014.03.024

99. Kolupaev, Yu.E., Firsova, K.M., Shvidenko, M.V. & Yastreb, T.O. (2018). Hydrogen sulfide donor influence on state of antioxidant systemof wheat seedlings under osmotic stress. Fiziol. Rast. Genet., 50 (1), pp. 29-38 [in Ukrainian].

100. Nakabayashi, R., Yonekura-Sakakibara, K., Urano, K., Suzuki, M., Yamada, Y., Nishizawa, T., Matsuda, F., Kojima, M., Sakakibara, H., Shinozaki, K., Michael, A.J., Tohge, T., Yamazaki, M. & Saito, K. (2014). Enhancement of oxidative and droughttolerance in Arabidopsis by overaccumulation of antioxidant flavonoids. Plant J., 77, pp. 367-379. https://doi.org/10.1111/tpj.12388

101. Yuan, Y., Qi, L., Yang, J., Wu, C., Liu, Y. & Huang, L. (2015). A scutellaria baicalensis R2R3-MYB gene, SbMYB8, regulatesflavonoid biosynthesis and improves drought stress tolerancein transgenic tobacco. Plant Cell Tiss. Organ. Cult., 120, pp. 961-972. https://doi.org/10.1007/s11240-014-0650-x

102. Joseph, E.A., Radhakrishnan, V.V. & Mohanan, K.V. (2015). A study onthe accumulation of proline — an osmoprotectant amino acidunder salt stress in some native rice cultivars of NorthKerala, India. Univ. J. Agr. Res., 3, pp. 15-22.

103. Kaur, G. & Asthir, B. (2015). Proline: a key player in plant abiotic stress tolerance. Biol. Plant., 59 (4), pp. 609-619. https://doi.org/10.1007/s10535-015-0549-3

104. Kumar, N.S, Zhu, W., Liang, X., Zhang, L., Demers, A.J., Zimmerman, M.C., Simpson, M.A. & Becker, D.F. (2012). Proline dehydrogenase is essential for proline protection against hydrogen peroxide-induced cell death. Free Radical Biology Medicine, 53, pp. 1181-1191. https://doi.org/10.1016/j.freeradbiomed.2012.07.002

105. Signorelli, S., Coitin, O, E.L., Borsani, O. & Monza, J. (2014). Molecular mechanisms for the reaction between OH radicals and proline: insights on the role as reactive oxygenspecies scavenger in plant stress. J. Phys. Chem., 118, pp. 37-47. https://doi.org/10.1021/jp407773u

106. Aubert, S., Hennion, F., Bouchereau, A., Gout, E., Blingy, R. & Dome, A.J. (1999). Subcellular compartmentation of proline in the leaves of the subantartic Kerguelen cabbage Pringlea antiscorbutica R-Br. in vivo 13C-NMR study. Plant Cell Environ., 22, pp. 255-259. https://doi.org/10.1046/j.1365-3040.1999.00421.x

107. Chen, C. & Dickman, M.B. (2005). Proline suppresses apoptosis in the fungal pathogen Colletotrichum trifolii. Proc. Natl. Acad. Sci. USA, 102, pp. 3459-3464. https://doi.org/10.1073/pnas.0407960102

108. Islam, M.M., Hoque, M.A., Okuma, E., Banu, M.N., Shimoishi, Y., Nakamura, Y. & Murata, Y. (2009). Exogenous proline and glycinebetaine increase antioxidant enzyme activities and confer tolerance to cadmium stress in cultured tobacco cells. J. Plant Physiol., 166, pp. 1587-1597. https://doi.org/10.1016/j.jplph.2009.04.002

109. Islam, M.M., Hoque, M.A., Okuma, E., Jannat, R., Banu, M.N., Jahan, M.S., Nakamura, Y. & Murata, Y. (2009). Proline and glycinebetaine confer cadmium tolerance on tobacco bright yellow-2 cells by increasing ascorbate-glutathione cycle enzyme activities. Biosci. Biotechnol. Biochem., 73, pp. 2320-2323. https://doi.org/10.1271/bbb.90305

110. Radyukina, N.L., Shashukova, A.V., Makarova, S.S. & Kuznetsov, V.V. (2011). Exogenous proline modifies differential expression of superoxide dismutase genes in UV-B-irradiated Salvia officinalis plants. Russ. J. Plant Physiol., 58, pp. 51-59. https://doi.org/10.1134/S1021443711010122

111. Soshinkova, T.N., Radyukina, N.L., Korolkova, D.V. & Nosov, A.V. (2013). Proline and functioning of the antioxidant system in Thellungiella salsuginea plants and cultured cells subjected to oxidative stress. Russ. J. Plant Physiol., 60, pp. 41-54. https://doi.org/10.1134/S1021443713010093

112. De Ronde, J.A., Cress, W.A., Krger, G.H., Strasser, R.J. & Van,S.J. (2004). Photosynthetic response of transgenic soybean plants,containing an Arabidopsis P5CR gene, during heat anddrought stress. J. Plant Physiol., 161, pp. 1211-1224. https://doi.org/10.1016/j.jplph.2004.01.014

113. Mykhalska, S.I., Sergeeva, L.E., Matveyeva, A.Yu., Kobernik, N.I., Kochetov, A.V., Tishchenko, O.M. & Morgun, V.V. (2014). The elevation of free proline content in osmotolerant transgeniccorn plants with dsRNA suppressor of proline dehydrogenase gene. Fiziol. Rast. Genet., 46 (6), pp. 482-489 [in Russian].

114. Cherenkevich, S.N., Martinovich, G.G., Martinovich, I.V., Gorudko, I.V. & Shamova, E.V. (2013). Redox regulation of cellular activity: concepts and mechanisms. Proceedings of the National Academy of Sciences of Belarus. Series of Biological Sciences, 1, pp. 92-108 [in Russian].

115. De Campos, M.K.F., De Carvalho, K., De Souza, F.S., Marur,C.J., Pereira, L.F.P., Filho, J.C.B. & Vieira, L.G.E. (2011). Droughttolerance and antioxidant enzymatic activity in transgenic 'Swingle' citrumelo plants over-accumulating proline. Environ. Exp. Bot., 72, pp. 242-250. https://doi.org/10.1016/j.envexpbot.2011.03.009

116. Ashraf, M.A., Akbar, A., Askari, S.H., Iqbal, M., Rasheed, R. & Hussain, I. (2018). Recentadvances in abiotic stress tolerance of plants through chemicalpriming: An Overview. InRakshit, A., Singh, H.B. (Eds.) Advances in Seed Priming (pp. 51-79). Springer Nature Singapore Pte Ltd. https://doi.org/10.1007/978-981-13-0032-5_4

117. Kamran, M., Shahbaz, M., Ashraf, M. & Akram, N.A. (2009). Alleviation of drou¬ght-induced adverse effects in springwheat (Triticum aestivum L.) using proline as a pre-sowing seed treatment. Pak. J. Bot., 41, pp. 621-632.

118. Kaur, D., Grewal, S.K., Kaur, J. & Singh, S. (2017). Differential proline metabolism in vegetative and reproductive tissues determine drought tolerance in chickpea. Biol. Plant., 61 (2), pp. 359-366. https://doi.org/10.1007/s10535-016-0695-2

119. Bohnert, H.J., Nelson, D.E. & Jensen, R.G. (1995). Adaptations to environmental stresses. Plant Cell., 7, pp. 1099-1111. https://doi.org/10.1105/tpc.7.7.1099

120. Yildizli, A., Çevik, S. & Ünyayar, S. (2018). Effects of exogenous myo-inositol on leaf water status and oxidativestress of Capsicum annuum under drought stress. Acta Physiol. Plant., 40, p. 122. https://doi.org/10.1007/s11738-018-2690-z

121. Sunkar, R., Kapoo, A. & Zhu, J.K. (2006). Posttranscriptional induction of two Cu/Zn superoxide dismutase genes in Arabidopsis is mediated by down-regulation of miR398 and important for oxidative stress tolerance. Plant Cell., 18, pp. 2051-2065. https://doi.org/10.1105/tpc.106.041673

122. Semchuk, N., Lushchak, O.V., Falk, J., Krupinska, K. & Lushchak, V.I. (2009). Inactivation of genes, encoding tocopherol biosynthetic pathway enzymes, results in oxidative stress in outdoor grown Arabidopsis thaliana. Plant Physiol. Biochem. 47, pp. 384-390. https://doi.org/10.1016/j.plaphy.2009.01.009

123. Semchuk, N.M., Vasylyk, Yu.V., Lushchak, Ok.V. & Lushchak, V.I. (2012). Effect of short-term salt stress on oxidative stress markers and antioxidant enzymes activity in tocopherol-deficient Arabidopsis thaliana plants. Ukr. Biochem. J., 84(4), pp. 41-48.

124. Szabados, L. & Savoure, A. (2009). Proline: a multifunctional amino acid. Trends Plant Sci., 15 (2), pp. 89-97. https://doi.org/10.1016/j.tplants.2009.11.009

125. Vendruscolo, E.C., Schuster, I., Pileggi, M., Scapim, C.A., Molinari, H.B., Marur, C.J. & Vieira, L.G. (2007). Stress-induced synthesis of proline confers tolerance to water deficit in transgenic wheat. J. Plant Physiol., 164, pp. 1367-1376. https://doi.org/10.1016/j.jplph.2007.05.001

126. Razavizadeh, R. & Ehsanpour, A.A. (2009). Effects of salt stress on proline content, expressionof delta-1-pyrroline-5-carboxylate synthetase, and activitiesof catalase and ascorbate peroxidase in transgenic tobacco plants. Biological Lett., 46 (2), pp. 63-75. https://doi.org/10.2478/v10120-009-0002-4

127. Kolupaev, Yu.E. & Karpets, Yu.V. (2017). Role of signal mediators and stress hormones in regulation ofplants antioxidative system. Fiziol. Rast. Genet., 49(6), pp. 463-481 [in Russian].

128. Ozturk, L. & Demir, Y. (2002). In vivo and in vitro protective role of proline. Plant Growth Regulation, 38, pp. 259-264. https://doi.org/10.1023/A:1021579713832

129. Maiti, S., Ghosh, N.G., Mandal, C. & Adak, M.K. (2018). Evaluation of the effect of putrescine on oxidative stress in two chromium treated maize varieties. Plant Cell Biotechnol. Mol. Biol., 19 (1-2), pp. 9-23.

130. Rybachenko, L.I., Kots, S.Ya., Melnik, V.M. & Rybachenko, O.R. (2018). Response of different efficiency symbiotic systems on drought and use of the exogenous lectin as an protector of its negative action. Fiziol. Rast. Genet., 50 (5), pp. 383-401 [in Ukrainian]. https://doi.org/10.15407/frg2018.05.383

131. Hossain, M.A., Hoque, M.A., Burritt, D.J. & Fujita, M. (2014). Proline protects plants against abiotic oxidative stress: biochemical and molecular mechanisms.In Ahmad, P. (Ed.). Oxidative Damage to Plants Antioxidant Networks and Signaling (pp. 477-521). Academic Press is an imprint of Elsevier. https://doi.org/10.1016/B978-0-12-799963-0.00016-2

132. Ramel, F., Sulmon, C., Bogard, M., Coue, I. & Gouesbet, G. (2009). Differential patterns of reactive oxygen species and antioxidative mechanisms during atrazine injury and sucrose-induced tolerance in Arabidopsis thaliana plantlets. BMC Plant Biology, 9, pp. 28. https://doi.org/10.1186/1471-2229-9-28

133. Vasil'ev, L.A., Dzyubinskaya, E.V., Kiselevsky, D.B., Shestak, A.A. & Samuilov, V.D. (2011). Programmed cell death in plants: Protective effect of mitochondrial-targeted quinones. Biochem. (Mosc.), 76 (10), pp. 1120-1131. https://doi.org/10.1134/S0006297911100051

134. Queval, G., Hager, J., Gakière, B. & Noctor, G. (2008). Why are literature data for H2O2 contents so variable? A discussion of potential difficulties in the quantitative assay of leaf extracts. J. Exp. Bot., 59, pp. 135-140. https://doi.org/10.1093/jxb/erm193