en   ru   uk  
Fiziol. rast. genet. 2019, vol. 51, no. 6, 482-492, doi: https://doi.org/10.15407/frg2019.06.482

The detailed study of leaf infrared spectrum parameters — a contribu- tion to the overall characterisation of maize inbred lines properties

Radenović Č.N.1,2, Maksimov G.V.3, Shoutova V.V.4, Slatinskaya O.V.3, Protopopov F.F.3, Delić N.S.1, Milenković M.V.1, Čamdžija Z.F.1, Grcić N.M.1, Pavlov J.M.1

  1. Maize Research Institute, Zemun Polje, Slobodana Bajića 1, 11185 Belgrade, Serbia
  2. University of Belgrade, Faculty for Physical Chemistry, Studenski trg 12-16,  11000 Belgrade, Serbia
  3. M.V. Lomonosov Moscow State University, Faculty of Biology, Leninskie Gory, 12, 119892 Moscow, Russia
  4. Ogarev Mordovia State University, Bolshevitskaya St., 68, 430005 Saransk, Republic of Mordovia

Results and discussion about observation of leaf infrared spectrum parameters with the intention of overall characterisation of the traits of the elite maize inbred lines ZPPL 186, ZPPL 225, ZP M1-3-3 Sdms are presented. The proposed hypothesis was that numerous spectral bands of maize inbred lines leaves, not observed yet, but occurring in the different kinetic forms (bands of high and low intensity, single or grouped), should be systematically studied and the dynamics of their formation, very often caused by different oscillations and vibrations of molecular bonds, should be explained. In some cases, there is a possibility of the partial cancellation or increase of spectral bands intensity. According to our hypothesis, low intensity spectral bands imply the unstable state of the biological system (leaf), which is a consequence of the excited state of molecules, radicals, atoms or ions in tissues, cells or biomembranes. Similar transport processes occur when biological systems are rhythmically excited, as well as when complex transport of ions occur across the excited thylakoid membrane. These bands most frequently appear in the wave number range of 500—1600 cm–1. Nevertheless, they fractionally occur in the wave number up to 3000 cm–1. These spectral bands varied over inbred lines used in this study. The systematic analysis of spectral bands of leaves of observed maize inbred lines (for instance, high intensity bands with significant width on 3370 cm–1) showed the difference in their occurrence: the most intensive occurrence was in leaves of the inbred line ZPPL 186, then in ZP M1-3-3 Sdms, while the lowest intensity was detected in the inbred line ZPPL 225. In such a complex way, it is possible to identify not only organic compounds and their structure in leaves of observed maize inbred lines, but also to indicate the possibility of complex inducement of their unstable and conformational states.

Keywords: Zea mays L., inbred line, leaf, infrared spectra, spectral bands

Fiziol. rast. genet.
2019, vol. 51, no. 6, 482-492

Full text and suplimented materials

Free full text: PDF  


1. Vasiliev, A.V., Grinenko, E.V., Schukin, A.O. & Fedulina, T.G. (2007). Infrared spectroscopy of organic and natural compounds. St. Petersburg: St. Petersburg. Gos. Forestry technician. Acad. [in Russian].

2. Sverdlov, L.M., Kovner, M.A. & Kraynov, E.P. (1970). Vibrational spectra of polyatomic molecules. Moscow: Science [in Russian].

3. Tarasevich, B.N. (2012). IR spectra of the main classes of organic compounds. Moscow: Publishing. Moscow State University [in Russian].

4. Krimm, S. & Bandekar, J. (1986). Vibrational spectroscopy and conformation of peptides, polipeptides and proteins. Advances in Protein Chemistry, 38, pp. 181-364. https://doi.org/10.1016/S0065-3233(08)60528-8

5. Ribnikar, S. (1985). Infracrvena i ramanska spektroskopija. In: Fizickohemijske metode. Beograd: Rad.

6. Radenović, Č., Jeremić, M., Maximov, G.V., Filipović, M., Trifunović, B.V. & Mišović, M.M. (1994). Mogućnost korišćenja ramanske spektroskopije u proucavanju otpornosti inbred linija kukuruza prema uslovima stresa. Savremena poljoprivreda, 42, No. 1-2, pp. 5-19.

7. Radenović, Č., Jeremić, M., Maximov, G.V., Mišović, M. M. & Trifunović, B.V. (1994). Resonance Raman spectra of carotenoids in the maize seed tissue - a new approach in studies on effects of temperatures and other environmental factors on the state of vital functions. J. of Sci. Agricul. Res., 55, No. 4, pp. 33-47.

8. Radenović, Č., Jeremić, M., Maximov, G.V., Mišović, M.N., Selaković, D. & Trifunović, B.V. (1995). Rezonantni ramanski spektri semena kukuruza i njihova primena u proucavanju životnih funkcija. In Oplemenjivanje, proizvodnja i iskorišćavanje kukuruza - 50 godina Instituta za kukuruz "Zemun Polje" (pp. 291-296), Beograd: Institut za kukuruz "Zemun Polje".

9. Radenović, Č., Jeremić, M., Maximov, G.V., Mišović, M.N. & Selaković, D. (1998). Resonance Raman spectra of carotenoides in the maize kernel - a contribution to the evaluation of the kernels resistance to the temperature and the chemical composition of soil. Matica srpska J. Nat. Sci., 95, pp. 41-50.

10. Radenović, Č.N., Maksimov, G.V. & Grodzinskij, D.M. (2015). Identification of Organic Molecules in Kernels of Maize Inbred Lines Displayed with Infrared Spectra. Fisiol. rast. genet., 47, No. 1, pp. 15-24.

11. Radenović, Č.N., Maksimov, G.V., Tyutyaev, E.V., Syusin, I.V., Shutova, V.V., Secanski, M.D., Srdić, J.Ž., Videnović, Ž.V. & Popović, A.S. (2015). Structural Properties of Maize Hybrids Established by Infrared Spectra, Matica srpska J. Nat. Sci., No. 129, pp. 35-44. https://doi.org/10.2298/ZMSPN1529035R

12. Radenovich, C.H., Maksimov, G.V., Tutyaev, E.V., Shutova, V.V., Delich, N., Chamdzhia, Z., Pavlov, J. & Jovanovic, J. (2016). Identification of organic compounds in corn hybrids (Zea mays L.) of Serbian breeding using infrared spectra. Selskokhozyaystvennaya biologiya, 51, No. 5, pp. 645-653 [in Russian]. https://doi.org/10.15389/agrobiology.2016.5.645eng

13. Radenović, Č.N., Maksimov, G.V., Shutova, V.V., Delić, N.S., Milenković, M.V., Pavlović, M.D. & Beljanski, M.V. (2018). The study by the methods of infrared spectroscopy of the stretching and twisting vibrations of chemical bonds in functional groups of organic compounds contained in grains of maize inbred lines. Fisiol. rast. genet., Vol. 50, No. 4, pp. 322-330. https://doi.org/10.15407/frg2018.04.322

14. Kols, O.R., Maksimov, G.V. & Radenovich, Ch.N. (1993). Biophysics of Rhythmic Excitation. Moscow: Publishing. Moscow State University [in Russian].

15. Radenović, Č. (1998). Transportni procesi kroz membranu. In Savremena biofizika (pp. 1-90), Beograd: Velarta.

16. Vollhardt, P.C. & Schore, N.E. (1996). Organic Chemistry. New York: W.H. Freeman and Company.

17. White, P.J. & Johnson, L.A. (2003). Corn: Chemistry and Technology. Minnesota: American Association of Cereal Chemists.

18. Amir, R.M., Anjum, F.M., Khan, M.I., Khan, M.R., Pasha, I. & Nadeem, M. (2013). Application of Fourier transform infrared (FTIR) spectroscopy for the identification of wheat. J. Food Sci. Technol., 50, pp. 1018-1023. https://doi.org/10.1007/s13197-011-0424-y

19. Jackson, M. & Mantsch, H.H. (2006). Infrared spectroscopy, ex vivo tissue analysis. In Biomedical Spectroscopy. Encyclopedia of Analytical Chemistry (pp. 131-156), John Wiley & Sons Ltd. https://doi.org/10.1002/9780470027318.a0107

20. Chalmers, J.M. (2002). Mid-infrared spectroscopy: Anomalies, artifacts and common errors in using vibrational spectroscopy techniques. In Handbook of Vibrational Spectroscopy, John Wiley & Sons Ltd.

21. Yu, P., McKinnon, J.J., Christensen, C.R. & Christensen, D.A. (2004). Imaging molecular chemistry of Pioneer corn. J. Agric. Food Chem., 52, pp. 7345-7352. https://doi.org/10.1021/jf049291b

22. Skoog, D.A., Holler, F.J. & Crouch, S.R. (2007). Principles of instrumental analysis. Belmont: Thomson Higher Education.