Fiziol. rast. genet. 2019, vol. 51, no. 5, 371-387, doi: https://doi.org/10.15407/frg2019.05.371

Nitrate reductase and its role in legume-rhizobia symbiosis

Kots S.Ya., Mykhalkiv L.M.

  • Institute of Plant Physiology and Genetics, National Academy of Sciences of Ukraine  31/17 Vasylkivska St., 03022, Kyiv, Ukraine

The structure, localization and functioning of nitrate reductase, in particular in legume-rhizobial symbiotic systems, are reviewed. The question of this enzyme synthesis and activity regulation is highlighted. The influence of environmental factors on these processes and the possibility to reduce their inhibitory effect by certain methods are shown. It is noted that in the root nodules of legumes formed as a result of the plant-rhizobia interaction the processes of reduction of nitrate and molecular nitrogen take place. The nitrate reductase and nitrogenase, respectively, are participate in ones. At the presence of the active molecular nitrogen fixation system in the legume plant—nodule bacteria symbiosis, nitrate reductase can interact with nitrogenase differently, depending on the location and type of enzyme, genetic characteristics of symbionts, and cultivation conditions. Hypotheses on the possible mechanisms of this interaction are considered. The data about the distribution of nitrate reductase activity in different nodule zones are presented. The role of nitrate reductase in nitrogen nutrition and plant yield formation is disclosed. A separate place in the review is devoted to the question of the importance of nitric oxide for plants and the participation of nitrate reductase in its synthesis. Possible ways of nitrate reductase functioning optimization with the aim of increasing the efficiency of symbiosis and plant productivity are given.

Keywords: nitrate reductase, nitrogenase, nitrogen nutrition of plants, legume-rhizobia symbiosis, nodules, nitrates, nitric oxide, productivity

Fiziol. rast. genet.
2019, vol. 51, no. 5, 371-387

Full text and supplemented materials

Free full text: PDF  

References

1. Chamizo-Ampudia, A., Sanz-Luque, E., Llamas, A., Galvan, A. & Fernandes, E. (2017). Nitrate reductase regulates plant nitric oxide homeostasis. Trends Plant Sci., 22, pp. 163-174. https://doi.org/10.1016/j.tplants.2016.12.001

2. Crawford, N.M. & Glass, A.D. (1998). Molecular and physiological aspects of nitrate uptake in plants. Trends Plant Sci., 3, pp. 389-395. https://doi.org/10.1016/S1360-1385(98)01311-9

3. Broadley, M., Brown, P., Buerkert, A., Cakmak, I., Cooper, J., Eichert, T., Engels, C., Fernandez, V., Kirkby, E. & George, E. (2012). Marschner's mineral nutrition of higher plants. Cambridge: Academic Press.

4. Beatty, P.H., Klein, M.S., Fischer, J.J., Lewis, I.A., Muench, D.G. & Good, A.G. (2016). Understanding plant nitrogen metabolism through metabolomics and computational approaches. Plants-Basel, 5(4), p. 39. https://doi.org/10.3390/plants5040039

5. Xu, G., Fan, X. & Miller, A.J. (2012). Plant nitrogen assimilation and use efficiency. Annu. Rev. Plant Biol., 63, pp. 153-182. https://doi.org/10.1146/annurev-arplant-042811-105532

6. Campbell, W.H. (1999). Nitrate reductase structure, functioning and regulation: bridging and gap between biochemistry and physiology. Annu. Rev. Plant Physiol. Plant Mol. Biol., 50, pp. 277-303. https://doi.org/10.1146/annurev.arplant.50.1.277

7. Tischner, R. (2000). Nitrate uptake and reduction in higher and lower plants. Plant, Cell Environ., 23, pp. 1005-1024. https://doi.org/10.1046/j.1365-3040.2000.00595.x

8. Stцhr, C. & Ullrich, W.R. (2002). Generation and possible roles of NO in plant roots and their apoplastic space. J. Exp. Bot., 53, pp. 2293-2303. https://doi.org/10.1093/jxb/erf110

9. Forde, B.G. (2002). Local and long-range signaling pathways regulating plant responses to nitrate. Annu. Rev. Plant Biol., 53, pp. 203-224. https://doi.org/10.1146/annurev.arplant.53.100301.135256

10. Xiong, J., Fu, G., Yang, Y., Zhu, Ch. & Tao, L. (2012). Tungstate: is it really a specific nitrate reductase inhibitor in plant nitric oxide research? J. Exp. Bot., 63, pp. 33-41. https://doi.org/10.1093/jxb/err268

11. Saroop, S., Thaker, V.S., Chanda, S.V. & Singh, Y.D. (1998). Light and nitrate induction of nitrate reductase in kinetin- and gibberellic acid-treated mustard cotyledons. Acta Physiol. Plant., 20, pp. 359-362. https://doi.org/10.1007/s11738-998-0020-6

12. Arora, V., Ghosh, M.K., Singh, P. & Gangopadhyay, G. (2018). Light regulation of nitrate reductase gene expression and enzyme activity in the leaves of mulberry. Indian J. Biochem. Biophys., 55, pp. 62-66.

13. Tischner, R., Peuke, A., Godbold, D.L., Feig, R., Merg, G. & Huttermann, A. (1988). The effect of NO-fumigation on aseptically grown spruce seedlings. J. Plant Physiol., 133, pp. 243-246. https://doi.org/10.1016/S0176-1617(88)80145-7

14. Hufton, C.A., Besford, R.T. & Wellburn, A.R. (1996). Effects of NO (+ NO2) pollution on growth, nitrate reductase activities and associated protein contents in glasshouse lettuce grown hydroponically in winter with CO2 enrichment. New Phytol., 133, No. 3, pp. 495-501. https://doi.org/10.1111/j.1469-8137.1996.tb01917.x

15. Weber, P., Thoene, B. & Rennenberg, H. (1998). Absorption of atmospheric NO2 by spruce (Picea abies) trees. III. Interaction with nitrate reductase activity in the needles and phloem transport. Bot. Acta, 111, pp. 377-382. https://doi.org/10.1111/j.1438-8677.1998.tb00722.x

16. Foyer, C.H., Valadier, M.H., Migge, A. & Becker, T.W. (1998). Drought-induced effects on nitrate reductase activity and mRNA and on the coordination of nitrogen and carbon metabolism in maize leaves. Plant Physiol., 117, No. 1, pp. 283-292. https://doi.org/10.1104/pp.117.1.283

17. Munjal, N., Sawhney, S.K. & Sawhney, V. (1997). Activation of nitrate reductase in extracts of water stressed wheat. Phytochemistry, 45, pp. 659-665. https://doi.org/10.1016/S0031-9422(97)00058-7

18. Kots, S.Ya., Veselovska, L.I. & Mykhalkiv, L.M. (2014). The nitrate reductase activity in the leaves of soybean inoculated with Bradyrhizobium japonicum under different water supply and lectin application. Nauk. zap. Ternop. nats. ped. un-tu. Ser. Biol., 60, No. 3, pp. 114-117 [in Ukrainian].

19. Mykhalkiv, L.M. (2015). The influence of lectin on nitrogen fixation activity and nitrate reduction in alfalfa plants inoculated with rhizobia under different water supply. Fiziol. rast. genet., 47, No. 5, pp. 440-446 [in Ukrainian].

20. Khan, M.G., Silberbush, M. & Lips, S.H. (1995). Physiological studies on salinity and nitrogen interaction in alfalfa plants: III. Nitrate reductase activity. J. Plant Nutr., 8, No. 11, pp. 2495-2500. https://doi.org/10.1080/01904169509365079

21. Khan, M.G. & Srivastava, H.S. (1998). Changes in growth and nitrogen assimilation in maize plants induced by NaCl and growth regulators. Biol. Plant., 41, pp. 93-99. https://doi.org/10.1023/A:1001768601359

22. Toselli, M., Flore, J.A., Marangoni, B. & Masia, A. (1999). Effects of root-zone temperature on nitrogen accumulation by nonbearing apple trees. J. Hortic. Sci. Biotech., 74, pp. 118-124. https://doi.org/10.1080/14620316.1999.11511083

23. Stoyanov, I., Atanasova, L. & Ginina, D. (1994). Effect of some cytokinins on maize nitrate reductase activity at salinity. Bulg. J. Plant Physiol., 20, pp. 5-10.

24. Wang, Z.Y., Tang, Y.L. & Zhang, F.S. (1999). Effect of molybdenum on growth and nitrate reductase activity of winter wheat seedlings as influenced by temperature and nitrogen treatments. J. Plant Nutr., 1999, 22, pp. 387-395. https://doi.org/10.1080/01904169909365636

25. Kaiser, W.M., Weiner, H. & Huber, S.C. (1999). Nitrate reductase in higher plants: a case study for transduction of environmental stimuli into control of catalytic activity. Physiol. Plant., 105, pp. 385-390. https://doi.org/10.1034/j.1399-3054.1999.105225.x

26. Kaiser, W.M. & Huber, S.C. (2001). Post-translational regulation of nitrate reductase: mechanism, physiological relevance and environmental triggers. J. Exp. Bot., 52, pp. 1981-1989. https://doi.org/10.1093/jexbot/52.363.1981

27. Kots, S.Ya., Morgun, V.V., Patyka, V.F., Datsenko, V.K., Krugova, E.D., Kyrychenko, E.V., Melnykova, N.N. & Mykhalkiv, L.M. (2010). Biological nitrogen fixation. Vol. 1. Kyiv: Logos [in Russian].

28. Silveira, J.A.G., Matos, J.C.S., Cecatto, V.M., Viegas, R.A. & Oliveira, J.T.A. (2001). Nitrate reductase activity, distribution, and response to nitrate in two contrasting Phaseolus species inoculated with Rhizobium spp. Environ. Exp. Bot., 46, pp. 37-46. https://doi.org/10.1016/S0098-8472(01)00082-X

29. Delfini, R., Belgoff, C., Fernandez, E., Fabra, A. & Castro, S. (2010). Symbiotic nitrogen fixation and nitrate reduction in the peanut cultivars with different growth habit and branching pattern structures. Plant Growth Regul., 61, pp. 153-159. https://doi.org/10.1007/s10725-010-9461-1

30. Caba, J.M., Lluch, C., Hervas, A. & Ligero, F. (1990). Nitrate metabolism in roots and nodules of Vicea faba in response to exogenous nitrate. Physiol. Plant., 79, pp. 531-539. https://doi.org/10.1111/j.1399-3054.1990.tb02114.x

31. Becana, M. & Sprent, J. (1987). Nitrogen fixation and nitrate reduction in the root nodules of legumes. Physiol. Plant., 70, pp. 757-765. https://doi.org/10.1111/j.1399-3054.1987.tb04335.x

32. Aparicio-Tejo, P. & Sanchez-Diaz, M. (1982). Nodule and leaf nitrate reductase and nitrogen fixation in Medicago sativa L. under warer stress. Plant Physiol., 69, pp. 479-482. https://doi.org/10.1104/pp.69.2.479

33. Hunter, W.J. (1983). Soybean root and nodule nitrate reductase. Physiol. Plant., 59, pp. 471-475. https://doi.org/10.1111/j.1399-3054.1983.tb04232.x

34. Stephens, B.D. & Neyra, C.A. (1983). Nitrate and nitrite reduction in relation to nitrogenase activity in soybean nodules and Rhizobium japonicum bacteroids. Plant Physiol., 71, pp. 731-735. https://doi.org/10.1104/pp.71.4.731

35. Randall, D.D., Russell, W.J. & Johnson, D.R. (1978). Nodule nitrate reductase as a source of reduced nitrogen in soybean, Glycine max. Physiol. Plant., 44, pp. 325-328. https://doi.org/10.1111/j.1399-3054.1978.tb01631.x

36. Oyhama, T. & Kumazawa, K. (1979). Assimilation and transport of nitrogenous compounds originated from N2 fixation and 15NO3- absorption. Soil Sci. Plant Nutr., 2, pp. 9-19. https://doi.org/10.1080/00380768.1979.10433141

37. Vance, C.P. & Heichel, G. (1981). Nitrate assimilation during vegetative regrowth of alfalfa. Plant Physiol., 68, pp. 1052-1056. doi: https://doi.org/10.1104/pp.68.5.1052

38. Sprent, J.I., Giannakis, C. & Wallace, W. (1987). Transport of nitrate and calcium into legume root nodules. J. Exp. Bot., 38, No. 192, pp. 1121-1128. https://doi.org/10.1093/jxb/38.7.1121

39. Giannakis, C., Nicholas, D.J.D. & Wallace, W. (1988). Utilization of nitrate by bacteroids of Bradyrhizobium japonicum in the soybean root nodule. Planta, 174, pp. 51-58. https://doi.org/10.1007/BF00394873

40. Chechetka, S.A., Piskorskaya, V.P., Bruskova, R.K., Troitskaya, G.N. & Izmailov, S.F. (1998). Partitioning of 14C-photoassimilates in soybean plants assimilating of symbiotic and nitrate nitrogen. Fiziologiya rasteniy, 45, No. 2, pp. 241-247 [in Russian].

41. Becana, M., Minchin, F.R. & Sprent, J.I. (1989). Short-term inhibition of legume N2 fixation by nitrate. Nitrate effects on nitrate reductase activities of bacteroids and nodule cytosol. Planta, 180, pp. 40-45. https://doi.org/10.1007/BF02411409

42. Lvov, N.P., Burihanov, Sh.S. & Kretovich, B.L. (1980). The relationship of nitrogenase and nitrate reductase in nitrogen-fixing cells. Prikladnaya biohimiya i mikrobiologiya, XVI(6), pp. 805 [in Russian].

43. Dubrovo, P.N., Ilyasova, V.B., Shirinskaya, M.G., & Yagodin, B.A. (1979). Nitrogen fixing activity of lupine nodules and the content of pyridine nucleotides in them. Fiziologiya rasteniy, 26, No. 3, pp. 599-605 [in Russian].

44. Noel, K.D., Carneol, M. & Brill, W.J. (1982). Nodule protein synthesis and nitrogenase activity of soybeans exposed to fixed nitrogen. Plant Physiol., 70, pp. 1236-1241. https://doi.org/10.1104/pp.70.5.1236

45. Silsbury, J.H., Catchpoole, D.W. & Wallace, W. (1986). Effect of nitrate and ammonium on nitrogenase (C2H2-reduction) activity of swards of subterranean clover Trifolium subterraneum L. Austral. J. Plant Physiol., 13, pp. 257-273. https://doi.org/10.1071/PP9860257

46. Yadav, V.K., Prakash, S. & Kapoor, H.C. (1987). Interaction between nitrate and nitrogen fixation and possible role of indole acetic acid in its regulation in bengal gram (Cicer arietinum) root nodules. Indian J. Exp. Biol., 25, pp. 385-388.

47. Carrol, B.J. & Gresshoff, P.M. (1983). Nitrate inhibition of nodulation and nitrogen fixation in white clower. Z. Pflanzenphysiol, 110, pp. 77-88. https://doi.org/10.1016/S0044-328X(83)80218-9

48. Tatarova, N.K., Lvov, N.P. & Shugaev, N.I. (1976). On the ratio of nitrogenase and nitrate reductase in the cell of nitrobacter. Izv. Timiryazev. s.-h. akad., 3. pp. 24-29 [in Russian].

49. Lvov, N.P. (1989). Molybdenum in the nitrogen assimilation in plants and microorganisms: 43-e Bakhovskoe chtenie. Moscov: Nauka [in Russian].

50. Lvov, N.P., Zabolotnyy, A.I. & Savchenkova, L.M. (1987). Effect and aftereffect of molybdenum on yellow lupine: physiological and biochemical substantiation. Agrohimiya, 11, pp. 89-97 [in Russian].

51. Vahaniya, N.A., Abashidze, N.D. & Nutsubidze, N.N. (1987). Short-term effect of nitrate and molybdate on nitrogenase activity and nitrate assimilation in the bacteroid of bean nodules. Fiziologiya i biohimiya kult. rasteniy, 19, No. 3, pp. 220-226 [in Russian].

52. Fedorova, E.E. & Patatuyeva, Yu.A. (1984). Ultrastructure and nitrogen-fixing activity of red clover nodules under molybdenum application. Fiziologiya rasteniy, 31, No. 6, pp. 1121-1126 [in Russian].

53. Lucinski, R., Polcyn, W. & Ratajczak, L. (2002). Nitrate reduction and nitrogen fixation in symbiotic association Rhizobium-legumes. Acta Biochim. Pol., 49, No. 2, pp. 537-546.

54. Layzell, D.B. & Hunt, S. (1990). Oxygen and the regulation of nitrogen fixation in legume nodule. Physiol. Plant., 80, pp. 322-327. https://doi.org/10.1111/j.1399-3054.1990.tb04414.x

55. Ianetta, P.P.M., de Lorenzo, C., James, E.K., Fernбndez-Pascual, M., Sprent, J.I., Lucas, M.M., Witty, J.F., de Felipr, M.R. & Minchin, F.R. (1993). Oxygen diffusion in lupine nodules. I. Visualisation of diffusion barrier operation. J. Exp. Bot., 44, No. 26, pp. 1461-1467. https://doi.org/10.1093/jxb/44.9.1461

56. Minchin, F.R. (1997). Regulation of oxygen diffusion in legume nodules. Soil Biol. Biochem., 29, pp. 881-888. https://doi.org/10.1016/S0038-0717(96)00204-0

57. Becana, M. & Klucas, R.V. (1992). Oxidation and reduction of leghemoglobin in root nodules of leguminous plants. Plant Physiol., 98, pp. 1217-1221. https://doi.org/10.1104/pp.98.4.1217

58. Parsons, R. & Day, D.A. (1990). Mechanisms of soybean nodule adaptation to different oxygen pressures. Plant Cell Environ., 13, pp. 501-512. https://doi.org/10.1111/j.1365-3040.1990.tb01066.x

59. Chamber-Perez, M.A., Camacho-Martinez, M. & Soriano-Niebla, J. (1997). Nitrate-reductase activities of Bradyrhizobium spp. in tropical legumes: Effects of nitrate on O2 diffusion in nodules and carbon costs of N2 fixation. Plant Physiol., 150, pp. 92-96. https://doi.org/10.1016/S0176-1617(97)80186-1

60. Serrano, A. & Chamber, M. (1990). Nitrate reduction in Bradyrhizobium sp. (Lupinus) strains and its effect on their symbiosis with Lupinus luteus. J. Plant Physiol., 136, pp. 240-246. https://doi.org/10.1016/S0176-1617(11)81673-1

61. Sidorova, K.K., Godovikova, V.A. & Stolyarova, S.N. (1988). Investigation of nitrogenase and nitrate reductase activity in pea mutants. Genetika, 24, No. 1, pp. 136-140 [in Russian].

62. Arrese-Igor, C., Garcia-Plazaola, J.I., Hernandez, A. & Aparicio-Tejao, P.M. (1990). Effect of low nitrate supply to nodulated lucerne on time course of activities of enzymes involved in inorganic nitrogen metabolism. Physiol. Plant., 80, pp. 185-190. https://doi.org/10.1111/j.1399-3054.1990.tb04394.x

63. Arrese-Igor, C., Minchin, F.R., Gordon, A.J. & Nath, A.K. (1997). Possible causes of the physiological decline in soybean nitrogen fixation in the presence of nitrate. J. Exp. Bot., 48, pp. 905-913. doi: https://doi.org/10.1093/jxb/48.4.905

64. Cheniae, G. & Evans, H.J. (1960). Physiological studies on nodule-nitrate reductase. Plant Physiol., 35, pp. 454-462. https://doi.org/10.1104/pp.35.4.454

65. Kondorosi, A., Barabas, T., Svab, Z., Orosz, L., Sik, T. & Hotchkiss, R.D. (1973). Evidence for common genetic determinants of nitrogenase andnitrate reductase in Rhizobium meliloti. Nat. New Biol., 246, pp. 153-154. https://doi.org/10.1038/newbio246153a0

66. Streeter, J.G. & Devine, P.J. (1983). Evaluation of nitrate reductase activity in Rhizobium japonicum. Appl. Environ. Microbiol., 46, pp. 521-524.

67. Pagan, J.D., Scowcroft, W.R., Dudman, W.F. & Gibson, A.H. (1977). Nitrogen fixation in nitrate reductase-deficient mutantas of cultured rhizobia. J. Bacteriol., 129, No. 2, pp. 718-723.

68. Antoun, H., Bordeleau, L.M., Prevost, D. & Lachance, R.A. (1980). Absence of a correlation between nitrate reductase and symbiotic nitrogen fixation efficiency in Rhizobium meliloti. Can. J. Plant Sci., 60, No. 1, pp. 209-212. https://doi.org/10.4141/cjps80-028

69. Cookson, S.J., Williams, L.E. & Miller, A.J. (2005). Light-dark changes in cytosolic nitrate pools depend on nitrate reductase activity in Arabidopsis leaf cells. Plant Physiol., 138, pp. 1097-1105. https://doi.org/10.1104/pp.105.062349

70. Miller, A.J. & Smith, S.J. (2008). Cytosolic nitrate ion homeostasis: Could it have a role in sensing nitrogen status? Ann. Bot., 101, pp. 485-489. https://doi.org/10.1093/aob/mcm313

71. Fan, X., Gordon-Weeks, R., Shen, Q. & Miller, A.J. (2006). Glutamine transport and feedback regulation of nitrate reductase activity in barley roots leads to changes in cytosolic nitrate pools. J. Exp. Bot., 57, No. 6, pp. 1333-1340. https://doi.org/10.1093/jxb/erj110

72. Miller, A.J., Fan, X., Orsel, M., Smith, S.J. & Wells, D.M. (2007). Nitrate transport and signalling. J. Exp. Bot., 58, pp. 2297-2306. doi: https://doi.org/10.1093/jxb/

73. Fany, A., Foyer, C.H. & Gupta, K.J. (2018). Nitrate, NO and ROS signaling in stem cell homeostasis. Trends Plant Sci., 23, pp. 1041-1044. https://doi.org/10.1016/j.tplants.2018.09.010

74. Izmailov, S.F., Nikitin, A.V. & Rodionov, V.A. (2018). Nitrate signaling in plants: introduction to the problem. Russ. J. Plant Physiol., 65, pp. 477-489. https://doi.org/10.1134/S1021443718040027

75. Wang, R., Okamoto, M., Xing, X. & Crawford, N.M. (2003). Microarray analysis of the nitrate response in Arabidopsis roots and shoots reveals over 1,000 rapidly responding genes and new linkages to glucose, trehalose-6-phosphate, iron, and sulfate metabolism. Plant Physiol., 132, pp. 556-567. https://doi.org/10.1104/pp.103.021253

76. Salgado, I., Martinez, M.C., Oliveira, H.C. & Frungillo, L. (2013). Nitric oxide signaling and homeostasis in plants: a focus on nitrate reductase and S-nitrosoglutatione reductase in stress-related responses. Braz. J. Bot., 36, pp. 89-98. https://doi.org/10.1007/s40415-013-0013-6

77. Besson-Bard, A., Pugin, A. & Wendehenne, D. (2008). New insights into nitric oxide signaling in plants. Annu Rev. Plant Biol., 59, pp. 21-39. https://doi.org/10.1146/annurev.arplant.59.032607.092830

78. Corpas, F.J., Palma, J.M., del Rio, L.A. & Barroso, J.B. (2009). Evidence supporting the existence of L-arginine-dependent nitric oxide synthase activity in plants. New Phytol., 184, pp. 9-14. https://doi.org/10.1111/j.1469-8137.2009.02989.x

79. Moreau, M., Lindermayr, C., Durner, J. & Klessig, D.F. (2010). NO synthesis and signaling in plants: where do we stand? Physiol. Plant., 138, pp. 372-383. https://doi.org/10.1111/j.1399-3054.2009.01308.x

80. Delledonne, M., Xia, Y., Dixon, R.A. & Lamb, C. (1998). Nitric oxide functions as a signal in plant disease resistance. Nature, 394, pp. 585-588. https://doi.org/10.1038/29087

81. Durner, J., Wendehenne, D. & Klessig, D.F. (1998). Defence gene induction in tobacco by nitric oxide, cyclic GMP and cyclic ADP-ribose. PNAS USA, 95, pp. 10328-10333. https://doi.org/10.1073/pnas.95.17.10328

82. Durner, J. & Klessing, D. (1999). Nitric oxide as a signal in plants. Curr. Opin. Plant Biol., 2, pp. 369-374. https://doi.org/10.1016/S1369-5266(99)00007-2

83. Grawford, N.M. & Guo, F.Q. (2005). New insights into nitric oxide metabolism and regulatory function. Trends Plant Sci., 10, pp. 195-200. https://doi.org/10.1016/j.tplants.2005.02.008

84. Wilson, I.D., Neill, S.J. & Hancock, J.T. (2008). Nitric oxide synthesis and signaling in plant. Plant Cell Environ., 31, pp. 622-631. https://doi.org/10.1111/j.1365-3040.2007.01761.x

85. Wendehenne, D. & Hancock, J.T. (2011). New frontiers in nitric oxide biology in plant. Plant Sci., 181, No. 5, pp. 507-508. https://doi.org/10.1016/j.plantsci.2011.07.010

86. Corpas, F.J., Leterrier, M., Valderrama, R., Airaki, M., Chaki, M., Palma, J.M. & Barroso, J.B. (2011). Nitric oxide imbalance provokes a nitrosative response in plants under abiotic stress. Plant Sci, 181, No. 5, pp. 604-611. https://doi.org/10.1016/j.plantsci.2011.04.005

87. Mur, L.A., Prats, E., Pierre, S., Hall, M.A. & Hebelstrup, K.H. (2013). Integrating nitric oxide into salicylic acid and jasmonic acid/ethylene plant defense pathways. Front. Plant Sci., 4, pp. 215. https://doi.org/10.3389/fpls.2013.00215

88. Santolini, J., Andre, F., Jeandroz, S. & Wendehenne, D. (2017). Nitric oxide synthase in plants: Where do we stand? Nitric Oxide, 63, pp. 30-38. https://doi.org/10.1016/j.niox.2016.09.005

89. Astier, J., Gross, I. & Durner, J. (2018). Nitric oxide production in plants: An update. J. Exp. Bot., 69, pp. 3401-3411. https://doi.org/10.1093/jxb/erx420

90. Shimoda, Y., Nagata, M., Suzuki, A., Abe, M., Sato, S., Kato, T., Tabata, S., Higashi, S. & Uchiumi, T. (2005). Symbiotic rhizobium and nitric oxide induce gene expression of non-symbiotic hemoglobin in Lotus japonicus. Plant Cell Physiol., 46, pp. 99-107. https://doi.org/10.1093/pci/pci001

91. Nagata, M., Murakami, E., Shimoda, Y., Shimoda-Sasakura, F., Kucho, K., Suzuki, A., Abe, M., Higashi, S. & Uchiumi, T. (2008). Expression of a class 1 hemoglobin gene and production of nitric oxide in response to symbiotic and pathogenic bacteria in Lotus japonicus. Mol. Plant-Microbe Interact., 21, No. 9, pp. 1175-1183. https://doi.org/10.1094/MPMI-21-9-1175

92. Pii, Y., Crimi, M., Cremonese, G., Spena, A. & Pandolfini, T. (2007). Auxin and nitric oxide control indeterminate nodule formation. BMC Plant Biol., 7, p. 21. https://doi.org/10.1186/1471-2229-7-21

93. Baudouin, E., Pieuchot, L., Engler, G., Pauly, N. & Puppo, A. (2006). Nitric oxide is formed in Medicago truncatula-Sinorhizobium meliloti functional nodules. Mol. Plant-Microbe Interact., 19, No. 9, pp. 970-975. https://doi.org/10.1094/MPMI-19-0970

94. Meakin, G.E., Bueno, E., Jepson, B., Bedmar, E.J., Richardson, D.J. & Delgado, M.J. (2007). The contribution of bacteroidal nitrate and nitrite reduction to the formation of nitrosyl leghaemoglobin complexes in soybean root nodules. Microbiology, 153, pp. 411-419. https://doi.org/10.1099/mic.0.2006/000059-0

95. Sanchez, C., Gates, A.J., Meakin, G.E., Uchiumi, T., Girard, L., Richardson, D.J., Bedmar, E.J. & Delgado, M.J. (2010). Production of nitric oxide and nitrosylleghemoglobin complexes in soybean nodules in response to flooding. Mol. Plant-Microbe Interact., 23, No. 5, pp. 702-711. https://doi.org/10.1094/MPMI-23-5-0702

96. Ferrarini, A., de Stefano, M., Baudouin, E., Pucciariello, C., Polverari, A., Puppo, A. & Delledonne, M. (2008). Expression of Medicago truncatula genes responsive to nitric oxide in pathogenic and symbiotic conditions. Mol. Plant-Microbe Interact., 21, No. 6, pp. 781-790. https://doi.org/10.1094/MPMI-21-6-0781

97. Herold, S. & Puppo, A. (2005). Oxyleghemoglobin scavenges nitrogen monoxide and peroxynitrite: a possible role in functioning nodules? J. Biol. Inorg. Chem., 10, No. 8, pp. 935-945. https://doi.org/10.1007/s00775-005-0046-9

98. Trinchant, J.C. & Rigaud, J. (1982). Nitrite and nitric oxide as inhibitors of nitrogenase from soybean bacteroids. Appl. Environ. Microbiol., 44, No. 6, pp. 1385-1388.

99. Shimoda, Y., Shimoda-Sasakura, F., Kucho, K., Kanamori, N., Nagata, M., Suzuki, A., Abe, M., Higashi, S. & Uchiumi, T. (2009). Overexpression of class 1 plant hemoglobin genes enhances symbiotic nitrogen fixation activity between Mesorhizobium loti and Lotus japonicus. Plant J., 57, pp. 254-263. https://doi.org/10.1111/j.1365-313X.2008.03689.x

100. Kato, K., Kanahama, K. & Kanayama, Y. (2010). Involvement of nitric oxide in the inhibition of nitrogenase activity by nitrate in Lotus root nodules. J. Plant Physiol., 167, pp. 238-241. https://doi.org/10.1016/j.jplph.2009.08.006

101. Meilhoc, E., Cam, Y., Skapski, A. & Bruand, C. (2010). The response to nitric oxide of the nitrogen-fixing symbiont Sinorhizobium meliloti. Mol. Plant-Microbe Interact., 23, No. 6, pp. 748-759. https://doi.org/10.1094/MPMI-23-6-0748

102. Puppo, A., Pauly, N., Boscari, A., Mandon, K. & Brouquisse, R. (2013). Hydrogen peroxide and nitric oxide: key regulators of the Legume-Rhizobium and mycorrhizal symbioses. Antioxid. Redox Signal., 18, No. 16, pp. 2202-2219. https://doi.org/10.1089/ars.2012.5136

103. Boscari, A., Meilhoc, E., Castella, C., Bruand, C., Puppo, A. & Brouquisse, R. (2013). Which role for nitric oxide in symbiotic N2-fixing nodules: toxic by-product or useful signaling/metabolic intermediate? Front. Plant Sci., 4, p. 384. https://doi.org/10.3389/fpls.2013.00384

104. Hichri, I., Boscari, A., Castella, C., Rovere, M., Puppo, A. & Brouquisse, R. (2015). Nitric oxide: a multifaceted regulator of the nitrogen-fixing symbiosis. J. Exp. Bot., 66, pp. 2877-2887. https://doi.org/10.1093/jxb/erv051

105. de Bruij, F.J. (Ed.). (2015). Biological nitrogen fixation. New York: John Wiley & Sons, Inc. https://doi.org/10.1002/9781119053095.ch64

106. Zumft, W.G. (1997). Cell biology and molecular basis of denitrification. Microbiol. Mol. Biol. Rev., 61, pp. 533-616.

107. Damiani, I., Pauly, N., Puppo, A., Brouquisse, R. & Boscari, A. (2016). Reactive oxygen species and nitric oxide control early steps of the Legume-Rhizobium symbiotic interaction. Front. Plant Sci., 7, pp. 454. https://doi.org/10.3389/fpls.2016.00454

108. Horchani, F., Prevot, M., Boscari, A., Evangelisti, E., Meilhoc, E., Bruand, C., Raymond, Ph., Boncompagni, E., Aschi-Smiti, S., Puppo, A. & Brouquisse, R. (2011). Both plant and bacterial nitrate reductases contribute to nitric oxide production in Medicago truncatula nitrogen-fixing nodules. Plant Physiol., 155, pp. 1023-1036. https://doi.org/10.1104/pp.110.166140

109. Tejada-Jimenez, M., Llamas, A., Galvan, A. & Fernandez, E. (2019). Role of nitrate reductase in NO production in photosynthetic eucaryotes. Plants, 8, p. 56. https://doi.org/10.3390/plants8030056

110. Glyan'ko, A.K. & Mitanova, N.B. (2008). Physiological mechanisms of negative influence of high dozes of mineral nitrogen on legume-rhizobial symbiosis. Visnyk HNAU. Seriya Biologiya, 2, pp. 26-41 [in Russian].

111. Caba, M., Lluch, C. & Ligero, F. (1994). Genotypic variability of nitrogen metabolism enzymes in nodulated roots of Vicia faba. Soil Biol. Biochem., 26, pp. 785-789. https://doi.org/10.1016/0038-0717(94)90274-7

112. Hervas, A., Ligero, F. & Lluch, C. (1991). Nitrate reduction in pea plants: effects of nitrate application and Rhizobium strains. Soil Biol. Biochem., 23, pp. 695-699. https://doi.org/10.1016/0038-0717(91)90085-X

113. Harper, J.E. & Gibson, A.H. (1984). Differential nodulation tolerance to nitrate among legume species. Crop Sci., 24, No. 4, pp. 797-801. https://doi.org/10.2135/cropsci1984.0011183X002400040040x