Fiziol. rast. genet. 2018, vol. 50, no. 4, 331-343, doi:


Likhanov A.F.1, Sereda O.V.2, Klyachenko O.L.3, Melnychuk M.D.4

  1. Institute for evolutionary ecology, national academy of sciences of Ukraine 37 Acad. Lebedeva St., Kyiv, 03143, Ukraine
  2. Chinese-Ukrainian Institute of Life Sciences, 26 South Wenzhou str., Zhuji city, prov. Zhejiang, China
  3. National University of Life and Environmental Sciences of Ukraine 15 Heroiv oborony St., Kyiv, 03041, Ukraine
  4. Agronomica LTD 28 Lobanovskogo St., v. Chaiky, Kyiv-Sviatoshyn distr. Kyiv region, 08130, Ukraine

The syringic, vanillic, caffeic and ferulic acids in Murashige and Skoog medium in concentrations of 10—6 M induced accumulation of plastid pigments in leaves of common grape vine in vitro. Ferulic acid (3-methoxy-4-hydroxycinnamic acid) had the highest biological effect on chlorophyll a content. It was established that the stimulating effect of oxycoric acids greatly increased with substitution of one oxy group with a methoxy group. Carotenoid content in grape vine leaves cultured in vitro increased by 1.8 times in the presence of vanillic acid in culture medium. The joint effect of phenolic acids on quantitative indices of photosynthetic pigments was more moderate. Ferulic acid, introduced in grape vine microshoot tissues directly from the culture medium, induced increased levels of stilbenoids such as resveratrol and piceid that are highly active antioxidants and act as phytoalexins.

Keywords: grapes, oxycoric acids, oxybenzoic acids, pigments, phenolic compounds, resveratrol

Fiziol. rast. genet.
2018, vol. 50, no. 4, 331-343

Full text and supplemented materials

Free full text: PDF  


1. Baraboy, V.A. (2009). Phenolic compounds of the grapevine: structure, antioxidant activity, application. Biotehnologiya, 2 (2), pp. 67-75 [in Russian].

2. Volyinets, A.P. (2013). Phenolic compounds in plant life. Minsk: Belorus. navuka. 283 s. [in Russian].

3. Zaprometov, M.N. (1993). Phenolic compounds. Propagation, metabolism and function in plants. M.: Nauka. 272 s. [in Russian].

4. Sibgatullina, G.V., Haertdinova, L.R., Gumerova, E.A., Akulov, A.N., Kostiukova, Yu.A., Nikonorova, N.A. & Rumiantseva, N.I. (2011). Methods for determining the redox status of cultivating plant cells. Kazan: Kazanskiy (Privolzhskiy) Federalnyiy universitet, 61 s.

5. Kovalev, V.N., Popova, N.V., Kislichenko, V.S., Isakova, T.I., Zhuravel, I.A., Stepanova, S.I., Serbin, A.N., Seraia, L.M. & Kartmazova, L.S. (2003). Workshop on pharmacognosy. Kharkov: Izd-vo NFaU Zolotyie stranitsyi, 512 p. [in Russian].

6. Armstrong, G.A. & Hearst, J.E. (1996). Genetics and molecular biology of carotenoid pigment biosynthesis. FASEB J., 10 (2), pp. 228-237.

7. Barz, W., Bless, W., Borger-Papendorf, G., Gunia, W., Mackenbrock, U. & Meier, D. (1990). Phytoalexins as part of induced defence reactions in plants: their elicitation, function and metabolism. Ciba Found Symp., 154, pp. 140-153.

8. Bouvier, F., D'Harlingue, A., Backhaus, R.A., Kumagai, M.H. & Camara, B. (2000). Identification of neoxanthin synthase as a carotenoid cyclase paralog. Europ. J. of Biochem., 267 (21), pp. 6346-6352.

9. Brand-Williams, W., Cuvelier, M.E. & Berset, C. (1995). Use of a free radical method to evaluate antioxidant activity. Lebensm. Wiss. Technol. J., 28, pp. 25-30.

10. Buer, C.S., Imin, N. & Djordjevic, M.A. (2010). Flavonoids: new roles for old molecules. J. of Integr. Biol., 52 (1), pp. 98-111.

11. Cuttriss, A. & Pogson, B. (2004). Plant pigments and their manipulation. Carotenoids. Ed. by K.M. Davies. Annual plant reviews, 14, pp. 57-82.

12. Fliegmann, J., Schroder, G., Schanz, S., Britsch, L. & Schroder, J. (1992). Molecular analysis of chalcone and dihydropinosylvin synthase from Scots pine (Pinus sylvestris) and differential regulation of these and related enzyme activities in stressed plants. Plant Molecular Biology, 18, pp. 489-503.

13. Fry, S.C. (1986). Cross-linking of matrix polymers in the growing cell walls of angiosperms. Ann. Rev. Plant Physiol, 37, pp. 165-186.

14. Gehlet, R., Schoppner, F. & Kindl, H. (1990). Stilbene synthase from seedlings of Pinus sylvestris: purification and induction in response to fungal infection. Mol. Plant-Microbe Interections, 3, pp. 444-449.

15. Graf, E. (1992). Antioxidant potential of ferulic acid. Free Radical Biology and Medicine, 13, pp. 435-448.

16. Grana, E., Costas-Gil, A., Longueira, S., Celeiro, M., Teijeira, M., Reigosa, M.J. & Sanchez-Moreiras, A.M. (2017). Auxin-like effects of the natural coumarin scopoletin on Arabidopsis cell structure and morphology. Journal of Plant Physiology, 218, pp. 45-55.


18. Ikeda, R., Uyama, H. & Kobayashi, S. (1996). Novel synthetic pathway to a poly (phenylene oxide) laccase-catalyzed oxidative polymerization of syringic acid. Macromolecules, 29, pp. 3053-3054.

19. Jeandet, P., Line, A., Breuil, D., Bessis, R., Debord, S., Sbaghi, M. & Adrian, M. (2002). Phytoalexins from the Vitaceae: biosynthesis, phytoalexin gene expression in transgenic plants, antifungal activity and metabolism. J. Agric. Food Chem, 50, pp. 2731-2741.

20. Langcake, P. & Pryce, R.J. (1977). The production of resveratrol and the viniferins by grapevines in response to ultraviolet irradiation. Phytochemistry, 16, p. 1193.

21. Langcake, P. & Pryce, R.J. (1976). The production of resveratrol by Vitis vinifera and other members of the Vitaceae as a response to infection or injury. Physiological Plant Pathology, 9, pp. 77-86.

22. Meyer, K., Kohler, A. & Kauss, H. (1991). Biosynthesis of ferulic acid esters of plant cell wall polysaccharides in endomembranes from parsley cells. FEBS, 290 (1-2), pp. 209-212.

23. Murashige, T. & Skoog, F. (1962). A revised medium for rapid growth and bioassays with tobacco tissue culture. Physiol. Plant, 15, pp. 473-497.

24. Parry, A.D., Babiano, M.J. & Horgan, R. (1990). The role of ciscarotenoids in abscisic acid biosynthesis. Planta, 182, pp. 118-128.

25. Ruban, A.V., Phillip, D., Young, A.J. & Horton, P. (1998). Excited-state energy level does not determine the differential effect of violaxanthin and zeaxanthin on chlorophyll fluorescence quenching in the isolated light-harvesting complex of photosystem II. Photochemistry and Photobiology, 68 (6), pp. 829-834.

26. Santamaria, A.R., Mulinacci, N., Valletta, A., Innocenti, M. & Pasqua, G. (2011). Effects of elicitors on the production of resveratrol and viniferins in cell cultures of Vitis vinifera L. cv Italia. J. Agric. Food Chem, 59, pp. 9094-9101.

27. Shibuya, N. (1984). Phenolic acids and their carbohydrate esters in rice endosperm cell walls. Phytochemistry, 23 (10), pp. 2233-2237.

28. Sun, B., Ricardo-da-Silva, J.M. & Spranger, I. (1998). Critical factors of vanillin assay for catechins and proanthocyanidins. J. Agric. Food Chem, 46, pp. 4267-4274.

29. Tonami, H., Uyama, H., Kobayashi, S., Rettig, K. & Ritter, H. (1999). Chemoenzymatic synthesis of a poly(hydroquinone). Macromol. Chem. Phys., 200, pp. 1998-2002.<1998::AID-MACP1998>3.0.CO;2-6

30. Vuong, T.V., Franco, C. & Zhang, W. (2014). Treatment strategies for high resveratrol induction on Vitis vinifera L. cell suspension culture. Biotechnology Reports, 1-2, pp. 15-21.

31. Wrolstad, R.E., Acree, T.E., Decker, E.A., Penner, M.H., Reid, D.S., Schwartz, S.J., Shoemaker, C.F., Smith, D.M. & Sporns, P. (2005). Handbook of Food Analytical Chemistry: Pigments, Colorants, Flavors, Texture, and Bioactive Food Components. Ed. by E. Wrolstad. Pigments and colorants, F. 4, pp. 175-176.