en   ru   uk  
 
 
Fiziol. rast. genet. 2018, vol. 50, no. 4, 322-330, doi: https://doi.org/10.15407/frg2018.04.322

THE STUDY BY THE METHODS OF INFRARED SPECTROSCOPY OF THE STRETCHING AND TWISTING VIBRATIONS OF CHEMICAL BONDS IN FUNCTIONAL GROUPS OF ORGANIC COMPOUNDS CONTAINED IN GRAINS OF MAIZE INBRED LINES

Radenović Č.N.1,2, Maksimov G.V.3, Shutova V.V.4, Delić N.S.1, Milenković M.V.1, Pavlović M.D.5, Beljanski M.V.5

  1. Maize Research Institute, Zemun Polje, Belgrade, Serbia<
  2. University of Belgrade, Faculty of Physical Chemistry, Belgrade, Serbia
  3. M.V. Lomonosov Moscow State University, Faculty of Biology, Moscow, Russia
  4. N.P. Ogarev Mordovia State University, Faculty of Biology, Saransk, Russia
  5. Institute of General and Physical Chemistry, BioLab, Belgrade, Serbia

The infrared spectroscopy was applied on kernels of the following maize inbred lines with significant traits: ZPPL 186, ZPPL 225 and M1-3-3 Sdms, with the aim to determine structural properties of organic compounds and their unstable state. The set hypothesis was that it was necessary to observe the existence of numerous and different spectral bands, not studied so far, occurring in various patterns (bands of low intensity, single or grouped) and to explain the nature and the dynamics of their formation. Such spectral bands were observed in the wave number range of 400—2925 cm—1 and are caused by the different types of vibration movements (valence and deformation vibrations) of organic compounds: alkenes, aromatic compounds, alcohols, ethers, carboxylic acids, esters, amines, amides, alkanes, nitro compounds, ketones, aldehydes, alkynes, nitriles and phenols. In this way, it is possible to establish not only the structure of organic compounds of kernels of observed maize inbred lines, but also it is possible to point out to their unstable, conformational and functional properties. The importance of intensity, shape and kinetics of spectral bands, expressing unstable processes in biological systems and bioactive organic molecules, has been studied and emphasised for the first time.

Keywords: Zea mays L., maize inbred lines, grain, infrared spectra, spectral bands

Fiziol. rast. genet.
2018, vol. 50, no. 4, 322-330

Full text and suplimented materials

Free full text: PDF  

References

1. Vasiliev, A.V., Grinenko, E.V., Shchukin, A.O. & Fedulina, T.G. (2007). Infrared spectroscopy of organic and natural compounds. SPb: SPb. Gos. Lesotech. Acad. [in Russian].

2. Sverdlov, L.M., Kovner, M.A. & Krainov, E.P. (1970). Vibrational spectra of polyatomic molecules. Moskva: Nauka [in Russian].

3. Tarasevich, B.N. (2012). IR spectra of the main classes of organic compounds. Moskva: Izd. MGU [in Russian].

4. Krimm, S. & Bandekar, J. (1986). Vibrational spectroscopy and conformation of peptides, polipeptides and proteins. Advances in Protein Chemistry, 38, pp. 181-364. https://doi.org/10.1016/S0065-3233(08)60528-8

5. Ribnikar, S. (1985). Infracrvena i ramanska spektroskopija. In: Fizickohemijske metode (pp. 251-266). Beograd: Rad.

6. Radenoviж, И., Jeremiж, M., Maximov, G.V., Filipoviж, M., Trifunoviж, B.V. & Miљoviж, M.M. (1994). Moguжnost koriљжenja ramanske spektroskopije u proucavanju otpornosti inbred linija kukuruza prema uslovima stresa. Savremena poljoprivreda, 42, No. 1-2, pp. 5-19.

7. Radenoviж, И., Jeremiж, M., Maximov, G.V., Miљoviж, M.M. & Trifunoviж, B.V. (1994). Resonance Raman spectra of carotenoids in the maize seed tissue — a new approach in studies on effects of temperatures and other environmental factors on the state of vital functions. J. of Sci. Agricul. Res., 55, No. 4, pp. 33-47.

8. Radenoviж, И., Jeremiж, M., Maximov, G.V., Miљoviж, M.N., Selakoviж, D. & Trifunoviж, B.V. (1995). Rezonantni ramanski spektri semena kukuruza i njihova primena u proucavanju ħivotnih funkcija. In: Oplemenjivanje, proizvodnja i iskoriљжavanje kukuruza — 50 godina Instituta za kukuruz Zemun Polje (pp. 291-296). Beograd: Institut za kukuruz Zemun Polje.

9. Radenoviж, И., Jeremiж, M., Maximov, G.V., Miљoviж, M.N. & Selakoviж, D. (1998). Resonance Raman spectra of carotenoides in the maize kernel — a contribution to the evaluation of the kernels resistance to the temperature and the chemical composition of soil. Proc. Nat. Sci., Matica Srpska, Novi Sad, 95, pp. 41-50.

10. Radenoviж, И.N., Maksimov, G.V. & Grodzinskij, D.M. (2015). Identification of Organic Molecules in Kernels of Maize Inbred Lines Displayed with Infrared Spectra. Fisiol. rast. genet., 47, No. 1, pp. 15-24.

11. Radenovich, Ch., Maksimov, G.V., Tutyaev, E.V., Shutova, V.V., Delich, N., Chamdzhia, Z., Pavlov, J. & Jovanovic, J. (2016). Identification of organic compounds in corn hybrids (Zea mays L.) of Serbian breeding using infrared spectra. Sel'skokhozyaystvennaya biologiya, 51, No. 5, pp. 645-653 [in Russian].

12. Radenovich, Ch., Maksimov, G.V., Tyutyaev, E.V., Shutova, V.V., Delich, N., Chamdziya, Z., Pavlov, Yo. & Jovanovich, Zh. (2016). Identification of characteristic organic molecules in kernels of maize (Zea mays L.) hybrid grain using infrared spectroscopy. Agricult. Biol., 51, No. 5, pp. 645-653. https://doi.org/10.15389/agrobiology.2016.5.645eng

13. Macura, S. & Radenoviж, И. (2016). In order to acquire better knowledge on a biological system, besides the genome and proteome it is necessary to know its metabolome, i.e. concentrations of all metabolites and their interactions. Written correspondence, Mayo Clinic, Rochester and Maize Research Institute, Zemun Polje, Belgrade and vice versa.

14. Kols, O.R., Maksimov, G.V. & Radenovich, Ch.N. (1993). Biophysics of rhythmic excitation. MGU, Moskva [in Russian].

15. Radenoviж, И. (1998). Savremena biofizika. 5. Transportni procesi kroz membranu (pp. 1-90). Beograd: Velarta.

16. Radenoviж, И., Markoviж, D. & Veljoviж-Jovanoviж, S. (2001). Savremena biofizika. 7. Biomembrane: struktura, dinamika i funkcija (pp. 1-100). Beograd: Velarta.

17. Vollhardt, P.C. & Schore, N.E. (1996). Organic Chemistry. N.Y.: W.H. Freeman and Company.

18. White, P.J. & Johnson, L.A. (2003). Corn: Chemistry and Technology. Minnesota: American Association of Cereal Chemists.

19. Amir, R.M., Anjum, F.M., Khan, M.I., Khan, M.R., Pasha, I. & Nadeem, M. (2013). Application of Fourier transform infrared (FTIR) spectroscopy for the identification of wheat. J. Food Sci. Technol., 50, pp. 1018-1023. https://doi.org/10.1007/s13197-011-0424-y

20. Jackson, M. & Mantsch, H.H. (2006). Infrared spectroscopy, ex vivo tissue analysis. In: Biomedical Spectroscopy (pp. 131-156). Encyclopedia of Analytical Chemistry, John Wiley & Sons Ltd. https://doi.org/10.1002/9780470027318.a0107

21. Chalmers, J.M. (2002). Mid-infrared Spectroscopy: Anomalies, Artifacts and Common Errors in Using Vibrational Spectroscopy Techniques. In: Handbook of Vibrational Spectroscopy, John Wiley & Sons Ltd.

22. Yu, P., McKinnon, J.J., Christensen, C.R. & Christensen, D.A. (2004). Imaging Molecular Chemistry of Pioneer. Corn J. Agric. Food Chem., 52, pp. 7345-7352. https://doi.org/10.1021/jf049291b

23. Skoog, D.A., Holler, F.J. & Crouch, S.R. (2007). Principles of Instrumental Analysis. Belmont: Thomson Higher Education, USA.