Fiziol. rast. genet. 2018, vol. 50, no. 4, 299-321, doi:


Melnykova N.M., Mykhalkiv L.M., Omelchuk S.V., Beregovenko S.K.

  • Institute of Plant Physiology and Genetics, National Academy of Sciences of Ukraine 31/17 Vasylkivska St., Kyiv, 03022, Ukraine

The review summarizes the current literature regarding the properties of rhizosphere microorganisms determining their plant growth promoting potential and regulatory influence on the rhizobia-legume symbiosis. The ability of rhizobacteria to mobilize mineral elements, fix atmospheric nitrogen, produce enzymes and biologically active substances, induce systemic resistance, alleviate the effect of biotic and abiotic unfavorable factors lies at the heart of the direct and indirect multivector influence of microorganisms on the growth and development of plants, microbial populations in the rhizosphere and soil fertility, which are necessary components for effective interaction between micro- and macrosymbionts. Participation of rhizosphere microorganisms in many processes allows us to look at the microbial community inhabiting the legume rhizosphere as a regulatory factor in the establishment of the rhizobia-legume symbiosis, mainly at the early stages of its development. Understanding the meaning of individual properties of rhizobacteria in the development of symbiotic interactions between legumes and nodule bacteria as well as the identification of features of root nodule formation, nitrogen fixation, plant biomass and yield formation under the influence of rhizosphere microflora provides the opportunity to create the multifunctional microbial compositions with directional action for agriculture in the context of sustainable development.

Keywords: legumes, rhizosphere microorganisms, rhizobia, plant growth promoting properties, symbiosis

Fiziol. rast. genet.
2018, vol. 50, no. 4, 299-321

Full text and supplemented materials

Free full text: PDF  


1. Brewin, N.J. (1991). Development of the legume root nodule. Annu. Rev. Cell Biol., 7, pp. 191-226. doi: https://doi:10.1146/annurev.cb.07.110191.001203

2. Hadri, A.-E., Spaink, H.P., Bisseling, T. & Brewin, N.J. (1998). Diversity of root nodulation and rhizobial infection processes. In The Rhizobiaceae (pp. 347-360), Dordrecht: Kluwer.

3. Hirsch, A.M. (1992). Developmental biology of legume nodulation. New Phytol., 122, No. 2, pp. 211-237. doi:

5. Tu, J.C. (1981). Effect of salinity on rhizobium-root-hair interaction, nodulation and growth of soybean. Can. J. Plant Sci., 61, No. 2, pp. 231-239. doi: https://

6. Zahran, H.H. (1999). Rhizobium-legume symbiosis and nitrogen fixation under severe conditions and in an arid climate. Microbiol. Mol. Biol. Rev., 63, No. 4, pp. 968-989.

7. Brear, E.M., Day, D.A. & Smith, P.M.C. (2013). Iron: an essential micronutrient for the legume-rhizobium symbiosis. Front Plant Sci., 4, p. 359. doi: https://

8. Li, B., Li, Y.Y., Wu, H.M., Zhang, F.F., Li, C.J., Li, X.X., Lambers, H. & Li, L. (2016). Root exudates drive interspecific facilitation by enhancing nodulation and N2 fixation. Proc. Natl. Acad. Sci. USA, 113, No. 23, pp. 6496-6501. doi: https://doi: 10.1073/pnas.1523580113

9. Mel'nikova, N.N. & Omel'chuk, S.V. (2009). Effect of legume seed exudates on the formation of Rhizobium-legume symbiosis. Appl. Biochem. Microbiol., 45, No. 3, pp. 297-302. doi:

10. Srinivasan, M., Holl, F.B. & Petersen, D.J. (1996). Influence of indoleacetic-acid-producing Bacillus isolates on the nodulation of Phaseolus vulgaris by Rhizobium etli under gnotobiotic conditions. Can. J. Microbiol., 42, No. 10, pp. 1006-1014. doi: https://

11. Sindhu, S.S., Sunita Suneja, Goel, A.K., Parmar, N. & Dadarwal, K.R. (2002). Plant growth promoting effects of Pseudomonas sp. on co-inoculation with Mesorhizobium sp. cicer strain under sterile and «wilt sick» soil conditions. Appl. Soil Ecol., 19, No. 1, pp. 57-64. doi:

12. Kimenju, J.W., Karanja, N.K. & Macharia, I. (1999). Plant parasitic nematodes associated with common bean in Kenya and the effect of meloidogyne infection on bean nodulation. Afr. Crop Sci. J., 7, No. 4, pp. 503-510. doi: https://doi:10.4314/acsj.v7i4.27744

13. Canarini, A., Merchant, A. & Dijkstra, F.A. (2016). Drought effects on Helianthus annuus and Glycine max metabolites: from phloem to root exudates. Rhizosphere, 2, pp. 85-97. doi:

14. Amira, M.S. & Qados, Abdul. (2011). Effect of salt stress on plant growth and metabolism of bean plant Vicia faba (L.). J. Saudi Soc. Agric. Sci., 10, No. 1, pp. 7-15. doi:

15. Abreu, I., Cerda, M.E., de Nanclares, M.P., Baena, I., Lloret, J., Bonilla, I., Bolanos, L. & Reguera, M. (2012). Boron deficiency affects rhizobia cell surface polysaccharides important for suppression of plant defense mechanisms during legume recognition and for development of nitrogen-fixing symbiosis. Plant Soil, 361, No. 1-2, pp. 385-395. doi:

16. Moron, B., Soria-Diaz, M.E., Ault, J., Verroios, G., Noreen, S., Rodriguez-Navarro, D.N., Gill-Serrano, A., Thomas-Oates, J., Megias, M. & Sousa, C. (2005). Low pH changes the profile of nodulation factors produced by Rhizobium tropici CIAT899. Chem. Biol., 12, No. 9, pp. 1029-1040. doi:

17. Bagnasco, P., De La Fuente, L., Gualtieri, G., Noya, F. & Arias, A. (1998). Fluorescent Pseudomonas spp. as biocontrol agents against forage legume root pathogenic fungi. Soil Biol. Biochem., 30, No. 10-11, pp. 1317-1322. doi: https://

18. Mel'nikova, N.N., Bulavenko, L.V., Kurdish, I.K., Titova, L.V. & Kots S.Ya. (2002). Formation and function of the legume-rhizobium symbiosis of soybean plants while introducing bacterial strains from the genera Azotobacter and Bacillus. Appl. Biochem. Microbiol., 38, No. 4, pp. 368-372. doi:

19. Shabayev, P. (2015). Response of legumes to co-inoculation with nodule bacteria and plant growth promoting rhizobacteria. Int. J. Sci. Technol., 5, No. 9. Retrieved from dbee/26ac0b956c4b3593e4b7515ab871dea9e3ad.pdf

20. Yadegari, M., Rahmani, H.A., Noormohammadi, G. & Ayneband, A. (2008). Evaluation of bean (Phaseolus vulgaris) seeds inoculation with Rhizobium phaseoli and plant growth promoting rhizobacteria on yield and yield components. Pak. J. Biol. Sci., 11, No. 15, pp. 1935-1939. doi:

21. Holguin, G. & Bashan, Y. (1996). Nitrogen-fixation by Azospirillum brasilense Cd is promoted when co-cultured with a mangrove rhizosphere bacterium (Staphylococcus sp.). Soil Biol. Biochem., 28, No. 12, pp. 1651-1660. doi: https://

22. Glick, B.R. (2012). Plant growth-promoting bacteria: mechanisms and applications. Scientifica, 963401. doi:

23. Rashid, M.I., Mujawar, L.H., Shahzad, T., Almeelbi, T., Ismail, I.M.I. & Oves, M. (2016). Bacteria and fungi can contribute to nutrients bioavailability and aggregate formation in degraded soils. Microbiol. Res., 183, pp. 26-41. doi:

24. White, P.J. & Brown, P.H. (2010). Plant nutrition for sustainable development and global health. Ann. Bot., 105, No. 7, pp. 1073-1080. doi: aob/mcq085

25. Sharma, S.B., Sayyed, R.Z., Trivedi, M.H. & Gobi, T.A. (2013). Phosphate solubilizing microbes: sustainable approach for managing phosphorus deficiency in agricultural soils. SpringerPlus, 2, 587 p. doi:

26. Meena, V.S., Maurya, B.R. & Verma, J.P. (2014). Does a rhizospheric microorganism enhance K+ availability in agricultural soils? Microbiol. Res., 169, No. 5-6, pp. 337-347. doi:

27. Hooda, P.S. (Ed.) (2010). Trace elements in soils. Chichester: Wiley.

28. Leghari, S.J., Wahocho, N.A., Laghari, G.M., Laghari, A.H., Bhabhan, G.M., Talpur, K.H., Bhutto, T.A., Wahocho, S.A. & Lashari, A.A. (2016). Role of nitrogen for plant growth and development: a review. Adv. Environ. Biol., 10, No. 9, pp. 209-218.

29. Terpolilli, J.J., O'Hara, G.W., Tiwari, R.P., Dilworth, M.J. & Howieson, J.G. (2008). The model legume Medicago truncatula A17 is poorly matched for N2 fixation with the sequenced microsymbiont Sinorhizobium meliloti 1021. New Phytol., 179, No. 1, pp. 62-66. doi:

30. Glyan'ko, A.K., Vasil'eva, G.G., Mitanova, N.B. & Ishchenko, A.A. (2009). The influence of mineral nitrogen on legume-rhizobium symbiosis. Biol. Bull. Russ. Acad. Sci., 36, No. 3, pp. 250-258. doi:

31. Hayat, R., Ali, S., Amara, U., Khalid, R., & Ahmed, I. (2010). Soil beneficial bacteria and their role in plant growth promotion: a review. Ann. Microbiol., 60, pp. 579-598. doi:

32. Franche, C., Lindstrцm, K. & Elmerich, C. (2009). Nitrogen-fixing bacteria associated with leguminous and non-leguminous plants. Plant Soil, 321, pp. 35-59. doi:

33. Hayatsu, M., Tago, K. & Saito, M. (2008). Various players in the nitrogen cycle: diversity and functions of the microorganisms involved in nitrification and denitrification. Soil Sci. Plant Nutr., 54, No. 1, pp. 33-45. doi:

34. Abdolzadeh, A., Wang, X., Veneklaas, E.J. & Lambers, H. (2010). Effects of phosphorus supply on growth, phosphate concentration and cluster-root formation in three Lupinus species. Ann. Bot., 105, No. 3, pp. 365-374. doi:

35. Theodorou, M.E. & Plaxton, W.C. (1993). Metabolic adaptations of plant respiration to nutritional phosphate deprivation. Plant Physiol., 101, No. 2, pp. 339-344. doi: https://

36. Patyka, V.P., Tikhonovich, I.A., Filip'ev, I.D., Gamajunova, V.V. & Andrusenko, I.I. (1993). Microorganisms and alternative agriculture. Kyiv: Urozhaj [in Ukrainian].

37. Al-Niemi, T.S. (2017). Phosphate role in the Rhizobium-legume symbiosis — A review. Int. J. Sci.: Basic and Appl. Res., 36, No. 8, pp. 178-191.

38. Mullen, M.D., Israel, D.W. & Wollum, A.G. (1988). Effects of Bradyrhizobium japonicum and soybean (Glycine max (L.) Merr.) phosphorus nutrition on nodulation and dinitrogen fixation. Appl. Environ. Microbiol., 54, No. 10, pp. 2387-2392.

39. Hu, H., Tang, C. & Rengel, Z. (2005). Role of phenolics and organic acids in phosphorus mobilization in calcareous and acidic soils. J. Plant Nutr., 28, No.8, pp. 1427-1439. doi:

40. Smart, J.B., Dilworth, M.J. & Robson, A.D. (1984). Effect of phosphorus supply on phosphate uptake and alkaline phosphatase uptake and alkaline phosphatase activity in rhizobia. Arch. Microbiol., 140, No.2-3, pp. 281-286. doi: BF00454943

41. Alikhani, H.A., Saleh-Rastin, N. & Antoun, H. (2006). Phosphate solubilization activity of rhizobia native to Iranian soils. Plant Soil., 287, pp. 35-41. doi:

42. Li, H., Smith, S.E., Holloway, R.E., Zhu, Y. & Smith, F.A. (2006). Arbuscular mycorrhizal fungi contribute to phosphorus uptake by wheat grown in a phosphorus-fixing soil even in the absence of positive growth responses. New Phytol., 172, No. 3, pp. 536-543. doi:

43. Gupta, G., Parihar, S.S., Ahirwar, N.K., Snehi, S.K. & Singh, V. (2015). Plant growth promoting rhizobacteria (PGPR): current and future prospects for development of sustainable agriculture. J. Microb. Biochem. Technol., 7, pp. 96-102. doi: htpps://

44. Guinazu, L.B., Andres, J.A., Del Papa, M.F., Pistorio, M. & Rosas, S.B. (2009). Response of alfalfa (Medicago sativa L.) to single and mixed inoculation with phosphate-solubilizing bacteria and Sinorhizobium meliloti. Biol. Fertil. Soils, 46, No.2, pp. 185-190. doi:

45. Wang, X.-G., Zhao, X.-H., Jiang, C.-J., Li, C.-H., Cong, S., Wu, D., Chen,Y.-Q., Yu, H.-Q. & Wang, C.-Y. (2015). Effects of potassium deficiency on photosynthesis and photoprotection mechanisms in soybean (Glycine max (L.) Merr.). J. Integr. Agric., 14, No.5, pp. 856-863. doi:

46. Wang, M., Zheng, Q., Shen, Q. & Guo, S. (2013). The critical role of potassium in plant stress response. Int. J. Mol. Sci., 14, No. 4, pp. P. 7370-7390. doi:

47. Sangakkara, U.R., Hartwig, U.A. & Nosberger, J. (1996). Soil moisture and potassium affect the performance of symbiotic nitrogen fixation in faba bean and common bean. J. Plant Soil., 184, No. 1, pp. 123-130. doi:

48. Weisany, W., Raei, Y. & Allahverdipoor, K.H. (2013). Role of some mineral nutrients in biological nitrogen fixation. Bull. Env. Pharmacol. Life Sci., 2, No. 4, pp. 77-84.

49. Sheng, X.F. (2005). Growth promotion and increased potassium uptake of cotton and rape by a potassium releasing strain of Bacillus edaphicus. Soil Biol. Biochem., 37, pp. 1918-1922. doi:

50. Lian, B., Fu, P.Q., Mo, D.M. & Liu, C.Q. (2002). A comprehensive review of the mechanism of potassium release by silicate bacteria. Acta Mineral. Sinica., 22, pp. 179-183.

51. Jha, Y. (2017). Potassium mobilizing bacteria: enhance potassium intake in paddy to regulates membrane permeability and accumulate carbohydrates under salinity stress. Braz. J. Biol. Sci., 4, No. 8, pp. 333-344. doi:

52. Liu, D., Lian, B. & Dong, H. (2012). Isolation of Paenibacillus sp. and assessment of its potential for enhancing mineral weathering. Geomicrobiol. J., 29, No. 5, pp. 413-421. doi:

53. Etesami, H., Emami, S. & Alikhani, H. (2017). Potassium solubilizing bacteria (KSB): mechanisms, promotion of plant growth, and future prospects — a review. J. Soil Sci. Plant Nutr., 17, No. 4, pp. 897-911. doi:

54. Ullman, W.J., Kirchman, D.L., Welch, S.A. & Vandevivere, P. (1996). Laboratory evidence by microbially mediated silicate mineral dissolution in nature. Chem. Geol., 132, pp. 11-17. doi:

55. Ahmed, E., Holmstrom, S.J.M. (2014). Siderophores in environmental research: roles and application. Microb. Biotechnol., 7, No. 3, pp. 196-208. doi: 10.1111/1751-7915.12117

56. Li, R-X., Cai, F., Pang, G., Shen, Q.-R., Li, R. & Chen, W. (2015). Solubilisation of phosphate and micronutrients by Trichoderma harzianum and its relationship with the promotion of tomato plant growth. PLoS One, 10, No. 6, p. 0130081. doi:

57. Hansch, R. & Mendel, R.R. (2009). Physiological functions of mineral micronutrients (Cu, Zn, Mn, Fe, Ni, Mo, B, Cl). Curr. Opin. Plant Biol., 12, No. 3, pp. 259-266. doi:

58. Bonilla, I. & Bolanos, L. (2009). Mineral nutrition for legume-rhizobia symbiosis: B, Ca, N, P, S, K, Fe, Mo, Co, and Ni: a review. In Organic farming, pest control and remediation of soil pollutants. Sustainable agriculture reviews (pp. 253-274), Dordrecht: Springer.

59. Sharma, C.P. (2006). Plant Micronutrients. Enfield-Jersey-Plymouth: Science Publishers.

60. Yu, X., Ai, C., Xin, L. & Zhou, G. (2011). The siderophoreproducing bacterium, Bacillus subtilis CAS15, has a biocontrol effect on Fusarium wilt and promotes the growth of pepper. Eur. J. Soil Biol., 47, pp. 138-145. doi:

61. Fuhrmann, J. & Wollum, A.G. (1989). In vitro growth responses of Bradyrhizobium japonicum to soybean rhizosphere bacteria. Soil. Biol. Biochem., 21, No. 1, pp. 131-135. doi:

62. Bashan, Y. (1990). Short exposure to Azospirillum brasilense Cd inoculation enhanced proton efflux of intact wheat roots. Can. J. Microbiol., 36, No. 6, pp. 419-425. doi:

63. De-Bashan, L.E., Antoun, H. & Bashan, Y. (2008). Involvement of indol-3-acetic acid produced by the growth-promoting bacterium Azospirillum spp. in promoting growth of Chlorella vulgaris. J. Phycol., 44, No. 4, pp. 938-947. doi:

64. Fahad, S., Hussain, S., Bano, A., Saud, S., Hassan, S., Shan, D., Khan, F.A., Khan, F., Chen, Y., Wu, C., Tabassum, M.A., Chun, M.X., Afzal, M., Jan, A. & Jan, M.T. J. (2015). Potential role of phytohormones and plant growth-promoting rhizobacteria in abiotic stresses: consequences for changing environment. Environ. Sci. Pollut. Res., 22, No. 7, pp. 4907-4921. doi:

65. Gray, W.M. (2004). Hormonal regulation of plant growth and development. PLoS Biol., 2, No. 9, p. 311. doi:

66. Gururani, M.A., Mohanta, T.K. & Bae, H. (2015). Current understanding of the interplay between phytohormones and photosynthesis under environmental stress. Int. J. Mol. Sci., 16, No. 8, pp. 19055-19085. doi:

67. Miransari, M. & Smith, D.L. (2014). Plant hormones and seed germination. Environ. Exp. Bot., 99, pp. 110-121. doi:

68. Costacurta, A. & Vanderleyden, J. (1995). Synthesis of phytohormones by plant-associated bacteria. Crit. Rev. Microbiol., 21, No. 1, pp. 1-18.

69. Araujo, F.F., Henning, A.A. & Hungria, M. (2005). Phytohormones and antibiotics produced by Bacillus subtilis and their effects on seed pathogenic fungi and on soybean root development. World J. Microbiol. Biotechnol., 21, pp. 1639-1645. doi:

70. Ali, B., Sabri, A.N., Ljung, K. & Hasnain, S. (2009). Auxin production by plant associated bacteria: impact on endogenous IAA content and growth of Triticum aestivum L. Lett. Appl. Microbiol., 48, No. 5, pp. 542-547. doi:

71. Ferguson, B.J. & Mathesius, U. (2014). Phytohormone regulation of legume-rhizobia interactions. J. Chem. Ecol., 40, No. 7, pp. 770-790. doi: 10.1007/s10886-014-0472-7

72. Bensmih, S. (2015). Hormonal control of lateral root and nodule development in legumes. Plants (Basel), 4, No. 3, pp. 523-547. doi: plants4030523

73. Liu, H., Zhang, C., Yang, J., Yu, N. & Wang, E. (2018). Hormone modulation of legume-rhizobial symbiosis. J. Integr. Plant Biol., 60, No. 4, pp. 358-364. doi:

74. Melnykova, N., Gryshchuk, O., Mykhalkiv, L., Mamenko, P., Kots, S. (2013). Plant growth promoting properties of bacteria isolated from the rhizosphere of soybean and pea. Natura Montenegrina, 12, No. 3-4, pp. 915-923.

75. Podleљбkovб, K., Fardoux, J., Patrel, D., Bonaldi, K., Novбk, O., Strnad, M., Giraud, E., Spнchal, L. & Nouwen, N. (2013). Rhizobial synthesized cytokinins contribute to but are not essential for the symbiotic interaction between photosynthetic Bradyrhizobia and Aeschynomene legumes. Mol. Plant-Microbe Int., 26, No. 10, pp. 1232-1238. doi:

76. Tserkovniak, L.S. & Kurdish, I.K. (2009). Phosphate-mobilizing bacteria Bacillus subtilis as phenolic producers. Appl. Biochem. Microbiol., 45, No. 3, pp. 311-317. doi:

77. Sumayo, M.S., Son, J.-S. & Ghim, S.-Y. (2018). Exogenous application of phenylacetic acid promotes root hair growth and induces the systemic resistance of tobacco against bacterial soft-rot pathogen Pectobacterium carotovorum subsp. carotovorum. Funct. Plant Biol. doi:

78. Kots, S. Ya., Beregovenko, S.K., Kirichenko, E.V. & Melnykova, N.N. (2007). Features of interaction between plants and nitrogen-fixing microorganisms. Kyiv: Naukova dumka [in Russian].

79. Souleimanov, A., Prithiviraj, B. & Smith, D.L. (2002). The major Nod factor of Bradyrhizobium japonicum promotes early growth of soybean and corn. J. Exp. Bot., 53, No. 376, pp. 1929-1934. doi:

80. Palacios, O.A., Bashan, Y. & de-Bashan, L.E. (2014). Proven and potential involvement of vitamins in interactions of plants with plant growth-promoting bacteria — an overview. Biol. Fertil. Soils, 50, No. 3, pp. 415-432. doi:

81. Dakora, F.D., Matiru, V.N. & Kanu, A.S. (2015). Rhizosphere ecology of lumichrome and riboflavin, two bacterial signal molecules eliciting developmental changes in plants. Front. Plant Sci., 6, p. 700. doi:

82. Adetunji, A.T., Lewu, F.B., Mulidzi, R. & Ncube, B. (2017). The biological activities of b-glucosidase, phosphatase and urease as soil quality indicators: a review. J. Soil Sci. Plant Nutr., 17, No. 3, pp. 794-807. doi:

83. Ghisalberti, E.L. & Sivasithamparam, K. (1991). Antifungal antibiotics produced by Trichoderma spp. Soil Biol. Biochem., 23, No. 11, pp. 1011-1020. doi:

84. Sathya, A., Jayabharathi, R. & Gopalakrishnan, S. (2017). Plant growth-promoting actinobacteria: a new strategy for enhancing sustainable production and protection of grain legumes. 3 Biotech., 7, p. 102. doi:

85. Ramadan, E.M., Abdel Hafez, A.A., Hassan, E.A. & Saber, F.M. (2016). Plant growth promoting rhizobacteria and their potential for biocontrol of phytopathogens. Afr. J. Microbiol. Res., 10, No. 15, pp. 486-504. doi:

86. Tyuterev, S.L. (2015). Ecologically safe inducers of plant resistance to diseases and physiological stresses. Plant Protec. News, 1, No. 83, pp. 3-13. [in Russian].

87. Schmidt, R., Cordovez, V. de Boer, W., Raaijmakers, J. & Garbeva, P. (2015). Volatile affairs in microbial interactions. The ISME Journal, 9, pp. 2329-2335. doi:

88. Chao, W.-L. (1990). Antagonistic activity of Rhizobium spp. against beneficial and plant pathogenic fungi. Lett. Appl. Microbiol., 10, No. 5, pp. 213-215. doi:

89. El-Barougy, E., Awad, N.M., Turky, A.S. & Hamed, H.A. (2009). Antagonistic activity of selected strains rhizobacteria against Macrophomina phaseolina of soybean plants. J. Agric. Environ. Sci., 5, No. 3, pp. 337-347.

90. Arfaoui, A., Sifi, B., Boudabous, A., El Hadrami, I. & Cherif, M. (2006). Identification of Rhizobium isolates possessing antagonistic activity against Fusarium oxysporum f. sp. ciceris, the causal agent of Fusarium wilt of chickpea. J. Plant Pathol., 88, No. 1, pp. 67-75. doi:

91. Rao, G.S., Rao Reddy, N.N. & Surekha, Ch. (2015). Induction of plant systemic resistance in legumes Cajanus cajan, Vigna radiata, Vigna mungo against plant pathogens Fusarium oxysporum and Alternaria alternata — a Trichoderma viride mediated reprogramming of plant defense mechanism. Int. J. Recent Sci. Res., 6, No. 5, pp. 4270-4280.

92. Choudhary, D.K., Prakash, A. & Johri, B.N. (2007). Induced systemic resistance (ISR) in plants: mechanism of action. Indian J. Microbiol., 47, No. 4, pp. 289-297. doi:

93. Nawrocka, J., Malolepsza, U., Szymczak, K. & Szczech, M. (2018). Involvement of metabolic components, volatile compounds, PR proteins, and mechanical strengthening in multilayer protection of cucumber plants against Rhizoctonia solani activated by Trichoderma atroviride TRS25. Protoplasma, 255, No. 1, pp. 359-373. doi:

94. Goudaa, S., Kerry, R.G., Das, G., Paramithiotis, S., Shin, H.S. & Patra, J.K. (2018). Revitalization of plant growth promoting rhizobacteria for sustainable development in agriculture. Microbiol. Res., 206, pp. 131-140. doi:

95. Rudrappa, T., Biedrzycki, M.L., Kunjeti, S.G., Donofrio, N.M., Czymmek, K.J., Pare, P.W. & Bais, H.P. (2010). The rhizobacterial elicitor acetoin induces systemic resistance in Arabidopsis thaliana. Commun. Integr. Biol., 3, No. 2, pp. 130-138. doi:

96. Roberson, E.B. & Firestone, M.K. (1992). Relationship between desiccation and exopolysaccharide production in a soil Pseudomonas sp. Appl. Environ. Microbiol., 58, No. 4, pp. 1289-1291.

97. Qurashi, A.W. & Sabri, A.N. (2012). Bacterial exopolysaccharide and biofilm formation stimulate chickpea growth and soil aggregation under salt stress. Braz. J. Microbiol., 43, No. 3, pp. 1183-1191. doi:

98. Ayangbenro, A.S. & Babalola, O.O. (2017). A new strategy for heavy metal polluted environments: a review of microbial biosorbents. Int. J. Environ. Res. Public Health., 14, No. 1, E94. doi:

99. Kaushal, M. & Wani, S.P. (2016). Plant-growth-promoting rhizobacteria: drought stress alleviators to ameliorate crop production in drylands. Ann. Microbiol., 66, No. 1, pp. 35-42. doi:

100. Suarez, R., Wong, A., Ramнrez, M., Barraza, A., Orozco Mdel, C., Cevallos, M.A., Lara, M., Hernandez, G. & Iturriaga, G. (2008). Improvement of drought tolerance and grain yield in common bean by overexpressing trehalose-6-phosphate synthase in rhizobia. Mol. Plant-Microbe Int., 21, No. 7, pp. 958-966. doi: MPMI-21-7-0958

101. Brechenmacher, L., Lei, Z., Libault, M., Findley, S., Sugawara, M., Sadowsky, M.J., Sumner, L.W. & Stacey, G. (2010). Soybean metabolites regulated in root hairs in response to the symbiotic bacterium Bradyrhizobium japonicum. Plant Physiol., 153, pp. 1808-1822. doi:

102. Madkour, M.A., Smith, L.T. & Smith, G.M. (1990). Preferential osmolyte accumulation: a mechanism of osmotic stress adaptation in diazotrophic bacteria. Appl. Environ. Microbiol., 56, No. 9, pp. 2876-2881.

103. Gamo, T. & Ahn, S.B. (1991). Growth-promoting Azospirillum spp. isolated from the roots of several non-gramineous crops in Japan. Soil Sci. Plant Nutr., 37, No. 3, pp. 455-461. doi:

104. McIntyre, H.J., Davies, H., Hore, T.A., Miller, S.H., Dufour, J.P. & Ronson, C.W. (2007). Trehalose biosynthesis in Rhizobium leguminosarum bv. trifolii and its role in desiccation tolerance. Appl. Environ. Microbiol., 73, No. 12, pp. 3984-3992. doi:

105. Rodrнguez-Salazar, J., Suбrez, R., Caballero-Mellado, J. & Iturriaga, G. (2009). Trehalose accumulation in Azospirillum brasilense improves drought tolerance and biomass in maize plants. FEMS Microbiol. Lett., 296, No. 1, pp. 52-59. doi:

106. Cassan, F., Maiale, S., Masciarelli, O., Vidal, A., Luna, V. & Ruiz, O. (2009). Cadaverine production by Azospirillum brasilense and its possible role in plant growth promotion and osmotic stress mitigation. Eur. J. Soil Biol., 45, pp. 12-19. doi:

107. Goris, J., Kersters, K. & De Vos, P. (1998). Polyamines distribution among authentic Pseudomonads and Azotobacteraceae. Sys. Appl. Microbiol., 21, No. 2, pp. 285-290. doi:

108. Lуpez-Gуmez, M., Cobos-Porras, L., Hidalgo-Castellanos, J. & Lluch, C. (2014). Occurrence of polyamines in root nodules of Phaseolus vulgaris in symbiosis with Rhizobium tropici in response to salt stress. Phytochems, 107, pp. 32-41. doi:

109. Gill, S.S. & Tuteja, N. (2010). Polyamines and abiotic stress tolerance in plants. Plant Signal. Behav., 5, No. 1, pp. 26-33.

110. Xu, H., Griffith, M., Patten, C.L. & Glick, B.R. (1998). Isolation and characterization of an antifreeze protein with ice nucleation activity from the plant growth promoting rhizobacterium Pseudomonas putida GR12-2. Can. J. Microbiol., 44, No. 1, pp. 64-73. doi:

111. Sun, X., Griffith, M., Pasternak, J.J. & Glick, B.R. (1995). Low temperature growth, freezing survival, and production of antifreeze protein by the plant growth promoting rhizobacterium Pseudomonas putida GR12-2. Can. J. Microbiol., 41, No. 9, pp. 776-784. doi:

112. Iqbal, N., Khan, N.A., Ferrante, A., Trivellini, A., Francini, A. & Khan, M.I.R. (2017). Ethylene role in plant growth, development and senescence: interaction with other phytohormones. Front. Plant Sci., 8, p. 475. doi: fpls.2017.00475

113. Stepanova, A.N., Yun, J., Likhacheva, A.V. & Alonso, J.M. (2007). Multilevel interactions between ethylene and auxin in Arabidopsis roots. Plant Cell., 19, No. 7, pp. 2169-2185. doi:

114. Zhu-Salzman, K., Salzman, R.A., Koiwa, H., Murdock, L.L., Bressan, R.A. & Hasegawa, P.M. (1998). Ethylene negatively regulates local expression of plant defense lectin genes. Physiol. Plant., 104, No. 3, pp. 365-372. doi: j.1399-3054.1998.1040311.x

115. Guinel, F.C. (2015). Ethylene, a hormone at the center-stage of nodulation. Front. Plant Sci., 6, p. 1121. doi:

116. Zahir, Z.A., Munir, A., Asghar, H.N., Shaharoona, B. & Arshad, M.J. (2008). Effectiveness of rhizobacteria containing ACC deaminase for growth promotion of peas (Pisum sativum) under drought conditions. Microbiol. Biotechnol., 18, No. 5, pp. 958-963.

117. Omer, A., Emara, H.M., Zaghloul, R.A., Abdel-Monem, M.O. & Dawwam, G.E. (2016). Potential of Azotobacter salinestris as plant growth promoting rhizobacteria under saline stress conditions. Res. J. Pharmac. Biol. Chem. Sci., 7, No. 6, pp. 2572-2583.

118. Kumar, K.V., Singh, N., Behl, H.M. & Srivastava, S. (2008). Influence of plant growth promoting bacteria and its mutant on heavy metal toxicity in Brassica juncea grown in fly ash amended soil. Chemosphere, 72, No. 4, pp. 678-683. doi:

119. Glick, B.R., Jacobson, C.B., Schwarse, M.M. K. & Pasternak, J.J. (1994). 1-Aminocyclopropane-1-carboxylic acid deaminase mutants of the plant growth promoting rhizobacterium Pseudomonas putida GR 12-2 do not stimulate canola root elongation. Can. J. Microbiol., 40, No. 11, pp. 911-915. doi:

120. Shaharoona, B., Arshad, M. & Zahir, Z.A. (2006). Effect of plant growth promoting rhizobacteria containing ACC-deaminase on maize (Zea mays L.) growth under axenic conditions and on nodulation in mung bean (Vigna radiata L.). Lett. Appl. Microbiol., 42, No. 2, pp. 155-159. doi:

121. Glick, B. (2014). Bacteria with ACC deaminase can promote plant growth and help to feed the world. Microbiol. Res., 169, No. 1, pp. 30-39. doi: j.micres.2013.09.009

122. Tapia-Hernandez, A., Mascaua-Esparza, M.A. & Caballero-Mellado, J. (1990). Production of bacteriocins and siderophore-like activity by Azospirillum brasilense. Microbios., 64, No. 259, pp. 73-83.

123. Hafeez, F.Y., Naeem, F.I., Naeem, R., Zaidi, A.H. & Malik, K.A. (2005). Symbiotic effectiveness and bacteriocin production by Rhizobium leguminosarum bv. viciae isolated from agriculture soils in Faisalabad. Environ. Exp. Bot., 54, No. 2, pp. 142-147. doi:

124. Bhuvaneswari, S., Madhavan, S. & Panneerselvam, A. (2015). Optimization of bacteriocin production by Bacillus subtilis BMP01 isolated from Solanum trilobatum L. Int. J. Curr. Microbiol. App. Sci., 4, No. 3, pp. 617-626.

125. Parret, A.H. A., Temmerman, K. & De Mot, R. (2005). Novel lectin-like bacteriocins of biocontrol strain Pseudomonas fluorescens Pf-5. Appl. Environ. Microbiol., 71, No. 9, pp. 5197-5207. doi:

126. Robleto, E.A., Scupham, A. & Triplett, E.W. (1997). Trifolitoxin production in Rhizobium etli strain CE3 increases competitiveness for rhizosphere colonization and root nodulation of Phaseolus vulgaris in soil. Mol. Plant Microbe Int., 10, No. 2, pp. 228-233. doi:

127. Karpunina, L.V., Mel'nikova, U. Iu., Suslova, Iu. V., Mukhacheva, E.S. & Ignatov, V.V. (2003). The bactericidal activity of lectins from nitrogen-fixing bacilli. Microbiology, 72, No. 3, pp. 300-304. doi:

128. Karpunina, L.V., Mel'nikova, U. Iu., Konnova, S.A. & Abros'kina, O.M. (2001). Role of the agglutinating proteins of bacilli and rhizobia in bacterial interaction. Microbiology, 70, No. 4, pp. 519-524. doi:

129. Karpunina, L.V., Mel'nikova, U. Yu., Soboleva, E.F., Vishnevetskaya, O.A. & Nikitina, V.E. (1999). Investigation of the adhesive properties of Bacillus polymyxa cells: the role of bacillar lectins. Microbiology, 68, No. 4, pp. 387-389.

130. Karpunina, L.V., Savenkov, N.N., Vladimirova, M.V., Koltunova, E.F. & Nikitina, V.E. (1996). Agglutinins of Rhizobium leguminosarum and their role in interaction with plants. Biol. Bull., 23, No. 6, pp. 576-581 [in Russian].

131. Karpunina, L.V., Mel'nikova, U.Y. & Konnova, S.A. (2003). Biological role of lectins from the nitrogen-fixing Paenibacillus polymyxa strain 1460 during bacterial-plant-root interactions. Curr. Microbiol., 47, No. 5, pp. 376-378. doi: s00284-002-3987-z

132. Karpunina, L.V., Smiyan, M.S. & Kosenko, L.V. (2004). The effect of the carbohydrate components of pea roots on the enzymatic activity of the surface agglutinins of Rhizobium leguminosarum bv. viciae 252. Microbiology, 73, No. 4, pp. 389-391.

133. Karpunina, L.V. & Soboleva, E.F. (2001). Effect of Rhizobium leguminosarum 252 agglutinins on the activity of certain enzymes in plant cells. Microbiology, 70, No. 3, pp. 295-298.

134. Alen'kina, S.A., Zharkova, V.R. & Nikitina, V.E. (2007). Stabilizing effect of Azospirillum lectins on beta-glucosidase activity. Appl. Biochem. Microbiol., 43, No. 6, pp. 583-586. doi:

135. Hartmann, A., Rothballer, M., Hense, B.A. & Schrцder, P. (2014). Bacterial quorum sensing compounds are important modulators of microbe-plant interactions. Front. Plant Sci., 5, 131. doi:

136. Mathesius, U., Mulders, S., Gao, M., Teplitski, M., Caetano-Anoliйs, G., Rolfe, B.G. & Bauer, W.D. (2003). Extensive and specific responses of a eukaryote to bacterial quorum sensing signals. Proc. Natl. Acad. Sci. USA, 100, No. 3, pp. 1444-1449. doi:

137. Joseph, C.M. & Phillips, D.A. (2003). Metabolites from soil bacteria affect plant water relations. Plant Physiol. Biochem., 41, No. 2, pp. 189-192. doi: S09819428(02)00021-9

138. Calatrava-Morales, N., McIntosh, M. & Soto, M.J. (2018). Regulation mediated by N-acyl homoserine lactone quorum sensing signals in the rhizobium-legume symbiosis. Genes, 5, p. 263. doi:

139. Peterson, S.B., Dunn, A.K., Klimowicz, A.K. & Handelsman, J. (2006). Peptidoglycan from Bacillus cereus mediates commensalism with rhizosphere bacteria from the Cytophaga-Flavobacterium group. Appl. Environ. Microbiol., 72, No. 8, pp. 5421-5427. doi:

140. Huang, X.-F., Chaparro, J.M., Reardon, K.F., Zhang, R., Shen, Q. & Vivanco, J.M. (2014). Rhizosphere interactions: root exudates, microbes, and microbial communities. Botany, 92, pp. 267-275. doi:

141. De-la-Pena, C., Lei, Z., Watson, B.S., Summer, L.W. & Vivanco, J.M. (2008). Root-microbe communication through protein secretion. J. Biol. Chem., 283, No. 37, pp. 25247-25255. doi:

142. Bolanos-Vбsquez, M.C. & Werner, D. (1997). Effects of Rhizobium tropici, R. etli, and R. leguminosarum bv. phaseoli on nod gene-inducing flavonoids in root exudates of Phaseolus vulgaris. Mol. Plant Microbe Int., 10, No. 3, pp. 339-346. doi: 10.1094/MPMI.1997.10.3.339

143. Vargas, L.K., Lisboa, B.B., Giongo, A., Beneduzi, A. & Passaglia, L.M. P. (2010). Potential of rhizobia as plant growth-promoting rhizobacteria. In Microbes for legume improvement (pp. 137-155), Vienna: Springer. doi:

144. Vargas, L.K., Lisboa, B.B., Schlindwein, G., Granada, C., Giongo, A., Beneduzi, A. & Passaglia, L.M.P. (2009). Occurrence of plant growth-promoting traits in clover-nodulating rhizobia strains isolated from different soils in Rio Grande do Sul state. R. Bras. Ci. Solo, 33, No. 5, pp. 1227-1235. doi:

145. Liste, H.H. (1993). Stimulation of symbiosis and growth of lucerne by combined inoculation with Rhizobium meliloti and Pseudomonas fluorescence. Zbl. Microbiol., 148, No. 3, pp. 163-176.

146. Tilak, K.V. B.R., Ranganayaki, N. & Manoharachari, C. (2006). Synergistic effects of plant-growth promoting rhizobacteria and Rhizobium on nodulation and nitrogen fixation by pigeonpea (Cajanus cajan). Eur. J. Soil Sci., 57, No. 1, pp. 67-71. doi:

147. Itzigsohn, R., Kapulnik, Y., Okon, Y. & Dovrat, A. (1993). Physiological and morphological aspects of interactions between Rhizobium meliloti and alfalfa (Medicago sativa) in association with Azospirillum brasilense. Can. J. Microbiol., 39, No. 6, pp. 610-615. doi:

148. El-Gamal, M.S. (1992). Interactions between Azotobacter spp. and Rhizobium sesbani into the rhizosphere of Sesbania sesban (L.) Merrill plants and its efficiency on growth and symbiotic nitrogen fixation. Zbl. Mikrobiol., 147, No. 1-2, pp. 112-118.

149. Dashti, N., Zhang, F., Hynes, R. & Smith, D.L. (1997). Application of plant growth-promoting rhizobacteria to soybean [Glycine max (L.) Merrill] increases protein and dry matter yield under short-season conditions. Plant Soil., 188, No. 1, pp. 33-41. doi:

150. Elkoca, E., Kantar, F. & Sahin, F. (2007). Influence of nitrogen fixing and phosphorus solubilizing bacteria on the nodulation, plant growth, and yield of chickpea. J. Plant Nutr., 31, No. 1, pp. 157-171. doi:

151. Khan, M.K., Sakamoto, K. & Yoshida, T. (1995). Dual inoculation of peanut with Glomus sp. and Bradyrhizobium sp. enhanced the symbiotic nitrogen fixation as assessed by 15N-technique. Soil Sci. Plant Nutr., 41, No. 4, pp. 769-779. doi: 10.1080/00380768.1995.10417027

152. Ghampawat, R.S. (1990). Effect of dual inoculation of Rhizobium and vesicular arbuscular mycorhizal fungi on Pisum sativum. Folia Microbiol., 35, No. 3, pp. 236-239.

153. Delshadi, S., Ebrahimi, M. & Shirmohammadi, E. (2017). Influence of plant-growth-promoting bacteria on germination, growth and nutrients' uptake of Onobrychis sativa L. under drought stress. J. Plant Int., 12, No. 1, pp. 200-208. doi: 10.1080/17429145.2017.1316527

154. Demissie, S., Muleta, D. & Berecha, G. (2013). Effect of phosphate solubilizing bacteria on seed germination and seedling growth of faba bean (Vicia faba L.). Int. J. Agric. Res., 8, No. 3, pp. 123-136. doi:

155. Molla, A.H., Shamsuddin, Z.H., Halimi, M.S., Morziah, M. & Puteh, A.B. (2001). Potential for enhancement of root growth and nodulation of soybean coinoculated with Azospirillum and Bradyrhizobium in laboratory systems. Soil Biol. Biochem., 33, pp. 457-463. doi:

156. Petersen, D.J., Srinivasan, M. & Chanway, C.P. (1996). Bacillus polymyxa stimulates increased Rhizobium etli populations and nodulation when co-resident in the rhizosphere of Phaseolus vulgaris. FEMS Microbiol. Lett., 142, No. 2-3, pp. 271-276. doi:

157. Li, D.M. & Alexander, M. (1990). Factors affecting co-inoculation with antibiotic — producing bacteria to enhance rhizobial colonization and nodulation. Plant Soil., 129, No. 2, pp. 195-201. doi:

158. Camacho, M., Santamarнa, C., Temprano, F., Rodriguez-Navarro, D.N. & Daza, A. (2001). Co-inoculation with Bacillus sp. CECT 450 improves nodulation in Phaseolus vulgaris L. Can. J. Microbiol., 47, No. 11, pp. 1058-1062. doi:

159. Stajkovic-Srbinovic, O., Delic, D., Nerandzic, B., Andjelovic, S., Sikiric, B., Kuzmanovic, D. & Rasulic, N. (2017). Alfalfa yield and nutrient uptake as influenced by co-inoculation with rhizobium and rhizobacteria. Rom. Biotech. Lett., 22, No. 4, pp. 12834-12841.

160. Mirza, B.S., Mirza, M.S., Bano, A. & Malik, K.A. (2007). Coinoculation of chickpea with Rhizobium isolates from roots and nodules and phytohormone-producing Enterobacter strains. Aust. J. Exp. Agric., 47, No. 8, pp. 1008-1015. doi:

161. Bashan, J., Harrison, S.K. & Whitmoyer, R.E. (1990). Enhanced growth of wheat and soybean plants inoculated with Azospirillum brasilense is not necessarily due to general enhancement of mineral uptake. Appl. Environ. Microbiol., 56, No. 3, pp. 769-775.

162. Tajini, F., Drevon, J.-J., Lamouchi, L., Aouani, M.E. & Trabelsi, M. (2008). Response of common bean lines to inoculation: comparison between the Rhizobium tropici CIAT899 and the native Rhizobium etli 12a3 and their persistence in Tunisian soils. World J. Microbiol. Biotechnol., 24, No. 3, pp. 407-417. doi: s11274-007-9490-8

163. Mhamdi, R., Mrabet, M., Laguerre, G., Tiwari, R. & Aouani, M.E. (2005). Colonization of Phaseolus vulgaris nodules by Agrobacterium-like strains. Can. J. Microbiol., 51, No. 2, pp. 105-111. doi:

164. van Jaarsveld, C.M., Smit, M.A. & Krьger, G.H. J. (2002). Interaction amongst soybean [Glycine max (L.) Merrill] genotype, soil type and inoculant strain with regard to N2 fixation. J. Agr. Crop Sci., 188, No. 3, pp. 206-211. doi: j.1439-037X.2002.00561.x

165. Zhang, F., Dashti, N., Hynes, R.K. & Smith, D.L. (1996). Plant growth promoting rhizobacteria and soybean [Glycine max (L.) Merr.] nodulation and nitrogen fixation at suboptimal root zone temperatures. Ann. Bot., 77, No. 5, pp. 453-459. doi:

166. Egamberdieva, D., Wirth, S., Jabborova, D., Rдsдnen, L.A. & Liao, H. (2017). Coordination between Bradyrhizobium and Pseudomonas alleviates salt stress in soybean through altering root system architecture. J. Plant Int., 12, No. 1, pp. 100-107. doi:

167. Dashadi, M., Khosravi, H., Moezzi, A., Nadian, H., Heidari, M. & Radjabi, R. (2011). Co-inoculation of Rhizobium and Azotobacter on growth indices of faba bean under water stress in the green house condition. Adv. Stud. Biol., 3, No. 8, pp. 373-385. doi: 120010336

168. Kumar, R. & Chandra, R. (2008). Influence of PGPR and PSB on Rhizobium leguminosarum bv. viciae strain competition and symbiotic performance in lentil. World J. Agric. Sci., 4, pp. 297-301.

169. Marinkovic, J., Bjelic, D., Tintor, B., Miladinovic, J. Dukic, V. & Dordevic, V. (2018). Effects of soybean co-inoculation with plant growth promoting rhizobacteria in field trial. Rom.Biotech. Lett., 23, No. 2, pp. 13401-13408.

170. Gharib, A.A., Shahen, M.M. & Ragab, A.A. (2009, November). Influence of Rhizobium inoculation combined with Azotobacter chroococcum and Bacillus megaterium var. phosphaticum on growth, nodulation, yield and quality of two snap been (Phaseolus vulgaris L.) cultivars. Proceedings of the 4th conference on Recent Technologies in Agriculture (pp. 650-662), Cairo.

171. Elkoca, E., Turan, M.M. & Donmez, M.F. (2010). Effects of single, dual and triple inoculations with Bacillus subtilis, Bacillus megaterium and Rhizobium leguminosarum bv. phaseoli on yield and yield parameters of common bean (Phaseolus vulgaris L. cv. Elkoca-05). J. Plant Nutr., 33, No. 14, pp. 2104-2119. doi: 01904167.2010.519084