Fiziol. rast. genet. 2018, vol. 50, no. 2, 149-160, doi: https://doi.org/10.15407/frg2018.02.149

SOYBEAN AND COWPEA SYMBIOTIC SYSTEMS FORMATION WITH BRADYRHIZOBIUM JAPONICUM STRAINS OF DIFFERENT GENETIC GROUPS

Krutylo D.V., Nadkernychna O.V.

  • Institute of Agricultural Microbiology and Agro-industrial Manufacture, National Academy of Agrarian Sciences of Ukraine 97 Shevchenko St., Chernihiv, 14027, Ukraine

The peculiarities of soybean and cowpea plants interaction with slow and intensively growing strains of Bradyrhizobium japonicum of different genetic groups have been studied. Soybean plants are able to enter into effective symbiotic relationships with all the investigated rhizobia strains independently of their growth rate and genetic affiliation. Cowpea plants are selective according to soybean nodule bacteria strains. Interacting with intensively growing USDA 123 В. japonicum strains they form ineffective symbiosis with low level of N2 fixation. Otherwise they form full value N2-fixing systems with slow growing strains of USDA 4, USDA 6 and USDA 110 genetic groups. Rhizobia with different growth rate have identical RFLP-profiles of nifH genes. The formation of active (Nod+Fix+ phenotype) and inactive (Nod+Fix— phenotype) symbiotic systems of cowpea with rhizobia is not associated with the structure of mentioned gene. Likely it can be determined by partners’ specificity of genotype interaction on early stages of symbiosis development.

Keywords: Bradyrhizobium japonicum, soybean, cowpea, symbiotic system, specificity, RFLP-analysis, nifH gene

Fiziol. rast. genet.
2018, vol. 50, no. 2, 149-160

Full text and supplemented materials

Free full text: PDF  

References

1. Veselovska, L.I. & Kots, S.Ya. (2014). The influence of different ways of lectin application on the symbiotic systems soybean - Bradyrhizobium japonicum, formed under optimal and insufficient water supply conditions. Fisiol. rast. genet., 46(5), pp. 437-448 [in Ukrainian].

2. Gaier, G. (1974). Electronic histochemistry. Мoscow: Mir [in Russian].

3. Grodzinsky, A.M. & Grodzinsky, D.M. (1973). Brief guide to plant physiology. Kiev: Naukova Dumka [in Russian].

4. Dospekhov, B.А. (1985). Field Experience Method. Мoskow: Agropromizdat [in Russian].

5. Zhukov, V.A., Rychagova, T.S., Shtark, O.Y., Borisov, A.Y. & Tikhonovich, I.A. (2008). The genetic control of specificity of interactions between legume plants and nodule bacteria. Ecological genetics, 7(4), pp. 12-19 [in Russian]. https://doi.org/10.17816/ecogen6412-19

6. Ivanova, E.S., Baimiev, An.Kh., Ibragimov, R.I. & Baimiev, Al.Kh. (2011). Symbiotic genes of nodule bacteria and the effect of their horizontal transfer on the species composition of microsymbionts of leguminous plants. Bashkir University Bulletin, 16(4), pp. 1210-1213 [in Russian].

7. Kots, S.Ya., Morgun, V.V., Patyka, V.F., Malichenko, S.M., Mamenko, P.M., Kiriziy, D.A., Mykhalkiv, L.M., Beregovenko, S.K. & Melnykova, N.M. (2011). Biological nitrogen fixation: legume-rhizobial symbiosis. (Vol. 2). Кyiv: Logos [in Russian].

8. Patyka, V.F., Kots, S.Ya., Volkohon, V.V., Shestobayeva, O.V., Mel'nychuk, T.M., Kalinichenko, A.V. & Hrynyk, I.V. (2003). Biological nitrogen. Кyiv: Svit [in Ukrainian].

9. Weekly, B. (1975). Electron microscopy for beginners. Мoscow: Mir [in Russian].

10. Fotev, Yu.V., Sidorova, К.К., Novikova, Т.I. & Belousova, V.P. (2016). Study of nodulation and nitrogen fixation in two cowpea [Vigna unguiculata (L.) Walp.] cultivars inoculated with different strains of Bradyrhizobium sp. Vavilov Journal of Genetics and Breeding, 20(3), pp. 348-354 [in Russian]. https://doi.org/10.18699/VJ16.099

11. Tsyganova, A.V., Kitaeva, A.B., Brewin, N.J. & Tsyganov, V.E. (2011). Cellular mechanisms of nodule development in legume plants. Agricultural Biology, 3, pp. 34-41 [in Russian].

12. Chen, W.X., Wang, E.T., Li, Y.B., Chen, X.Q. & Li, Y. (1995). Characterization of Rhizobium tianshanense sp. nov. moderately and slowly growing nodule bacterium isolated from an acid saline environment in Xinjiang, People's Republic of China. International Journal of Systematic Bacteriology, 45, pp. 153-159. https://doi.org/10.1099/00207713-45-1-153

13. Hardy, R.W.F., Holsten, R.D., Jackson, E.K. & Burns, R.C. (1968). The acetylene-ethylene assay for nitrogen fixation: laboratory and field evaluation. Plant Physiology, 43(8), pp. 1185-1207. https://doi.org/10.1104/pp.43.8.1185

14. Jordan, D. (1982). Notes: Transfer of Rhizobium japonicum Buchanan 1980 to Bradyrhizobium gen. nov., a genus of slow-growing, root nodule bacteria from leguminous plants. International Journal of Systematic Bacteriology, 32, pp. 136-139. https://doi.org/10.1099/00207713-32-1-136

15. Krutylo, D.V. & Zotov, V.S. (2015). Genotypic analysis of nodule bacteria nodulating soybean in soils of Ukraine. Russian Journal of Genetics: Applied Research, 5(2), pp. 102-109. https://doi.org/10.1134/S2079059715020057

16. Kuykendall, L., Saxena, B., Devine, T. & Udell, S. (1992). Genetic diversity in Bradyrhizobium japonicum Jordan 1982 and a proposal for Bradyrhizobium elkanii sp. nov. Canadian Journal of Microbiology, 38, pp. 501-505. https://doi.org/10.1139/m92-082

17. Laguerre, G., Nour, S.M., Macheret, V., Sanjuan, J., Drouin, P. & Amarger, N. (2001). Classification of rhizobia based on nodС and nifН gene analysis reveals a close phylogenetic relationship among Phaseolus vulgaris symbionts. Microbiology. 147, pp. 981-993. https://doi.org/10.1099/00221287-147-4-981

18. Mpepereki, S., Wollum, A.G. & Makonese, F. (1996). Diversity in symbiotic specificity of cowpea rhizobia indigenous to Zimbabwean soil. Plant Soil, 186, pp. 167-171. https://doi.org/10.1007/BF00035071

19. Peng, G.X., Tan, Z.Y., Wang, E.T., Reinhold-Hurek, B., Chen, W.F. & Chen, W.X. (2002). Identification of isolates from soybean nodules in Xinjiang Region as Sinorhizobium xinjiangense and genetic differentiation of S. xinjiangense from Sinorhizobium fredii. International Journal of Systematic and Evolutionary Microbiology, 52, pp. 457-462. doi: https://doi: 10.1099/ijs.0.01921-0

20. Tampakaki, A.P., Fotiadis, C.T., Ntatsi, G. & Savvas, D. (2017). Phylogenetic multilocus sequence analysis of indigenous slow-growing rhizobia nodulating cowpea (Vigna unguiculata L.) in Greece. Systematic and Applied. Microbiology, 40(3), pp. 179-189. https://doi.org/10.1016/j.syapm.2017.01.001

21. Xu, L.M., Ge, C., Cui, Z., Li, J. & Fan, H. (1995). Bradyrhizobium liaoningense sp. nov. isolated from the root nodules of soybeans. International Journal of Systematic Bacteriology, 45, pp. 706-711. https://doi.org/10.1099/00207713-45-4-706

22. Yao, Z.Y., Kan, F.L., Wang, E.T., Wei, G.H. & Chen, W.X. (2002). Characterization of rhizobia that nodulate legume species of the genus Lespedeza and description of Bradyrhizobium yuanmingense sp. nov. International Journal of Systematic and Evolutionary Microbiology, 52, pp. 2219-2230. https://doi.org/10.1099/ijs.0.01408-0