en   ru   uk  
Fiziol. rast. genet. 2017, vol. 49, no. 3, 211-217, doi: https://doi.org/10.15407/frg2017.03.211


Tishchenko O.M., Mykhalska S.I.

  • Institute of Plant Physiology and Genetics, National Academy of Sciences of Ukraine 31/17 Vasylkivska St., Kyiv, 03022, Ukraine

In a review the characteristics of transcription factors NAC-subfamily as well as the effectiveness of their use in molecular biotechnology to improve crop resistance to osmotic stress are discussed.

Keywords: transcription factors, NAC, transgenesis, osmotic stress

Fiziol. rast. genet.
2017, vol. 49, no. 3, 211-217

Full text and suplimented materials

Free full text: PDF  


1. Hao, Y.J., Wei, W., Song, Q.X., Chen, H.W., Zhang, Y.Q., Wang, F., Zou, H.F., Lei, G., Tian, A.G., Zhang, W.K., Ma, B., Zhang, J.S. & Chen, S.Y. (2011). Soybean NAC transcription factors promote abiotic stress tolerance and lateral root formation in transgenic plants. Plant J., 68, pp. 302-313. https://doi.org/10.1111/j.1365-313X.2011.04687.x

2. Hu, H., Dai, M., Yao, J., Xiao, B., Li, X., Zhang, Q. & Xiong, L. (2006). Overexpressing a NAM, ATAF, and CUC (NAC) transcription factor enhances drought resistance and salt tolerance in rice. Proc. Natl. Acad. Sci., 103, No. 35, pp. 12987-12992. https://doi.org/10.1073/pnas.0604882103

3. Hu, H., You, J., Fang, Y., Zhu, X., Qi, Z. & Xiong, L. (2008). Characterization of transcription factor gene SNAC2 conferring cold and salt tolerance in rice. Plant Mol. Biol., 67, No. 1-2, pp. 169-181. https://doi.org/10.1007/s11103-008-9309-5

4. Jeong, J.S., Kim, Y.S., Baek, K.H., Jung, H., Ha, S.H., Do Choi, Y., Kim, M., Reuzeau, C. & Kim, J.K. (2010). Root-specific expression of OsNAC10 improves drought tolerance and grain yield in rice under field drought conditions. Plant Physiol., 153, pp. 185-197. https://doi.org/10.1104/pp.110.154773

5. Jeong, J.S., Kim, Y.S., Redillas, M.C., Jang, G., Jung, H., Bang, S.W., Choi,Y.D., Ha, S.H., Reuzeau, C. & Kim, J. K (2013). OsNAC5 overexpression enlarges root diameter in rice plants leading to enhanced drought tolerance and increased grain yield in the field. Plant Biotechnol. J., 11, No. 1, pp. 101-114. https://doi.org/10.1111/pbi.12011

6. Jin, H., Huang, F., Cheng, H., Song, H. & Yu, D. (2013). Overexpression of the GmNAC2 gene, an NAC transcription factor, reduces abiotic stress tolerance in tobacco. Plant Mol. Biol. Rep., 31, No. 2, pp. 435—442. https://doi.org/10.1007/s11105-012-0514-7

7. Lu, M., Ying, S., Zhang, D.F., Shi, Y.S., Song, Y.C., Wang, T.Y. & Li, Y. (2012). A maize stress-responsive NAC transcription factor, ZmSNAC1, confers enhanced tolerance to dehydration in transgenic Arabidopsis. Plant Cell Rep., 31, No. 9, pp. 1701-1711. https://doi.org/10.1007/s00299-012-1284-2

8. Mao, X., Jia, D., Li, A., Zhang, H., Tian, S., Zhang, X., Jia, J. & Jing, R. (2011).Transgenic expression of TaMYB2A confers enhanced tolerance to multiple abiotic stresses in Arabidopsis. Funct. Integr. Genomics.,11, No. 3, pp. 445-465. https://doi.org/10.1007/s10142-011-0218-3

9. Mao, X., Zhang, H., Qian, X., Li, A., Zhao, G. & Jing, R. 2012). TaNAC2, a NAC-type wheat transcription factor conferring enhanced multiple abiotic stress tolerances in Arabidopsis. J. Exp. Bot., 63, No. 8, pp. 2933-2946. https://doi.org/10.1093/jxb/err462

10. Nakashima, K., Tran, L.S., Van Nguyen, D., Fujita, M., Maruyama, K., Todaka, D., Ito, Y., Hayashi, N., Shinozaki, K. & Yamaguchi- Shinozaki, K. (2007). Functional analysis of a NAC-type transcription factor OsNAC6 involved in abiotic and biotic stress-responsive gene expression in rice. Plant J., 51, pp. 617-630. https://doi.org/10.1111/j.1365-313X.2007.03168.x

11. Song, S.Y., Chen, Y., Chen, J., Dai, X.Y. & Zhang, W.H. (2011). Physiological mechanisms underlying OsNAC5-dependent tolerance of rice plants to abiotic stress. Planta., 234, No. 2, pp. 331-345. https://doi.org/10.1007/s00425-011-1403-2

12. Takasaki, H., Maruyama, K., Kidokoro, S., Ito, Y., Fujita, Y., Shinozaki, K., Yamaguchi-Shinozaki, K. & Nakashima, K. (2010). The abiotic stress-responsive NAC-type transcription factor OaNAC5 regulates stress-inducible genes and stress tolerance in rice. Mol. Gen. Genomics., 284, No. 3, pp. 173-183. https://doi.org/10.1007/s00438-010-0557-0

13. Tang, Y., Liu, M., Gao, S., Zhang, Z., Zhao, X., Zhao, C., Zhang, F. & Chen, X. (2012). Molecular characterization of novel TaNAC genes in wheat and overexpression of TaNAC2a confers drought tolerance in tobacco. Physiol. Plant., 144, No. 3, pp. 210-224. https://doi.org/10.1111/j.1399-3054.2011.01539.x

14. Tran L.S.P., Nishiyama R., Yamaguchi-Shinozaki K. & Shinozaki K. (2010). Potential utilizatiom of NAC transcription factors to enhance abiotic stress tolerance in plants by biotechnological approach. GM Crops.,1, pp. 32-39. https://doi.org/10.4161/gmcr.1.1.10569

15. Xue, G.P., Way, H.M., Richardson, T., Drenth, J., Joyce, P.A. & McIntyre, C.L. (2011). Overexpression of TaNAC69 leads to enhanced transcript levels of stress up-regulated genes and dehydration tolerance in bread wheat. Mol. Plant., 4, pp. 697-712. https://doi.org/10.1093/mp/ssr013

16. Zheng, X., Chen, B., Lu, G. & Han, B. (2009). Overexpression of a NAC transcription factor enhances rice drought and salt tolerance. Biochem. Biophys. Res. Comm., 379, pp. 985-989. https://doi.org/10.1016/j.bbrc.2008.12.163