en   ru   uk  
Fiziol. rast. genet. 2016, vol. 48, no. 2, 130-139, doi: https://doi.org/10.15407/frg2016.02.130

Peculiarities of meiosis in transgenic wheat plants obtanied by Agrobacterium-mediated transformation in planta

Goncharuk A.N., Dubrovna O.V., Bavol A.V., Voronova S.S., Lyalko I.I.

  • Institute of Plant Physiology and Genetics, National Academy of Sciences of Ukraine 31/17 Vasylkivska St., Kyiv, 03022, Ukraine

The passing of meiosis in genetically modified wheat plants obtained by Agrobacterium-mediated transformation in planta variety Zimoyarka has been investigated. It is found that transgenic forms are characterized by a higher frequency of meiotic disorders compared to non-transgenic plants. Comparative analysis of the passing of meiosis showed that in transgenic lines obtained by using strain AGLO and vector construct pBi2E the percentage of cells with disorders at the stage metaphase 1 was much lower, and meiotic index respectively higher than in the lines obtained by using strain AGLO and vector construct pBi-OAT. It is shown that the percentage of cells with impaired meiosis was the largest in transgenic plants from lines that are characterized by reduced pollen fertility and low seed productivity.

Keywords: Triticum aestivum L., Agrobacterium-mediated transformation in planta, meiosis

Fiziol. rast. genet.
2016, vol. 48, no. 2, 130-139

Full text and suplimented materials

Free full text: PDF  


1. Belko, N,B., Gordey, I.A., Shchetko, I.S. & Gordey, I.M. (2011). Creating tetraploid forms of winter rye (Secale cereale L.) using nitrous oxide and the genetic effects of genome duplication. Faktori eksperimentalnoy evolyutsii organizmiv. 10, pp. 15-20 [in Russian].

2. Voronova, S.S., Bavol, A.V. & Dubrovna, O.V. (2015). Genetic transformation in planta of bread wheat using the AGLO strain containing pBi2E with a double-stranded RNA suppressor of the proline dehydrogenase gene. Faktori eksperimentalnoy evolyutsii organizmiv, 17, pp. 126-130 [in Ukrainian].

3. Goncharuk, O.M., Bavol, A.V. & Dubrovna, O.V. (2015). Agrobacterium-mediated transformation in planta of bread wheat using ornithine aminotransferase gene. Faktori eksperimentalnoy evolyutsii organizmiv, 17, pp. 131-135 [in Ukrainian].

4. Deineko, E.V., Zagorskaya, A.A. & Shumny, V.K. (2007). T-DNA-induced mutations in transgenic plants. Genetics, 43, No. 1, pp. 5-17 [in Russian]. https://doi.org/10.1134/S1022795407010012

5. Lapochkina, I.F, Iordanskaya, I.V. & Yachevskaya, G.L. (2014). Cytologic study of the collection of synthetic wheat from the national collection of US cereals (National Small Grain Collection of USDA-AKS) in the conditions of the non-black-earth zone of Russia. Selskokhozyaystvennaya biologiya, No. 3, pp. 77-82 [in Russian]. https://doi.org/10.15389/agrobiology.2014.3.77eng

6. Lemesh, V.A., Samadadze, T.E., Guzenko, E.V. Zheleznyakova, E.V., Amosova, A.V., Zelenin, A.V. & Muravenko, O.V. (2014). Peculiarities of the development and reproduction of transgenic plants of long-flax. Ontogenesis, 45, No. 6, pp. 406-411 [in Russian]. https://doi.org/10.1134/S1062360414060083

7. Lisovska, T.P., Kuzmyshina. I., Kotsun, L.O., Voytyuk, V.P. & Andreeva, V.V. (2014). Meiotic mutation of tomato, which violates the condensation of chromatin. Faktori eksperimentalnoy evolyutsii organizmiv, 14, pp. 125-129 [in Ukrainian].

8. Orlovskaya, O.A., Leonova, I.N., Salina, E.A. & Khotyleva L.V. (2015). Peculiarities of chromosome behavior in meiosis in common wheat lines with introgression of the genetic material of tetraploid species of the genus Triticum. Ekologicheskaya genetika, 13, No. 1, pp. 16-22 [in Russian]. https://doi.org/10.17816/ecogen13116-25

9. Pausheva, Z.P. (1988). Workshop on plant cytology. Moscow: Kolos [in Russian].

10. Sechnyak, A.L. & Golub, Yu.V. (2007). Regularity of meiosis in hybrids of alloplasmic wheats with wheat-alien amphiploid. Dosyahnennya i problemy henetyky, selektsiyi ta biotekhnolohiyi, 2, pp. 157-161 [in Russian].

11. Sidorchuk, Yu.V., Dorogova, N.V., Deineko, E.V. & Shumny, V.K. (2008). Premature cytokinesis in maternal cells of pollen of transgenic tobacco plants (Nicotiana tabacum L.). Cytologiya, 50, No. 5, pp. 447-451[in Russian].

12. Sidorchuk, Yu.V., Zagorskaya, A.A., Deineko, E.V. Shamina, N.V. & Shumny V.K. (2000). T-DNA-induced anomalies of flowers and male sterility in transgenic tobacco plants: morphological and cytological analysis. Cytologiya i genetika, 34, No. 6, pp. 3-8 [in Russian].

13. Sosnikhina, S.P., Mikhailova, E.I., Tikholiz, O.A., Tsvetkova, N.V., Lovshits, A.V., Sapronova, O.S., Fedotova, Yu.S., Kolomiets, O.L. & Bogdanov, Yu.F. (2007). Manifestation and inheritance of the desynaptic form of rye with violation of the synapsis homology. Genetika, 43, No. 10, pp. 1424-1433 [in Russian]. https://doi.org/10.1134/S1022795407100146

14. Chumakov, M.I. & Moiseeva, E.M. (2012). Agrobacterial transformation technologies of plants in planta. Biotekhnologiya, No. 1, pp. 8-20 [in Russian].

15. Shamina, N.V., Dorogova, N.V., Zagorskaya, A.A., Deineko, E.V. & Shumny, V.K. (2000). Anomalies of male meiosis in a sterile transgenic tobacco line RES91. Cytologiya, 42, No. 12, pp.1159-1164 [in Russian].

16. Shamina, N.V. (2006). Diagnostic anomaly of plant meiosis by its products. Cytologiya, 48, No. 6, pp. 486-494 [in Russian].

17. Shkutina, F.M. & Kozlovskaya V.F. (1974). Cytomixis in meiosis in some hybrid forms of cereals subtribed Triticinae Genetika, 10, No. 5, pp. 3-12 [in Russian].

18. Bardini, M., Labra, M., Winnfield, M. & Sala, F. (2003). Antibiotic-induced DNA methylation changes in calluses of Arabidopsis thaliana. Plant Cell, Tissue Organ Cult., 72, No. 2, pp. 157-162. https://doi.org/10.1023/A:1022208302819

19. Bhalla, L., Ottenhof, H.H. & Singh, M.B. (2006). Wheat transformation - an update of recent progress. Euphytica, 149, No. 3, pp. 353-366. https://doi.org/10.1007/s10681-006-9087-6

20. Castle, L.A., Errampalli, D., Atherton, T.L. Franzmann, L., Yoon, E. & Meinke, D. (1993). Genetic and molecular characterization of embryonic mutants identified following seed transformation in Arabidopsis. Mol. Gen. Genet., 241, No. 5/6, pp. 504-514. https://doi.org/10.1007/BF00279892

21. Errampalli, D., Patton, D., Castle, L., Mickelson, L., Hansen, K., Schnall, J., Feldmann, K. & Meinke, D. (1991). Embryonic lethals and T-DNA insertional mutagenesis in Arabidopsis. Plant Cell, 3, No. 2, pp. 149-157. https://doi.org/10.1105/tpc.3.2.149

22. Labra, M., Savini, C., Bracale, M., Pelucchi, N., Colombo, L., Bardini, M. & Sala, F. (2001). Genomic changes in transgenic rice (Oryza sativa L.) plants produced by infecting calli with Agrobacterium tumefaciens. Plant Cell Rep., 20, No. 4, pp. 325-330. https://doi.org/10.1007/s002990100329

23. Laufs, P., Autran, D. & Traas, J. (1999). A chromosomal paracentric inversi associated with T-DNA integration in Arabidopsis. Plant J., 18, No. 2, pp. 131-139. https://doi.org/10.1046/j.1365-313X.1999.00436.x

24. Negruk, V., Eisner, G. & Lemieux, B. (1996). Addition-deletion mutations in transgenic Arabidopsis thaliana generated by the seed co-cultivation method. Genome, 39, No. 6, pp. 1117-1122. https://doi.org/10.1139/g96-140

25. Peirson, B.N., Bowling, S.E. & Makaroff, Ch. (1997). A defect in synapsis causes male sterility in a T-DNA-tagged Aradidopsis thaliana mutant. Plant J., 11, No. 4, pp. 659-669. https://doi.org/10.1046/j.1365-313X.1997.11040659.x

26. Sala F., Arencibia, A., Castiglione, S., Yifan, H., Labra, M., Savini, C., Bracale, M. & Pelucchi, N. (2000). Somaclonal variation in transgenic plants. Acta Hort., 530, No. 48, pp. 411-419. https://doi.org/10.17660/ActaHortic.2000.530.48

27. Shamina, N.V., Dorogova, N.V., Sidorchuk, I.V., Zagorskaya, A.A., Deineko, E.V. & Shumny, V.K. (2001). Abnormalities of meiotic division caused by T-DNA-tagged mutation in tobacco (Nicotiana tabacum L.). Cell Biol. Int., 25, No. 4, pp. 367-369. https://doi.org/10.1006/cbir.2000.0641

28. Supartana, P., Shimizu, T., Nogawa, M., Shooiri, H., Nakajima, T., Haramoto, N., Nozue, M. & Kojima, M. (2006). Development of simple and efficient in planta transformation method for wheat (Triticum aestivum L.) using Agrobacterium tumefaciens. J. Biosci. Bioeng., 102, No. 3, pp. 162-170. https://doi.org/10.1263/jbb.102.162

29. Tax, F.E. & Vernon, D.M. (2001). T-DNA-associated duplication/translocations in Arabidopsis. Implications for mutant analysis and functional genomics. Plant Physiol., 126, No. 4, pp. 1527-1538. https://doi.org/10.1104/pp.126.4.1527

30. Xia, G., Li, Z., He, C., Chen, H. & Brettell, R. (1999). Transgenic plant regeneration from wheat (Triticum aestivum L.) mediated by Agrobacterium tumefaciens. Acta Phytophysiol. Sini., 25, No. 1, pp. 22-28.

31. Zhao, T., Zhao, S., Chen, H., Zhao, Q., Hu, Z., Hou, B. & Xia, G. (2006). Transgenic wheat progeny resistant to powdery mildew generated by Agrobacterium inoculum to the basal portion of wheat seedling. Plant Cell Rep., No. 11, pp. 1199-1204. https://doi.org/10.1007/s00299-006-0184-8