Fìzìol. rosl. genet. 2025, vol. 57, no. 6, 510-520, doi:

Regulation of growth, development and productivity of pepper by treatment with antigibberellin preparations that differ in mechanism of action

Rogach V.V.1,2, Kuryata V.G.2, Kiriziy D.A.1, Stasik О.О.1,  Rogach T.I.2

  1. Institute of Plant Physiology and Genetics, National Academy of Sciences of Ukraine, 31/17 Vasylkivska St., Kyiv, 03022, Ukraine
  2. Mykhailo Kotsiubynskyi Vinnytsia State Pedagogical University, 32 Ostrozhsky St., Vinnytsia, 21100, Ukraine

The aim of work was to determine the effect of antigibberellin preparations with different mechanisms of action on the formation of the leaf apparatus, the features of the mesostructure, and the photosynthetic productivity of leaves in connection with the yield of sweet pepper. In the field experiment, plants were treated at the budding stage with aqueous solutions of chlormequat chloride, tebuconazole, and esfon. Phytometric indices, mesostructural organization of leaves, chlorophyll content, net photosynthetic productivity, and cenotic indices of plantations were determined at the fruiting stage. It was found that the preparations inhibited the linear growth of plants. The most significant decrease in height was observed after the application of esfon. The leaves number on the plant decreased under esfon  treatment, while this index did not change under the chlormequat chloride and tebuconazole applications. Chlormequat chloride and tebuconazole, unlike the ethylene producer esfon, increased the fresh and dry weight of leaves and the whole plant, the leaves area, and the leaf index of plantings. The increase in the area of pepper plants leaf surface occurred due to an increase in the area of individual leaves, since their total number did not change significantly under the action of preparations. All antigibberellin preparations increased the specific leaf weight, which was due to the thickening of leaf blades as a result of the chlorenchyma cells growth, namely, an increase in the volume of columnar parenchyma cells and the size of spongy parenchyma cells. Retardants significantly increased the chlorophyll content in leaves and the chlorophyll index, and contributed to an increase in the net photosynthetic productivity, which became an important prerequisite for increasing the yield of sweet pepper crops. The greatest increase in yield was revealed under the action of tebuconazole, while the weight of one fruit did not change significantly. The use of esfon did not significantly change the yield. Therefore, the formation of a more powerful leaf apparatus under the action of retardants enhanced its donor function, which became a prerequisite for increasing the biological productivity of the crop.

Keywords: Capsicum annuum L., source-sink system, retardant, ethylene producer, leaf apparatus, leaf mesostructure, coenotic indices, yield

Fìzìol. rosl. genet.
2025, vol. 57, no. 6, 510-520

Full text and supplemented materials

References

 1. Hima, V., Jay, P. & Shailesh, M. (2025). A review: the elucidation of source-sink relationship. Life Science Leaflets, 179, pp. 12-35.

 2. Rademacher, W. (2016). Сhemical regulators of gibberellin status and their application in plant production. Annual Plant Reviews, 49, pp. 359-403. https://doi.org/10.1002/ 9781119312994.apr0541

 3. Kuryata, V.G. & Poprotska, I.V. (2019). Physiological and biochemical basics of application of retardants in plant growing. Vinnytsia: TOV Tvory [in Ukrainian].

 4. Verma, S., Upadhyay, A., Kumari, M., Kumar, A., Kumar, A., Kumar, S., Sunny & Tandle, S.S. (2024). Role of plant growth regulators in improving vegetable crop productivity: A review. J. Sci. Res. Rep., 30(12), pp. 681-697. https://doi.org/10.9734/jsrr/ 2024/v30i122712

 5. Zheng, R., Wu, Y. & Xia, Y. (2012). Chlorocholine chloride and paclobutrazol treatments promote carbohydrate accumulation in bulbs of Lilium Oriental hybrids ‘Sorbonne’. J Zhejiang Univ. Sci., B., 13(2), pp. 136-144. https://doi.org/10.1631/ jzus.B1000425

 6. Singh, S.K., Nath, V., Marboh, E.S. & Sharma, S. (2017). Source-sink relationship in litchi verses mango: a concept. Int. J. Cur. Microbiol. App. Sci., 6(3), pp. 500-509. https://doi.org/10.20546/ijcmas.2017.603.058500

 7. Hegde, S., Adiga, J.D., Honnabyraiah, Guruprasad, M.K., Shivanna, M. & Halesh G.K. (2018). Influence of paclobutrazol on growth and yield of jamun cv. Chintamani. Int. J. Cur. Microbiol. App. Sci., 7(1), pp. 1590-1599. https://doi.org/10.20546/ijcmas.2018. 701.193

 8. Rohach, V.V., Kiriziy, D.A., Stasik, O.O., Mickevicius, S. & Rohach, T.I. (2020). The effect of growth promotors and retardants on the morphogenesis, photosynthesis and productivity of tomatoes (Lycopersicon esculentum Mill.). Fiziol. rast. genet., 52(4), pp. 279-294. https://doi.org/10.15407/frg2020.04.279

 9. Rogach, V.V., Voitenko, L.V., Shcherbatiuk, M.M., Kosakivska, I.V. & Rogach, T.I. (2020). Morphogenesis, pigment content, phytohormones and productivity of eggplants under the action of gibberellin and tebuconazole. Regul. Mech. Biosyst., 11(1), pp. 129-135. https://doi.org/10.15421/022017

10. Desta, B. & Kefelegn, G.A. (2021). Paclobutrazol as a plant growth regulator. Chem. Biol. Technol. Agric., 8(1). https://doi.org/10.1186/s40538-020-00199-z

11. Rosado-Souza, L., Yokoyama, R., Sonnewald, U. & Fernie, A.R. (2023). Understanding source—sink interactions: Progress in model plants and translational research to crops. Mol. Plant. 16, pp. 96-121. https://doi.org/10.1016/j.molp.2022.11.015

12. Burgess, A.J., Masclaux-Daubresse, C., Strittmatter, G., Weber, A.P.M., Taylor, S.H., Harbinson, J., Yin, X., Long, S., Paul, M.J., Westhoff, P., Loreto, F., Ceriotti, A., Saltenis, V.L.R., Pribil, M., Nacry, P., Scharff, L.B., Jensen, P.E., Muller, B., Cohan, J.-P. & Baekelandt, A. (2023). Improving crop yield potential: Underlying biological processes and future prospects. Food and Energy Security, 12, e435. https://doi.org/ 10.1002/fes3.435

13. Liu, L., Fang, Y., Huang, M., Jin, Y., Sun, J., Tao, X., Zhang, G., He, K.-Z., Zhao, Y. & Zhao, H. (2014). Uniconazole-induced starch accumulation in the bioenergy crop duckweed (Landoltia punctata) II: transcriptome alterations of pathways involved in carbohydrate metabolism and endogenous hormone crosstalk. Biotechnol. Biofuels, 8(1), 64. https://doi.org/10.1186/s13068-015-0245-8

14. Koteswara, R.G., Surendra, B.M., Nagaraju, M.M., Thomson, T., Ranganna, G. & Siva, M. (2017). A critical review on effect of plant growth regulators on root vegetables. Int. J. Cur. Microbiol. App. Sci., 6(7), pp. 1243-1247. https://doi.org/10.20546/ijcmas. 2017.607.150

15. Acharya, S.K., Thakar, C., Brahmbhatt, J.H. & Joshi, N. (2020). Effect of plant growth regulators on cucurbits: A review. J. Pharmacogn. Phytochem., 9(4), pp. 540-544.

16. Pavlista, A.D. (2013). Influence of foliar-applied growth retardants on russet burbank potato tuber production. Am. J. Potato Res., 90, pp. 395-401. https://doi.org/10.1007/ s12230-013-9307-2

17. Yooyongwech, S., Samphumphuang, T., Tisarum, R., Theerawitaya, C. & Cha-um, S. (2017). Water-deficit tolerance in sweet potato [Ipomoea batatas (L.) Lam.] by foliar application of paclobutrazol: role of soluble sugar and free proline. Front. Plant Sci., 8, 1400. https://doi.org/10.3389/fpls.2017.01400

18. Rogach, V.V., Kiriziy, D.A., Kuryata, V.G. & Rogach, T.I. (2022). Morphogenesis, photosynthesis, and productivity of pepper (Capsicum annuum L.) under the impact of growth substances with different directions and mechanisms of action. Fiziol. rast. genet., 54(3), pp. 214-232 [in Ukrainian]. https://doi.org/10.15407/frg2022.03.214

19. Sarker, B.C., Rahim, M.A. & Archbold, D.D. (2016). Combined effects of fertilizer, irrigation, and paclobutrazol on yield and fruit quality of mango. Horticulturae, 2, 14. https://doi.org/10.3390/horticulturae2040014

20. Kumbar, S., Patil, D.R., Das, K.K., Swamy, G.S.K., Thammaiah, Jayappa, J. & Gandolkar, K. (2017). Studies on the influence of growth regulators and chemicals on the quality parameters of grape cv. 2A Clone. Int. J. Cur. Microbiol. App. Sci., 6(5), pp. 2585-2592. https://doi.org/10.20546/ijcmas.2017.605.291

21. Sardoei, A.S., Yazdi, M.R. & Shshdadneghad, M. (2014). Effect of cycocel on growth retardant cycocel on reducing sugar, malondialdehyde and other aldehydes of Cannabis sativa L. Int. J. Biosci., 4(6), pp. 127-133. https://doi.org/10.12692/ijb/4.6.127-133

22. Yan, Y., Wan, Y., Liu, W., Wang, X., Yong, T., Yang, W. & Zhao, L. (2015). Influence of seed treatment with uniconazole powder on soybean growth, photosynthesis, dry matter accumulation after flowering and yield in relay strip intercropping system. Plant Prod. Sci., 18(3), pp. 295-301. https://doi.org/10.1626/pps.18.295

23. Pal, S., Zhao, J., Khan, A., Yadav, N.S., Batushansky, A., Barak, S., Rewald, B., Fait, A., Lazarovitch, N. & Rachmilevitch, S. (2016). Paclobutrazol induces tolerance in tomato to deficit irrigation through diversified effects on plant morphology, physiology and metabolism. Sci. Rep., 6, 39321. https://doi.org/10.1038/srep39321

24. AOAC. (2010). Official Methods of Analysis of Association of Analytical Chemist International (18th ed.) Association of Analytical Chemist. Gaithersburg, Maryland, USA.

25. Van Emden, H.F. (2008). Statistics for terrified biologists. Blackwell, Oxford. https://doi.org/10.1007/s11099-011-0058-3

26. Wang, Y., Gu, W., Xie, T., Li, L., Sun, Y., Zhang, H., Li, J. & Wei, S. (2016). Mixed compound of DCPTA and CCC increases maize yield by improving plant morphology and upregulating photosynthetic capacity and antioxidants. PLoS ONE, 11(2), e0149404. https://doi.org/10.1371/journal.pone.0149404

27. Rogach, V.V., Stasik, O.O., Kiriziy, D.A., Sytnyk, S.K., Kuryata, V.G. & Rogach, T.I. (2023). The effects of growth regulators on the photosynthetic apparatus of the sweet pepper (Capsicum annuum L.) in relation to the productivity. Fiziol. rast. genet., 55(1), pp. 25-45 [in Ukrainian]. https://doi.org/10.15407/frg2023.01.025

28. Xiang, J., Wu, H., Zhang, Y., Wang, Y., Li, Z., Lin, H., Chen, H., Zhang, J. & Zhu, D. (2017). Transcriptomic analysis of gibberellin- and paclobutrazol-treated rice seedlings under submergence. Int. J. Mol. Sci., 18(10), 2225. https://doi.org/10.3390/ ijms18102225

29. Kasem, M.M. & Abd El-Baset, М.М. (2015). Studding the influence of some growth retardants as a chemical mower on ryegrass (Lolium perenne L.). J. Plant Sci., 3(5), pp. 255-258. https://doi.org/10.11648/j.jps.20150305.12

30. Spitzer, T., Misa, P., Bilovsky, J. & Kazda, J. (2015). Management of maize stand height using growth regulators. Plant Protect. Sci., 51, pp. 223-230. https://doi.org/10.17221/ 105/2014-PPS

31. Li, L.L., Gu, W.R., Li, C.F. Li, W.H., Chen, X.C., Zhang, L.G. & Wei, S. (2019). Dual application of ethephon and DCPTA increases maize yield and stalk strength. Agron. J., 111(3), 1533. https://doi.org/10.2134/agronj2018.06.0363

32. Amanullah, D.R. (2015). Specific leaf area and specific leaf weight in small grain crops wheat, rye, barley, and oats differ at various growth stages and NPK source. J. Plant Nutr., 38(11), pp. 1964-1708. https://doi.org/10.1080/01904167.2015.1017051

33. Bhattacharya, A. (2019). Radiation-use efficiency under different climatic conditions. In: Changing Climate and Resource Use Efficiency in Plants. Elsevier Ltd. Academic Press, London, pp. 51-109. https://doi.org/10.1016/B978-0-12-816209-5.00002-7

34. Ahmad, I., Kamran, M., Ali, S., Bilegjargal, B., Cai, T., Ahmad, S., Meng, X., Su, W., Liu, T. & Han, Q. (2018). Uniconazole application strategies to improve lignin biosynthesis, lodging resistance and production of maize in semiarid regions. Field Crops Research, 222(1), pp. 66-77. https://doi.org/10.1016/j.fcr.2018.03.015