Fìzìol. rosl. genet. 2025, vol. 57, no. 6, 463-487, doi:

What hinders the wide use of nitrogen oxide donors to increase plant tolerance to abiotic stressors

Ponomarоva I.G., Morderer Ye.Yu.

  • Institute of Plant Physiology and Genetics, National Academy of Sciences of Ukraine 31/17 Vasylkivska St., Kyiv, 03022, Ukraine

The review considers the latest data on the physiological functions of nitric oxide (NO) in plants, the use of NO donors to increase plant tolerance to abiotic stressors, and analyzes the factors that prevent the widespread use of NO donors in plant growing. It was determined that one of these factors is that under stress conditions, it is quite difficult to accurately predict the level of increase in endogenous NO content when using NO donors. Given the dose-dependence and polyfunctionality of NO, when increasing endogenous NO content can contribute to increasing plant resistance, but can also lead to the induction of programmed cell death, uncertainty about the level of increase in endogenous NO content is a significant obstacle to the effective use of NO donors. Another fundamental obstacle is that the final effect of using NO donors can be determined by the interaction of NO with other plant signaling systems, as a result of which the nature of the effect of exogenous NO depends on the physiological state of plants. In addition, the difficulty in determining the optimal moment for the application of NO donors in conditions where the moment of onset of the stressor is uncertain, as well as ensuring the necessary duration of the effect of exogenous NO, is also an obstacle. It is concluded that a necessary prerequisite for the widespread use of NO donors to increase plant tolerance to the effects of abiotic stressors is progress in fundamental research into the mechanisms of NO formation in plants, mechanisms of NO-mediated signaling, and the definition of clear criteria that would allow predicting the nature of the effect of NO donors on plants with a high degree of reliability. It is also essential to develop NO donors with prolonged action, which would provide a gradual increase in the content of endogenous NO over a long period of time. It is stated that the most promising direction, progress in which can be achieved in the near future, is the use of NO donors to modify the phytotoxic effect of herbicides.

Keywords: NO, nitric oxide donors, signaling, abiotic stressors, herbicides

Fìzìol. rosl. genet.
2025, vol. 57, no. 6, 463-487

Full text and supplemented materials

References

 1. Karpetz, Yu.V. (2019). Donors of nitric oxide and their application for increase in plant resistance to action of abiotic stressors. Visn. Hark. nac. agrar. univ., Ser. Biol., 48 (3), pp. 28-51 [in Ukrainian]. https://doi.org/10.35550/vbio2019.03.028

 2. Sami, F., Faizan, M., Faraz, A., Siddiqui, H., Yusuf, M. & Hayat, S. (2018). Nitric oxide-mediated integrative alterations in plant metabolism to confer abiotic stress tolerance, NO crosstalk with phytohormones and NO-mediated post translational modifications in modulating diverse plant stress. Nitric Oxide, 73, рр. 22-38. https://doi.org/ 10.1016/j.niox.2017.12.005

 3. Zhou, X., Joshi, S., Khare, T., Patil, S., Shang, J. & Kumar, V. (2021). Nitric oxide, crosstalk with stress regulators and plant abiotic stress tolerance. Plant Cell Rep., 40, рр. 1395-1414. https://doi.org/10.1007/s00299-021-02705-5

 4. Praveen, A. (2022). Nitric oxide mediated alleviation of abiotic challenges in plants. Nitric Oxide, 128, рр. 37-49. https://doi.org/10.1016/j.niox.2022.08.005

 5. Klepper, L. (1979). Nitric oxide (NO) and nitrogen dioxide (NO2) emissions from herbicide-treated soybean plants. Atmospheric Environ., 13(4), рр. 537-542. https://doi.org/ 10.1016/0004-6981(79)90148-3

 6. Misra, A.N., Misra, M. & Singh, R. (2010) Nitric oxide biochemistry, mode of action and signaling in plants. J. Med. Plants Res., 4(25), pp. 2729-2739. http://www.academicjournals.org/JMPR

 7. Yu, M., Lamattina, L., Spoel, S.H. & Loake, G.J. (2014) Nitric oxide function in plant biology: a redox cue in deconvolution. New Phytol., 202(4), pp. 1142-1156. https://doi.org/10.1111/nph.12739

 8. Domingos, P., Prado, A.M., Wong, A., Gehring, C. & Feijo, J.A. (2015) Nitric Oxide: а Multitasked Signaling Gas in Plants. Mol. Plant, 8 (4), pp. 506-520. https://doi.org/ 10.1016/j.molp.2014.12.010

 9. Kolbert, Z., Barroso, J.B., Brouquisse, R., Corpas, F.J., Gupta, K.J., Lindermayr, C., Loake, G.J., Palma, J.M., Petrivalsky, M., Wendehenne, D. & Hancock, J.T. (2019). A forty year journey: The generation and roles of NO in plants. Nitric Oxide, 93, рр. 53-70. https://doi.org/10.1016/j.niox.2019.09.006

10. Corpas, F.J. & Palma, J.M. (2020). Assessing nitric oxide (NO) in higher plants: an outline. Nitrogen, 1(1), рр. 12-20. https://doi.org/10.3390/nitrogen1010003

11. Verma, N., Tiwari, S., Singh, V.P. & Prasad, S.M. (2020). Nitric oxide in plants: an ancient molecule with new tasks. Plant Growth Regul., 90, pp. 1-13. https://doi.org/ 10.1007/s10725-019-00543-w

12. Hancock, J.T. (2020). Nitric Oxide Signaling in Plants. Plants, 9(11), 1550. https://doi.org/10.3390/plants9111550

13. Gupta, K.J., Kaladhar, V.C., Fitzpatrick, T.B., Fernie, A.R., Mшller, I.M. & Loake, G.J. (2022) Nitric oxide regulation of plant metabolism. Mol. Plant, 15 (2), pp. 228-242. https://doi.org/10.1016/j.molp.2021.12.012

14. Arc, E., Sechet, J., Corbineau, F., Rajjou, L. & Marion-Poll, A. (2013) ABA crosstalk with ethylene and nitric oxide in seed dormancy and germination. Front. Plant Sci., Sec. Plant Cell. Biol., 4. https://doi.org/10.3389/fpls.2013.00063

15. Li R., Jia, Y., Yu, L., Yang, W., Chen, Z., Chen, H. & Hu, X. (2018). Nitric oxide promotes light-initiated seed germination by repressing PIF1 expression and stabilizing HFR1. J. Plant Physiol. Biochem., 123, рр. 204-212. https://doi.org/10.1016/j.plaphy.2017.11.012

16. Lopes-Oliveira, P.J., Oliveira, H.C., Kolbert, Z. & Freschi, L. (2021). The light and dark sides of nitric oxide: multifaceted roles of nitric oxide in plant responses to light. J. Exp. Bot., 72(3), рр. 885—903. https://doi.org/10.1093/jxb/eraa504

17. Pande, A, Mun, B.G., Lee, D.S., Khan, M, Lee, G.M., Hussain, A. & Yun, B.W. (2021). NO Network for Plant—Microbe Communication. Underground: A Review. Front. Plant Sci., 12:658679. https://doi.org/10.3389/fpls.2021.658679

18. Khan, M., Ali, S., Al Azzawi, T.N. I., Saqib, S., Ullah, F., Ayaz, A. & Zaman, W. (2023). The Key Roles of ROS and RNS as a Signaling Molecule in Plant—Microbe Interactions. Antioxidants, 12(2), 268. https://doi.org/10.3390/antiox12020268

19. Ren, H., Wang, D. & Liu, W. (2024). Nitric oxide shifts the impact of ionic liquid on microbial community structure in rhizosphere of Arabidopsis. Chem. Ecol., 41(1), рр. 114-127. https://doi.org/10.1080/02757540.2024.2402903

20. Casaretto, E., Signorelli, S., Gallino, J.P., Vidal, S. & Borsani, O. (2021). Endogenous •NO accumulation in soybean is associated with initial stomatal response to water deficit. Physiol. Plant., 172(2), рр. 564-576. https://doi.org/10.1111/ppl.13259

21. Ahammed, G.J., Li, X., Mao, Q., Wan, H., Zhou, G. & Cheng, Y. (2021). The SlWRKY81 transcription factor inhibits stomatal closure by attenuating nitric oxide accumulation in the guard cells of tomato under drought. Physiol. Plant., 172(2), рр. 885-895. https://doi.org/10.1111/ppl.13243

22. Singh, N., Giri, M.K. & Chattopadhyay, D. (2025). Lighting the path: how light signaling regulates stomatal movement and plant immunity. J. Exp. Bot., 76(3), рр. 769-786. https://doi.org/10.1093/jxb/erae475

23. Deng, Y., Wang, C., Huo, J., Hu, W. & Liao, W. (2019). The involvement of NO in ABA-delayed the senescence of cut roses by maintaining water content and antioxidant enzymes activity. Sci. Hortic., 247, рр. 35-41. https://doi.org/10.1016/j.scienta.2018.12.006

24. Parveen, S., Altaf, F., Farooq, S., Lone, M.L., Haq, A. & Tahir, I. (2023). The swansong of petal cell death: insights into the mechanism and regulation of ethylene-mediated flower senescence. J. Exp. Bot., 74(14), рр. 3961-3974, https://doi.org/10.1093/ jxb/erad217

25. Carillo, P. & Ferrante, A. (2025). Decoding the intricate metabolic and biochemical changes in plant senescence: a focus on chloroplasts and mitochondria. Ann. Bot., mcaf003. https://doi.org/10.1093/aob/mcaf003

26. Begara-Morales, J.C., Chaki, M., Valderrama, R., Sanchez-Calvo, B., Mata-Perez, C., Padilla, M.N., Corpas, F.J. & Barroso, J.B. (2018). Nitric oxide buffering and conditional nitric oxide release in stress response. J. Exp. Bot., 69(14), рр. 3425-3438. https://doi.org/10.1093/jxb/ery072

27. Khan, M., Ali, S., Al Azzawi, T.N.I. & Yun, B.-W. (2023). Nitric Oxide Acts as a Key Signaling Molecule in Plant Development under Stressful Conditions. Int. J. Mol. Sci., 24, 4782. https://doi.org/10.3390/ijms24054782

28. Yun, B.-W., Skelly, M.J., Yin, M., Yu, M., Mun, B.-G., Lee, S.-U., Hussain, A.l, Spoel, S.H. & Loake, G.J. (2016). Nitric oxide and S-nitrosoglutathione function additively during plant immunity. New Phytol., 211(2), рр. 516-526. https://doi.org/ 10.1111/nph.13903

29. Graska, J., Fidler, J., Gietler, M., Prabucka, B., Nykiel, M. & Labudda, M. (2023). Nitric Oxide in Plant Functioning: Metabolism, Signaling, and Responses to Infestation with Ecdysozoa Parasites. Biology, 12(7), 927. https://doi.org/
10.3390/biology12070927

30. Gogoi, K., Gogoi, H., Borgohain, M., Saikia, R., Chikkaputtaiah, C., Hiremath, S. & Basu, U. (2024). The molecular dynamics between reactive oxygen species (ROS), reactive nitrogen species (RNS) and phytohormones in plant’s response to biotic stress. Plant Cell. Rep., 43, 263. https://doi.org/10.1007/s00299-024-03343-3

31. Shu, P., Sheng, J., Qing, Y. & Shen, L. (2025). SlATG5 is crucial for the accumulation of ROS in postharvest tomato fruit resistance to B.cinerea mediated by nitric oxide. Postharvest Biol. Technol., 219, 113204. https://doi.org/10.1016/j.postharvbio.2024. 113204

32. Joolaei, M., Pirdashti, H., Dehestani, A., Babaizad, V. & Mehraban, P. (2025). Nitric oxide-induced modulation of physiological and molecular responses in tomato (Solanum lycopersicum L.) plants infected with Xanthomonas perforans. J. Plant Mol. Breed., 13(1), рр. 39-59. https://doi. org 10.22058/jpmb.2025.2053032.1334

33. Asgher, M., Per, T.S., Masood, A., Fatma, M., Freschi, L, Corpas, F.J. & Khan, N.A. (2017). Nitric oxide signaling and its crosstalk with other plant growth regulators in plant responses to abiotic stress. Environ. Sci. Pollut. Res., 24 (3), рр. 2273-2285. https://doi.org/10.1007/s11356-016-7947-8

34. Fancy, N.N., Bahlmann, A.K. & Loake, G.J. (2017). Nitric oxide function in plant abiotic stress. Plant. Cell. Environ., 40(4), рр. 462-472. https://doi.org/10.1111/
pce.12707.

35. Allagulova, C.R., Lubyanova, A.R. & Avalbaev, A.M. (2023). Multiple Ways of Nitric Oxide Production in Plants and Its Functional Activity under Abiotic Stress Conditions. Int. J. Mol. Sci., 24(14), 11637. https://doi.org/10.3390/ijms241411637

36. Khator, K., Parihar, S., Jasik, J. & Shekhawat, G.S. (2024). Nitric oxide in plants: an insight on redox activity and responses toward abiotic stress signaling. Plant Signal. Behav., 19(1). https://doi.org/10.1080/15592324.2023.2298053

37. Johansson, A., Sarrette, B., Boscari, A., Prudent, M., Gruber, V., Brouquisse, R., Jacquet, C., Gough, C. & Pauly, N. (2025). The role of reactive oxygen, nitrogen and sulphur species in the integration of (a)biotic stress signals in legumes. J. Exp. Bot., eraf175. https://doi.org/10.1093/jxb/eraf175

38. Parankusam, S., Adimulam, S.S., Bhatnagar-Mathur, P. & Sharma, K.K. (2017). Nitric Oxide (NO) in Plant Heat Stress Tolerance: Current Knowledge and Perspectives. Front. Plant Sci., 8, 1582. https://doi.org/10.3389/fpls.2017.01582

39. Costa-Broseta, A., Perea-Resa, C., Castillo, M.C., Ruiz, M.F., Salinas, J. & Leуn, J. (2018). Nitric Oxide Controls Constitutive Freezing Tolerance in Arabidopsis by Attenuating the Levels of Osmoprotectants, Stress-Related Hormones and Anthocyanins. Sci. Rep., 8, 9268. https://doi.org/10.1038/s41598-018-27668-8

40. Gao, X., Ma, J., Wang, G., Huang, S., Wu, X., Hu, L. & Yu, J. (2024). The S-nitrosylation of monodehydroascorbate reductase positively regulated the low temperature tolerance of mini Chinese cabbage. Int. J. Biol. Macromol., 281(1), 136047. https://doi.org/10.1016/j.ijbiomac.2024.136047.

41. Hu, Y., Lu, L., Tian, S., Li, S., Liu, X., Gao, X., Zhou, W. & Lin, X. (2019). Cadmium-induced nitric oxide burst enhances Cd tolerance at early stage in roots of a hyperaccumulator Sedum alfredii partially by altering glutathione metabolism. Sci. Total Environ., 650(2), рр. 2761-2770. https://doi.org/10.1016/j.scitotenv.2018.09.269

42. Ghorbani, A., Pishkar, L., Roodbari, N., Pehlivan, N. & Wu, C. (2021). Nitric oxide could allay arsenic phytotoxicity in tomato (Solanum lycopersicum L.) by modulating photosynthetic pigments, phytochelatin metabolism, molecular redox status and arsenic sequestration. Plant Physiol. Biochem., 167, рр. 337-348. https://doi.org/10.1016/j.plaphy.2021.08.019

43. Song, K., Li, H., Yang, K., Ma, T., Hu, Y., Chen, J., Zhu, S. & Liu, W. (2025). Exogenous sodium nitroprusside exhibits multiple positive roles in alleviating cadmium toxicity in tobacco (Nicotiana tabacum L.), Nitric Oxide, 154, рр. 8-18. https://doi.org/ 10.1016/j.niox.2024.11.002

44. Fatma, M.,  Masood, A.,  Per, T.S. &  Khan, N.A. (2016). Nitric Oxide Alleviates Salt Stress Inhibited Photosynthetic Performance by Interacting with Sulfur Assimilation in Mustard. Front. Plant Sci., Sec. Plant Pat. Interact., 25, p. 521. https://doi.org/10.3389/ fpls.2016.00521

45. Arora, D. & Bhatla, S.C. (2017). Melatonin and nitric oxide regulate sunflower seedling growth under salt stress accompanying differential expression of Cu/Zn SOD and Mn SOD. Free Radical Biol. Med., 106, рр. 315-328. https://doi.org/10.1016/j.freeradbiomed.2017.02.042.

46. Jain, P., von Toerne, C., Lindermayr, C. & Bhatla, S.C. (2018). S-nitrosylation/denitrosylation as a regulatory mechanism of salt stress sensing in sunflower seedlings. Physiol. Plant., 162(1), pp. 49-72. https://doi.org/10.1111/ppl.12641

47. Gong, B. & Shi, Q. (2019). Identifying S-nitrosylated proteins and unraveling S-nitrosoglutathione reductase-modulated sodic alkaline stress tolerance in Solanum lycopersicum L. Plant Physiol. Biochem., 142, рр. 84-93. https://doi.org/10.1016/j.plaphy. 2019.06.020.

48. Ahanger, M.A., Aziz, U., Alsahli, A.A., Alyemeni, M.N. & Ahmad, P. (2020). Influence of Exogenous Salicylic Acid and Nitric Oxide on Growth, Photosynthesis, and Ascorbate-Glutathione Cycle in Salt Stressed Vigna angularis. Biomolecules, 10(1), 42. https://doi.org/10.3390/biom10010042

49. Kaya, C., Higgs, D., Ashraf, M., Alyemeni, M.N. & Ahmad, P. (2020) Synergistic effects of hydrogen sulfide and nitric oxide in enhancing salt stress tolerance in cucumber seedlings. Physiol. Plant., Special Issue:H2S and NO signal integration, 168(2), рр. 256-277. https://doi.org/10.1111/ppl.70109

50. Afzal, M.K., Habib, N. & Ashraf, M.A. (2025). Nitric Oxide and Hydrogen Peroxide Coordinate to Improve Photosynthesis, Oxidative Defense, Osmoregulation, and Ions Homeostasis in Pea (Pisum sativum L.) Under Drought. J. Soil Sci. Plant. Nutr., 25(1). https://doi.org/10.1007/s42729-025-02283-5

51. Wani, K.I., Naeem, M., Castroverde, C.D. M., Kalaji, H.M., Albaqami, M. & Aftab, T. (2021). Molecular Mechanisms of Nitric Oxide (NO) Signaling and Reactive Oxygen Species (ROS) Homeostasis during Abiotic Stresses in Plants. Int. J. Mol. Sci., 22(17), 9656. https://doi.org/10.3390/ijms22179656

52. Zhang, J. & Liao, W. (2019). Protein S-nitrosylation in plant abiotic stresses. Functional Plant Biol., 47(1), рр. 1-10. https://doi.org/10.1071/FP19071

53. Zhang, J., Huang, D., Wang, C., Wang, B., Fang, H., Huo, J. & Liao, W. (2019). Recent Progress in Protein S-Nitrosylation in Phytohormone Signaling. Plant Cell Physiol., 60(3), рр. 494-502. https://doi.org/10.1093/pcp/pcz012

54. Feng, J., Chen, L. & Zuo, J. (2019). Protein S-Nitrosylation in plants: Current progresses and challenges. J. Integr. Plant Biol., 61(12), pp. 1206-1223. https://doi.org/ 10.1111/jipb.12780

55. Fernando, V., Zheng, X., Walia, Y., Sharma, V., Letson, J. & Furuta, S. (2019). S-Nitrosylation: An Emerging Paradigm of Redox Signaling. Antioxidants, 8(9), 404. https://doi.org/10.3390/antiox8090404

56. Jahnov«, J., Luhov«, L. & Petrivalsky, M. (2019). S-Nitrosoglutathione Reductase — The Master Regulator of Protein S-Nitrosation in Plant NO Signaling. Plants, 8(2), 48. https://doi.org/10.3390/plants8020048

57. Machchhu, F. & Wany, A. (2023). Protein S-nitrosylation in plants under biotic stress. Theor. Exp. Plant Physiol., 35, рр. 331-339. https://doi.org/10.1007/s40626-023-00289-x

58. Saini, S., Sharma, P., Singh, P., Kumar, V., Yadav, P. & Sharma, A. (2023). Nitric oxide: An emerging warrior of plant physiology under abiotic stress. Nitric Oxide, 140-141, рр. 58-76. https://doi.org/10.1016/j.niox.2023.10.001

59. Molina-Moya, E., RodrНguez-Gonz«lez, A., Pel«ez-Vico, M.A, Sandalio, L.M. & Romero-Puertas, M.C. (2025). Peroxisomal-dependent signalling and dynamics modulate plant stress responses: reactive oxygen and nitrogen species as key molecules, J. Exp. Bot., eraf072. https://doi.org/10.1093/jxb/eraf072

60. Gong, B. & Shi, Q. (2019). Identifying S-nitrosylated proteins and unraveling S-nitroso­ glutathione reductase-modulated sodic alkaline stress tolerance in Solanum lycopersicum L. Plant Physiol. Biochem., 142, рр. 84-93. https://doi.org/10.1016/
j.plaphy.2019.06.020

61. Wei, L., Zhang, M., Wei, S., Zhang, J., Wang, C. & Liao, W. (2020). Roles of nitric oxide in heavy metal stress in plants: Cross-talk with phytohormones and protein S-nitro­ sylation. Environ. Pollut., 259, 113943. https://doi.org/10.1016/j.envpol.2020. 113943

62. Wei, L., Zhang, J., Wang, C. & Liao, W. (2020). Recent progress in the knowledge on the alleviating effect of nitric oxide on heavy metal stress in plants, Plant Physiol. Biochem., 147, рр. 161-171, https://doi.org/10.1016/j.plaphy.2019.12.021

63. Reda, M., Golicka, A., Kabala, K. & Janicka, M. (2018). Involvement of NR and PM-NR in NO biosynthesis in cucumber plants subjected to salt stress. Plant Sci., 267, рр. 55-64. https://doi.org/10.1016/j.plantsci.2017.11.004

64. Qi, Q., Dong, Y., Liang, Y., Li. K., Xu, H. & Sun, X. (2020). Overexpression of SlMDHAR in transgenic tobacco increased salt stress tolerance involving S-nitrosylation regulation. Plant Sci., 299, 110609. https://doi.org/10.1016/j.plantsci.2020.110609

65. Wu, P., Xiao, C., Cui, J., Hao, B., Zhang, W., Yang, Z., Ahammed, G.J., Liu, H. & Cui, H. (2021). Nitric Oxide and Its Interaction with Hydrogen Peroxide Enhance Plant Tolerance to Low Temperatures by Improving the Efficiency of the Calvin Cycle and the Ascorbate—Glutathione Cycle in Cucumber Seedlings. J. Plant Growth Regul., 40, рр. 2390-2408. https://doi.org/10.1007/s00344-020-10242-w

66. Das, A., Pal, S., Hasanuzzaman, M., Adak, M.K. & Sil, S.K. (2025). Mitigation of aluminum toxicity in rice seedlings using biofabricated selenium nanoparticles and nitric oxide: Synergistic effects on oxidative stress tolerance and sulfur metabolism. Chemosphere, 370, 143940. https://doi.org/10.1016/j.chemosphere.2024.143940

67. Kaya, C., Uрurlar, F. & Seth, C.S. (2024). Sodium nitroprusside modulates oxidative and nitrosative processes in Lycopersicum esculentum L. under drought stress. Plant Cell. Rep., 43, 152. https://doi.org/10.1007/s00299-024-03238-3

68. Munawar, A., Akram, N.A., Ahmad, A. & Ashraf, M. (2019). Nitric oxide regulates oxidative defense system, key metabolites and growth of broccoli (Brassica oleracea L.) plants under water limited conditions. Sci. Hortic., 254, рр. 7-13. https://doi.org/ 10.1016/j.scienta.2019.04.072

69. Rezayian, M., Ebrahimzadeh, H. & Niknam, V. (2020). Nitric Oxide Stimulates Antioxidant System and Osmotic Adjustment in Soybean Under Drought Stress. J. Soil. Sci. Plant Nutr., 20, рр. 1122-1132. https://doi.org/10.1007/s42729-020-00198-x

70. Zhou, Q., Tian, Y., Li, X., Wang, X. & Dong, S. (2023). SNP application improves drought tolerance in soybean. Sci. Rep., 13, 10911. https://doi.org/10.1038/s41598-023-38088-8

71. Prabhu, B.M., Ramteke, P.W., Shukla, P.K., Mishra, P., Attri, A., Singh, B.R. & Pagire, G.S. (2018). Evaluation of response of exogenous nitric oxide on photosynthetic enzymes and pigments of C3 and C4 plants grown under drought stress. J. Pharmacogn. Phytochem., 7(3), рр. 2606-2612. https://www.phytojournal.com/archives/2018/ vol7issue3/PartAI/7-3-102-732.pdf

72. Sehar, Z., Masood, A. & Khan, N.A. (2019). Nitric oxide reverses glucose-mediated photosynthetic repression in wheat (Triticum aestivum L.) under salt stress. Environ. Ex. Bot., 161, рр. 277-289. https://doi.org/10.1016/j.envexpbot.2019.01.010

73. Khator, K. & Shekhawat, G.S. (2019). Nitric oxide improved salt stress tolerance by osmolyte accumulation and activation of antioxidant defense system in seedling of B. juncea (L.). Czern. Vegetos, 32, рр. 583-592. https://doi.org/10.1007/s42535-019-00071-y

74. Siddiqui, M.H., Alamri, S.A., Al-Khaishany, M.Y., Al-Qutami, А., AL-Rabiah, Н. & Kalaji, Н.М. (2017). Exogenous application of nitric oxide and spermidine reduces the negative effects of salt stress on tomato. Hortic. Environ. Biotechnol., 58, рр. 537-547. https://doi.org/10.1007/s13580-017-0353-4

75. Wei, L., Zhang, J., Wei, S., Deng, Y., Hu, D., Liu, H., Gong, W., Pan, Y. & Liao, W. (2022). Nitric oxide alleviates salt stress through protein S-nitrosylation and transcriptional regulation in tomato seedlings. Planta, 256(6). https://doi.org/10.1007/s00425-022-04015-w

76. Wang, C., Wei, L., Zhang, J., Hu, D., Gao, R., Liu, Y., Feng, L., Gong, W. & Liao, W. (2023). Nitric Oxide Enhances Salt Tolerance in Tomato Seedlings by Regulating Endogenous S-nitrosylation Levels. J. Plant Growth Regul., 42, рр. 275-293. https://doi.org/10.1007/s00344-021-10546-5

77. Li, S.-W., Li, Y., Leng, Y., Zeng, X.-Y. & Ma, Y.-H. (2019). Nitric oxide donor improves adventitious rooting in mung bean hypocotyl cuttings exposed to cadmium and osmotic stresses. Environ. Exp. Bot., 164, pp. 114-123. https://doi.org/10.1016/j.envexpbot.2019.05.004.

78. Piacentini, D., Ronzan, M., Fattorini, L., Della Rovere, F., Massimi, L., Altamura, M.M. & Falasca, G. (2020). Nitric oxide alleviates cadmium- but not arsenic-induced damages in rice roots. Plant Physiol. Biochem., 151, рр. 729-742. https://doi.org/ 10.1016/j.plaphy.2020.04.004.

79. Singh, P.K., Indoliya, Y. & Chauhan, A.S. (2017). Nitric oxide mediated transcriptional modulation enhances plant adaptive responses to arsenic stress. Sci. Rep., 7, 3592. https://doi.org/10.1038/s41598-017-03923-2

80. Rizwan, M., Mostofa, M.G., Ahmad, M.Z., Imtiaz, M., Mehmood, S., Adeel, M., Dai, Z., Li, Z., Aziz, O., Zhang, Y. & Tu, S. (2018). Nitric oxide induces rice tolerance to excessive nickel by regulating nickel uptake, reactive oxygen species detoxification and defense-related gene expression. Chemosphere, 191, рр. 23-35. https://doi.org/10.1016/ j.chemosphere.2017.09.068

81. Tripathi, D.K., Singh, S., Singh, S., Srivastava, P.K., Singh, V.P., Singh, S., Prasad, S.M., Singh, P.K., Dubey, N.K., Pandey, A.C. & Chauhan, D.K. (2017). Nitric oxide alleviates silver nanoparticles (AgNps)-induced phytotoxicity in Pisum sativum seedlings, Plant Physiol. Biochem., 110, рр. 167-177. https://doi.org/10.1016/j.plaphy.2016.06.015

82. Clarke, A., Desikan, R., Hurst, R.D., Hancock, J.T. & Neill, S.J. (2000). NO way back: nitric oxide and programmed cell death in Arabidopsis thaliana suspension cultures. Plant J., 24(5), рр. 667-677. https://doi.org/10.1046/j.1365-313x.2000.00911.x

83. Lin, A., Wang, Y., Tang, J., Xue, P., Li, C., Liu, L., Hu, B., Yang, F., Loake, G.J. & Chu, C. (2012). Nitric Oxide and Protein S-Nitrosylation Are Integral to Hydrogen Peroxide-Induced Leaf Cell Death in Rice. Plant Physiol., 158 (1), рр. 451-464. https://doi.org/10.1104/pp.111.184531

84. De Pinto, M.C., Locato, V., Sgobba, A., Romero-Puertas, M.d.C., Gadaleta, C., Delledonne, M. & De Gara, L. (2013). S-Nitrosylation of Ascorbate Peroxidase Is Part of Programmed Cell Death Signaling in Tobacco Bright Yellow-2 Cells. Plant Physiol., 163(4), рр. 1766-1775. https://doi.org/10.1104/pp.113.222703

85. Bagniewska-Zadworna, A., Arasimowicz-Jelonek, M., Smolinski, D.J. & Stelmasik, A. (2014). New insights into pioneer root xylem development: evidence obtained from Populus trichocarpa plants grown under field conditions. Ann. Bot., 113(7), рр. 1235-1247, https://doi.org/10.1093/aob/mcu063

86. Bruand, C. & Meilhoc, E. (2019). Nitric oxide in plants: pro- or anti-senescence. J. Ex. Bot., 70(17), рр. 4419-4427, https://doi.org/10.1093/jxb/erz117

87. Vitecek, J., Wunschova, A., Petrek, J., Adam, V., Kizek, R. & Havel, L. (2007). Cell death induced by sodium nitroprusside and hydrogen peroxide in tobacco BY-2 cell suspension. Biol. Plant., 51, рр. 472-479. https://doi.org 10.1007/s10535-007-0099-4

88. De Michele, R., Vurro, E., Rigo, C., Costa, A., Elviri, L., Di Valentin, M., Careri, M., Zottini, M., di Toppi, L.S. & Lo Schiavo, F. (2009). Nitric Oxide Is Involved in Cadmium-Induced Programmed Cell Death in Arabidopsis Suspension Cultures. Plant Physiol., 150, pp. 217-228. www.plantphysiol.org/cgi/doi/10.1104/pp.108.133397

89. Pan, C., Li, X., Yao, S., Luo, S., Liu, S., Wang, A., Xiao, D., Zhan, J. & He, L. (2021). S-nitrosated proteomic analysis reveals the regulatory roles of protein S-nitrosation and S-nitrosoglutathione reductase during Al-induced PCD in peanut root tips. Plant Sci., 308, 110931. https://doi.org/10.1016/j.plantsci.2021.110931

90. He, H., Huang, W., Oo, T.L., Gu, M., Zhan, J., Wang, A. & He L.-F. (2018). Nitric oxide suppresses aluminum-induced programmed cell death in peanut (Arachis hypo­ ganea L.) root tips by improving mitochondrial physiological properties. Nitric Oxide, 74, рр. 47-55. https://doi.org/10.1016/j.niox.2018.01.003

91. He, H., Oo, TL, Huang, W., He, L.F. & Gu, M. (2019). Nitric oxide acts as an antioxidant and inhibits programmed cell death induced by aluminum in the root tips of peanut (Arachis hypogaea L.). Sci. Rep., 9(1), 9516. https://doi.org/10.1038/s41598-019-46036-8

92. Huang, D., Chen, X., Yun, F., Fang, H., Wang, C. & Liao, W. (2024). Nitric oxide alleviates programmed cell death induced by cadmium in Solanum lycopersicum seedlings through protein S-nitrosylation. Sci. Total Environ., 931, 172812. https://doi.org/10.1016/j.scitotenv.2024.172812

93. Kacprzyk, J., Daly, C.T. & Mc Cabe, P.F. (Еds.) (2011). The Botanical Dance of Death: Programmed Cell Death in Plants. Advances in Botanical Research, 60, Burlington: Academic Press, pp. 169-261. http://hdl.handle.net/10197/3454

94. Avin-Wittenberg, T. (2018). Autophagy and its role in plant abiotic stress management. Plant Cell. Environ., 42(3), рр. 1045-1053. https://doi.org/10.1111/pce.13404

95. Liao, C-Yi. & Bassham, D.C. (2020). Combating stress: the interplay between hormone signaling and autophagy in plants. J. Ex. Bot., 71(5), pp. 1723-1733. https://doi.org/ 10.1093/jxb/erz515

96. Yue, J.-Y., Wang, W.-W., Dou, X.-T., Wang, Y.-J., Jiao, J.-L. & Wang, H.-Z. (2022). Overexpression of the autophagy-related gene TaATG8 enhances wheat seedling tolerance to salt stress by increasing autophagic activity. Crop Pasture Sci., 73(12), рр. 1325-1333. https://doi.org/10.1071/CP22086

97. Liu, M., Ma, L., Tang, Y., Yang, W., Yang, Y., Xi, J., Wang, X., Zhu, W., Xue, J., Zhang, X. & Xu, S. (2024). Maize Autophagy-Related Protein ZmATG3 Confers Tolerance to Multiple Abiotic Stresses. Plants, 13(12), 1637. https://doi.org/10.3390/ plants13121637

98. Yagyu, M. & Yoshimoto, K. (2024). New insights into plant autophagy: molecular mechanisms and roles in development and stress responses. J. Ex. Bot., 75(5), рр. 1234—1251. https://doi.org/10.1093/jxb/erad459

99. Agbemafle, W., Jayasinghe, V. & Bassham, D.C. (2025). Can autophagy enhance crop resilience to environmental stress? Phil. Trans. R. Soc. B38020240245. http://doi.org/ 10.1098/rstb.2024.0245

100.  Zhou, L.L., Gao, K.Y. & Cheng, L.S. (2021). Short-term waterlogging-induced autophagy in root cells of wheat can inhibit programmed cell death. Protoplasma, 258, рр. 891-904. https://doi.org/10.1007/s00709-021-01610-8

101.  Huang, X., Yan, H., Xu, Z., Yang, B., Luo, P. & He, Q. (2025). The inducible role of autophagy in cell death: emerging evidence and future perspectives. Cell Commun. Signal., 23, 151. https://doi.org/10.1186/s12964-025-02135-w

102.  Kuo, E.Y., Chang, H.-L., Lin, S.-T. & Lee, T.-M. (2020) High Light-Induced Nitric Oxide Production Induces Autophagy and Cell Death in Chlamydomonas reinhardtii. Front. Plant Sci., Sec. Plant Cell Biol., 11. https://doi.org/10.3389/fpls.2020.00772

103.  Sarkar, S., Korolchuk, V.I., Renna, M., Imarisio, S., Fleming, A., Williams, A., Garcia-Arencibia, M., Rose, C., Luo, S., Underwood, B.R., Kroemer, G., O’Kane, C.J. & Rubinsztein, D.C. (2011). Complex Inhibitory Effects of Nitric Oxide on Autophagy. Mol. Cell, 43(1), рр. 19-32. https://doi.org/10.1016/j.molcel.
­ 2011.04.029

104.  Filomeni, G., De Zio, D. & Cecconi, F. (2015). Oxidative stress and autophagy: the clash between damage and metabolic needs. Cell Death Differ. 22, рр. 377-388. https://doi.org/10.1038/cdd.2014.150

105.  Sadhu, A., Moriyasu, Y., Acharya, K. & Bandyopadhyay, M. (2019). Nitric oxide and ROS mediate autophagy and regulate Alternaria alternata toxin-induced cell death in tobacco BY-2 cells. Sci. Rep. 9, 8973. https://doi.org/10.1038/s41598-019-45470-y

106.  Lutter, F., Brenner, W., Krajinski-Barth, F. & Safavi-Rizi, V. (2024). Nitric oxide and cytokinin cross-talk and their role in plant hypoxia response. Plant Signal. Behav., 19(1). https://doi.org/10.1080/15592324.2024.2329841

107.  Zhang, J., Cheng, K., Liu, X., Dai, Z., Zheng, L. & Wang, Y. (2023). Exogenous abscisic acid and sodium nitroprusside regulate flavonoid biosynthesis and photosynthesis of Nitraria tangutorum Bobr in alkali stress. Front. Plant Sci., 14, 1118984. https://doi: 10.3389/fpls.2023.1118984

108.  Corpas, F.J., Gonzalez-Gordo, S., Caсas, A. & Palma, J.M. (2019). Nitric oxide and hydrogen sulfide in plants: which comes first? J. Ex. Bot., 70(17), рр. 4391-4404. https://doi.org/10.1093/jxb/erz031

109.  Bhadwal, S.S., Verma, S., Hassan, S. & Kaur, S. (2024). Unraveling the potential of hydrogen sulfide as a signaling molecule for plant development and environmental stress responses: A state-of-the-art review. Plant Physiol. Biochem., 212, 108730. https://doi.org/10.1016/j.plaphy.2024.108730

110.  Singh, G., Patel, A., Tiwari, S., Gupta, D. & Prasad, S.M. (2022). Signaling molecules hydrogen sulfide (H2S) and nitric oxide (NO): role in microalgae under adverse environmental conditions. Acta Physiol. Plant. 44, 68. https://doi.org/10.1007/s11738-022-03404-8

111.  Del RНo, L.A. (2015). ROS and RNS in plant physiology: an overview, J. Ex. Bot., 66(10), рр. 2827-2837. https://doi.org/10.1093/jxb/erv099

112.  Kohli, S.K., Khanna, K., Bhardwaj, R., Abd_Allah, E.F., Ahmad, P., & Corpas, F.J. (2019). Assessment of Subcellular ROS and NO Metabolism in Higher Plants: Multifunctional Signaling Molecules. Antioxidants, 8(12), 641. https://doi.org/10.3390/ antiox8120641

113.  Corpas, F.J., Gonz«lez-Gordo, S., Palma, J.M. (2021). Nitric Oxide (NO) Scaffolds the Peroxisomal Protein—Protein Interaction Network in Higher Plants. Int. J. Mol. Sci., 22(5), 2444. https://doi.org/10.3390/ijms22052444

114.  Corpas, F.J., del RНo, L.A., & Palma, J.M. (2019). Plant peroxisomes at the crossroad of NO and H2O2 metabolism. J. Int. Plant Biol., 61(7), pp. 803-816. https://doi.org/ 10.1111/jipb.12772

115.  Ergashev, U., Yu, M., Luo, L., Tang, J., & Han, Y. (2024). The Key Targets of NO-Mediated Post-Translation Modification (PTM) Highlighting the Dynamic Metabolism of ROS and RNS in Peroxisomes. Int. J. Mol. Sci., 25(16), 8873. https://doi.org/ 10.3390/ijms25168873

116.  Corpas, F.J., del RНo, L.A. & Palma, J.M. (2019). Impact of Nitric Oxide (NO) on the ROS Metabolism of Peroxisomes. Plants, 8(2), 37. https://doi.org/10.3390/ plants8020037

117.  Lindermayr, C. (2018). Crosstalk between reactive oxygen species and nitric oxide in plants: Key role of S-nitrosoglutathione reductase. Free Radic. Biolog. Med., 122, рр. 110-115. https://doi.org/10.1016/j.freeradbiomed.2017.11.027

118.  Wang, Y., Loake, G.J. & Chu, C. (2013) Cross-talk of nitric oxide and reactive oxygen species in plant programed cell death. Front. Plant Sci., Sec. Plant Physiol., 4. https://doi.org/10.3389/fpls.2013.00314

119.  Serrano, I., Romero-Puertas, M.C., Sandalio, L.M. & Olmedilla, A. (2015). The role of reactive oxygen species and nitric oxide in programmed cell death associated with self-incompatibility. J. Exp. Bot., 66(10), рр. 2869-2876. https://doi:10.1093/jxb/
erv083

120.  Locato, V., Paradiso, A., Sabetta, W., De Gara, L. & de Pinto, M.C. (2016). Nitric Oxide and Reactive Oxygen Species in PCD Signaling. Advances in Botanical Research. Chapter Nine. Editor(s): David Wendehenne, Academic Press, 77, рр. 165-192. https://doi.org/10.1016/bs.abr.2015.10.008

121.  Beligni, M.V. & Lamattina, L. (1999). Nitric oxide protects against cellular damage produced by methylviologen herbicides in potato plants. Nitric Oxide, 3(3), рр. 199-208. https://doi.org/10.1006/niox.1999.0222. PMID: 10442851

122.  Hung, K.T., Chang, C.J. & Kao, C.H. (2002). Paraquat toxicity is reduced by nitric oxide in rice leaves. J. Plant. Physiol., 159(2), рр. 159-166. https://doi.org/10.1078/ 0176-1617-00692

123.  Chen, R., Sun, S., Wang, C., Li, Y., Liang, Y., An, F., Li, C., Dong, H., Yang, X., Zhang, J. & Zuo, J. (2009) The Arabidopsis PARAQUAT RESISTANT2 gene encodes an S-nitrosoglutathione reductase that is a key regulator of cell death. Cell Res., 19, рр. 1377-1387. https://doi.org/10.1038/cr.2009.117

124.  Murgia, I., Tarantino, D., Vannini, C., Bracale, M., Carravieri, S. & Soave, C. (2004). Arabidopsis thaliana plants overexpressing thylakoidal ascorbate peroxidase show increased resistance to Paraquat-induced photooxidative stress and to nitric oxide-induced cell death. Plant J., 38(6), рр. 940-53. https://doi.org/10.1111/j.1365-313X.2004.02092.x

125.  Li, Z-C., Ren, Q-W., Guo, Y., Ran, J., Ren, X-T., Wu, N-N., Xu, H-Y., Liu, X. & Liu, J-Z. (2021). Dual Roles of GSNOR1in Cell Death and Immunity in Tetraploid Nicotiana tabacum. Front. Plant Sci. 12, 596234. https://doi.org/10.3389/fpls.2021. 596234

126.  Ferreira, L.C., Cataneo, A.C., Remaeh, L.M., Coriani, N., Fumis, T., Soyza, Y.A., Scavroni, J. & Soares, B.J. (2009). Nitric oxide reduces oxidative stress generated by lactofen in soybean plants. Pesticide biochemistry and physiology, 97(1), рр. 47-54. https://doi.org/10.1016/j.pestbp.2009.12.003

127.  Qian, H., Chen, W., Li, J., Wang, J., Zhou, Z., Liu, W. & Fu, Z. (2009). The effect of exogenous nitric oxide on alleviating herbicide damage in Chlorella vulgaris. Aquat Toxicol., 92(4), рр. 250-257 https://doi.org/10.1016/j.aquatox.
2009.02.008

128.  Singh, H., Singh, N.B., Singh, A., Hussain, I. & Yadav, V. (2017). Physiological and biochemical roles of nitric oxide against toxicity produced by glyphosate herbicide in Pisum sativum. R. J. Plant Physiol., 64(4), рр. 518-524. https://doi.org/10.1134/ S1021443717040136

129.  Morderer, Y.Y., Radchenko, M.P. & Sychuk, A.M. (2013). Programmed cell death in the pathogenesis, induced by herbicides in plants. Fiziol. rast. genet., 45, No 6, pp. 517-526 [in Ukrainian]. http://dspace.nbuv.gov.ua/handle/123456789/159373

130.  Morderer, Y.Y. (2023). What is missing to create new herbicides and solving the problem of resistance? Fiziol. rast. genet., 55, No 5, pp. 371-394. https://doi.org/10.15407/ frg2023.05.371

131.  Sychuk, A., Radchenko, M. & Morderer, Y. (2013). The increase of phytotoxic action of graminicide fenoxaprop-p-ethyl by NO donor sodium nitroprusside. Science and Education a New Dimension: Natural and Technical Sci., I (2), No 15, pp. 21-22. Retrieved from https://seanewdim.com/wp-content/uploads/2021/02/Sychuk-A.-Radchenko-M.-Morderer-E.-The-increase-of-phytotoxic-action-of-graminicide-fenoxaprop-P-ethyl-by-NO-donor-sodium-nitrpruside.pdf

132.  Sychuk, A.M. (2015). The participation of programmed cell death in the herbicides induced pathogenesis. Thesis for PhD sci. degree in biological sci., spec. 03.00.12. Plant Physiology. Institute of Plant Physiology and Genetics. Kyiv, Ukraine [in Ukrainian].

133.  Ponomareva, I.G., Khandezhyna, M.V. & Radchenko, M.P. (2022). Increase in the phytotoxic effect of protoporphyrinogen oxidase inhibiting herbicide carfentrazone and herbicide synthetic auxin 2,4-D by join use with the NO donor sodium nitroprusside. Fiziol. rast. genet., 54, No 5, pp. 419-428 [in Ukrainian]. https://doi.org/10.15407/ frg2022.05.419

134.  Ponomareva, I.G. & Yukhymuk, V.V. (2023). Acceleration of herbicide aclonifen phytotoxic action by join application with no donor sodium nitroprusside. Fiziol. rast. genet., 55, No. 5, pp. 450-460 [in Ukrainian]. https://doi.org/10.15407/
frg2023.05.450

135.  Ponomarova, I.G., Storozhenko, V.O., Yukhymuk, V.V. & Morderer, Y.Y. (2025). The effect of sodium nitroprusside on the action of herbicides, protoporphyrinogen oxidase inhibitors, and synthetic auxins. Regul. Mechan. Biosyst., 16(1), e25030. https://doi.org/ 10.15421/0225030