Fìzìol. rosl. genet. 2025, vol. 57, no. 4, 279-307, doi: https://doi.org/10.15407/frg2025.04.279

Modern advancements in Agrobacterium-mediated wheat transformation technology

Dubrovna O.V., Mykhalska S.I., Komisarenko A.G.

  • Institute of Plant Physiology and Genetics, National Academy of Sciences of Ukraine 31/17 Vasylkivska St., Kyiv, 03022, Ukraine

Agrobacterium-mediated transformation is one of the most effective methods of introducing genetic material into plants, and plays a key role in the genetic engineering of cereal crops. This technology is widely used for the production of transgenic wheat and high-efficiency gene-functional studies. Over the past two decades, significant progress has been made in the technology of Agrobacterium-mediated transformation of wheat, which has significantly expanded the possibilities of its application. This review is devoted to highlighting the latest achievements in the field of Agrobacterium-mediated transformation of wheat, analyzing technical improvements related to this system, as well as developing new methodologies for genetic modification of this crop. The basic principles of transformation mediated by Agrobacterium are briefly presented. The main factors that play an important role in increasing the efficiency of Agrobacterium-mediated transformation of wheat are considered, in particular, the genotype, type of explant, its size and stage of development, selection of bacterial strains, culture media composition, physicochemical conditions, hormonal supplements, growth stimulants. Special attention is paid to studies aimed at finding more effective promoters and new marker genes. The possibilities of increasing the efficiency of Agrobacterium-mediated transformation of wheat by using a number of regulatory genes to enhance somatic embryogenesis and plant regeneration are analyzed. Information is presented on modern protocols for Agrobacterium-mediated transformation of wheat, which have significantly increased the frequency of obtaining modified plants and expanded the range of transformed species and genotypes of this crop.

Keywords: wheat, Agrobacterium-mediated transformation, progress in technology

Fìzìol. rosl. genet.
2025, vol. 57, no. 4, 279-307

Full text and supplemented materials

References

1. Erenstein, O., Jaleta, M., Mottaleb, K.A., Sonder, K., Donovan, J. & Braun, H.-J. (2022). Global trends in wheat production, consumption and trade. In book: Wheat improvement, 11, pp. 47-66. https://doi.org/10.1007/978-3-030-90673-3_4

2. Nowsherwan, I., Shabbir, G., Malik, S.I. & Ilyas, M. (2018). Effect of drought stress on different physiological traits in bread wheat. J. Agricult., 16, No. 1, pp. 1-6. https://doi.org/10.3329/sja.v16i1.37418

3. El-Mouhamady, A., El-Hawary, M. & Habouh, M. (2023). Transgenic wheat for drought stress tolerance: A Review. Middle East J. Agric. Res., 12, No. 1, pp. 77-94. https://www.curresweb.com/index.php/MEJAR1/issue/view/18

4. Liu, S., Wang, K., Geng, S., Hossain, M., Ye, X., Li, A., Mao, L. & Kogel, K.-H. (2024). Enemies at peace: Recent progress in Agrobacterium-mediated cereal transformation. Crop J., 12, No. 2, pp. 321-329. https://doi.org/10.1016/j.cj.2023.12.009

5. Shepherd, M., Turner, J.A., Small, B. & Wheeler, D. (2020). Priorities for science to overcome hurdles thwarting the full promise of the 'digital agriculture' revolution. J. Sci. Food Agric., 100, No. 14, pp. 5083-5092. https://doi.org/10.1002/jsfa.9346

6. Hiei, Y., Ishida, Y. & Komari, T. (2014). Progress of cereal transformation technology mediated by Agrobacterium tumefaciens. Front. Plant Sci., 5, p. 628. https://doi.org/10.3389/fpls.2014.00628

7. Godara, M., Das, D., Roy, J. & Bhandawat, A. (2024). Genetic Engineering Methods for Wheat Improvement. In: Tiwari, S. & Koul, B. (eds) Genetic Engineering of Crop Plants for Food and Health Security. Springer Singapore. https://doi.org/10.1007/978-981-99-5034-8_21

8. Cheng, M., Fry, J., Pang, S., Zhou, H., Hironaka, C.M., Duncan, D.R., Conner, T.W. & Wan, Y. (1997). Genetic transformation of wheat mediated by Agrobacterium tumefaciens. Plant Physiol., 115, No. 3, pp. 971-980. https://doi.org/10.1104/pp.115.3.971

9. Habib, I., Rauf, M., Qureshi, J., Ahmed, M., Mansoor, S. & Saeed, N.A. (2014). Optimization of somatic embryogenesis and Agrobacterium-mediated transformation of elite wheat (Triticum aestivum) cultivars of Pakistan. Int. J. Agric. Biol., 16, No. 6, pp. 1098-1104. http://www.fspublishers.org/

10. Chen, Z., Debernardi, J.M., Dubcovsky, J. & Gallavotti, A. (2022). A recent advances in crop transformation technologies. Nat. Plants, 8, pp. 1343-1351. https://doi.org/10.1038/s41477-022-01295-8

11. Imani, J. & Kogel, K.H. (2020). Plant transformation techniques: Agrobacterium- and microparticle-mediated gene transfer in cereal plants. Methods Mol. Biol., 2124, pp. 281-294. https://doi.org/10.1007/978-1-0716-0356-7_15

12. Lacroix, B. & Citovsky, V. (2019). Pathways of DNA transfer to plants from Agro­bacterium tumefaciens and related bacterial species, Annu. Rev. Phytopathol., 57, pp. 231-251. https://doi.org/10.1146/annurev-phyto-082718-100101

13. International Wheat Genome Sequencing Consortium (IWGSC). (2018). http://wheat-urgi.versailles.inra.fr/Seq-Repository

14. Li, L.F., Zhang, Z.B., Wang, Z.H., Li, N., Sha, Y., Wang, X.F., Ding, N., Li, Y., Zhao, J., Wu, Y., Gong, L., Mafessoni, F., Levy, A.A. & Liu, B. (2022). Genome sequences of the five sitopsis species of Aegilops and the origin of polyploid wheat B-subgenome. Mol. Plant, 15, No. 3, pp. 488-503. https://doi.org/10.1016/j.molp.2021.12.019

15. Lopos, L.C., Bykova, N.V., Robinson, J., Brown, S., Ward, K. & Bilichak, A. (2023). Diversity of transgene integration and gene-editing events in wheat (Triticum aestivum L.) transgenic plants generated using Agrobacterium-mediated transformation. Front. Genome Ed., 5, p. 1265103. https://doi.org/10.3389/fgeed.2023.1265103

16. Nigro, D., Smedley, M., Camerlengo, F. & Hayta, S. (2024). Using Gene Editing Strategies for Wheat Improvement. A Roadmap for Plant Genome Editing, pp. 183-201. Cham: Springer. https://doi.org/10.1007/978-3-031-46150-7_12

17. Rao, M.J. & Wang, L. (2021). CRISPR/Cas9 technology for improving agronomic traits and future prospective in agriculture. Planta, 254, No. 4, p. 68. https://doi.org/10.1007/s00425-021-03716-y

18. Wang, Y., Zeng, J., Su, P., Zhao, H., Li, L., Xie, X., Zhang, Q., Wu, Y., Wang, R., Zhang, Y., Yu, B., Chen, M., Wang, Y., Yang, G., He, G., Chang, J. & Li, Y. (2022). An established protocol for generating transgenic wheat for wheat functional genomics via particle bombardment. Front. Plant Sci., 13, p. 979540. https://doi.org/10.3389/fpls.2022.979540

19. Pour-Aboughadareh, A., Kianersi, F., Poczai, P. & Moradkhani, H. (2021). Potential of wild relatives of wheat: Ideal genetic resources for future breeding programs. Agronomy, 11, p. 1656. https://doi.org/10.3390/agronomy11081656

20. Debernardi, J.M., Tricoli, D.M., Ercoli, M.F., Hayta, S., Ronald, P., Palatnik, J.F. & Dubcovsky, J. (2020). A GRF-GIF chimeric protein improves the regeneration efficiency of transgenic plants. Nat. Biotechnol., 38, No. 11, pp. 1274-1279. https://doi.org/10.1038/s41587-020-0703-0

21. Wang, K., Shi, L., Liang, X., Zhao, P., Wang, W., Liu, J., Chang, Y., Hiei, Y., Yanagihara, C., Du, L., Ishida, Y. & Ye, X. (2022). The gene TaWOX5 overcomes genotype dependency in wheat genetic transformation. Nat. Plants, 8, pp. 110-117. https://doi.org/10.1038/s41477-021-01085-8

22. Johnson, K., Cao Chu, U., Anthony, G., Wu, E., Che, P. & Jones, T.J. (2023). Rapid and highly efficient morphogenic gene-mediated hexaploid wheat transformation. Front. Plant Sci., 14, p. 1151762. https://doi.org/10.3389/fpls.2023.1151762

23. Yu, Y., Yu, H., Peng, J., Yao, W.J., Wang, Y.P., Zhang, F.L., Wang, S.R., Zhao, Y., Zhao, X.Y., Zhang, X.S. & Su, Y.H. (2024). Enhancing wheat regeneration and genetic transformation through overexpression of TaLAX1. Plant Comm., 5, No. 5, p. 100738. https://doi.org/10.1016/j.xplc.2023.100738

24. Gelvin, S.B. (2021). Plant DNA Repair and Agrobacterium T-DNA Integration. Int. J. Mol. Sci., 22, No. 16, p. 8458. https://doi.org/10.3390/ijms22168458

25. Kralemann, L.E.M., de Pater, S., Shen, H., Kloet, S.L., van Schendel, R., Hooykaas, P.J.J. & Tijsterman, M. (2022). Distinct mechanisms for genomic attachment of the 5ђ and 3ђ ends of Agrobacterium T-DNA in plants. Nat. Plants, 8, No. 5, pp. 526-534. https://doi.org/10.1038/s41477-022-01147-5

26. Kalendar, R., Orbovic, V., Egea-Cortines, M. & Song, G.Q. (2022). Editorial: Recent advances in plant genetic engineering and innovative applications. Front. Plant Sci., 13, p. 1045417. https://doi.org/10.3389/fpls.2022.1045417

27. Deeken, R., Engelmann, J.C., Efetova, M., Czirjak, T., Mтller, T., Kaiser, W.M., Tietz, O., Krischke, M., Mueller, M.J., Palme, K., Dandekar, T. & Hedrich, R. (2006). An integrated view of gene expression and solute profiles of Arabidopsis tumors: a genome-wide approach. Plant Cell, 18, No. 12, pp. 3617-3634. https://doi.org/10.1105/tpc.106.044743

28. Mackelprang, R. & Lemaux, P. (2020). Genetic engineering and editing of plants: an analysis of new and persisting question. Annu. Rev. Plant Biol., 71, pp. 2.1-2.29. https://doi.org/10.1146/annurev-arplant-081519-035916

29. Liu, X., Bie, X.M., Lin, X., Li, M., Wang, H., Zhang, X., Yang, Y., Zhang, C., Zhang, X.S. & Xiao, J. (2023). Uncovering the transcriptional regulatory network involved in boosting wheat regeneration and transformation. Nat. Plants, 9, No. 6, pp. 908-925. https://doi.org/10.1038/s41477-023-01406-z

30. Lee, K. & Wang, K. (2023). Strategies for genotype-flexible plant transformation. Curr. Opin. Biotechnol., 79, p. 102848. https://doi.org/10.1016/j.copbio.2022.102848

31. Wang, K., Riaz, B. & Ye, X. (2018). Wheat genome editing expedited by efficient transformation techniques: progress and perspectives. Crop J., 6, No. 1, pp. 22-31. https://doi.org/10.1016/j.cj.2017.09.009

32. Thiyagarajan, K., Noguera, L., Pacheco, M., Govindan, V. & Vikram, P. (2024). Factors influencing Agrobacterium-mediated genetic transformation efficiency in bread wheat (Triticum aestivum L.). Ind. J. Genet. Plant Breed., 84, No. 1, pp. 63-72. https://doi.org/10.31742/ISGPB.84.1.5

33. Hayta, S., Smedley, M., Demir, S. Blundell, R., Hinchliffe, A., Atkinson, N. & Harwood, W.A. (2019). An efficient and reproducible Agrobacterium-mediated transformation method for hexaploid wheat (Triticum aestivum L.). Plant Methods, 15, p. 121. https://doi.org/10.1186/s13007-019-0503-z

34. Manfroi, E., Yamazaki-Lau, E., Grando, M.F. & Roesler, E.A. (2015). Acetosyringone, pH and temperature effects on transient genetic transformation of immature embryos of Brazilian wheat genotypes by Agrobacterium tumefaciens. Genet. Mol. Biol., 38, pp. 470-476. https://doi.org/10.1590/S1415-475738420150026

35. Shrawat, A.K. & Armstrong, C.L. (2018). Development and application of genetic engineering for wheat improvement. Crit. Rev. Plant Sci., 37, pp. 335-421. https://doi.org/10.1080/07352689.2018.1514718

36. Chugh, A. & Khurana, P. (2003). Herbicide-resistant transgenics of bread wheat (T. aestivum) and emmer wheat (T. dicoccum) by particle bombardment and Agrobacterium mediated approaches. Curr. Sci., 84, pp. 78-83. https://www.jstor.org/stable/24107377

37. Patnaik, D. & Khurana, P. (2003). Genetic transformation of Indian bread (T. estivum) and pasta (T. durum) wheat by particle bombardment of mature embryo-derived calli. BMC Plant Biol., 3, pp. 5-15. https://doi.org/10.1186/1471-2229-3-5

38. Wu, H., Doherty, A. & Jones, H. (2008). Efficient and rapid Agrobacterium-mediated genetic transformation of durum wheat (Triticum turgidum L. var. durum) using additional virulence genes. Transgenic Res., 17, pp. 425-436. https://doi.org/10.1007/s11248-007-9116-9

39. Mѕndez-Hern«ndez, H.A., Ledezma-RodrHguez, M., Avilez-Montalvo, R.N., Ju«rez-GЩmez, Y.L., Skeete, A., Avilez-Montalvo, J., De-la-Pena, C. & Loyola-Vargas, V.M. (2019). Signaling overview of plant somatic embryogenesis. Front. Plant Sci., 10, p. 77. https://doi.org/10.3389/fpls.2019.00077

40. Ziemienowicz, A. (2014). Agrobacterium-mediated plant transformation: Factors, applications and recent advances. Biocat. Agric. Biotechnol, 3, pp. 95-102. https://doi.org/10.1016/j.bcab.2013.10.004

41. Dubrovna, O.V. & Morgun, B.V. (2018). Modern Agrobacterium-mediated transformation of wheat. Fiziol. rosl. genet., 50, No. 3, pp. 187-217 [in Ukrainian]. https://doi.org/10.15407/frg2018.03.187

42. Mykhalska, S.I., Komisarenko, A.H. & Kurchii, V.M. (2020). Tissues of immature and mature embryos as morphogenic competent explants for genetic transformation of wheat. Factors in experimental evolution of organisms, 26, pp. 233-238 [in Ukrainian]. http://jnas.nbuv.gov.ua/article/UJRN-0001188366 https://doi.org/10.7124/FEEO.v26.1272

43. Wang, G.P., Yu, X.D., Sun, Y.W., Jones, H.D. & Xia, L.Q. (2016). Generation of marker- and/or backbone-free transgenic wheat plants via Agrobacterium-mediated transformation. Front. Plant Sci., 7. https://doi.org/10.3389/fpls.2016.01324

44. Wang, K., Liu, H., Du, L. & Ye, X. (2017). Generation of marker-free transgenic hexaploid wheat via an Agrobacterium-mediated co-transformation strategy in commercial Chinese wheat varieties. Plant Biotechnol. J., 15, pp. 614-623. https://doi.org/10.1111/pbi.12660

45. Kumar, R., Mamrutha, H.M., Kaur, A., Venkatesh, K., Sharma, D. & Singh, G.P. (2019). Optimization of Agrobacterium-mediated transformation in spring bread wheat using mature and immature embryos. Mol. Biol. Rep., 46, No. 2, pp. 1845-1853. https://doi.org/10.1007/s11033-019-04637-6

46. Raman, V., Rojas, C.M., Vasudevan, B., Dunning, K., Kolape, J., Oh, S., Yun, J., Yang, L., Li, G., Pant, B.D., Jiang, Q. & Mysore, K.S. (2022). Agrobacterium expressing a type III secretion system delivers Pseudomonas effectors into plant cells to enhance transformation. Nat. Commun., 13, No. 1, p. 2581. https://doi.org/10.1038/s41467-022-30180-3

47. Ishida, Y., Tsunashima, M., Hiei, Y. & Komari, T. (2015). Wheat (Triticum aestivum L.) transformation using immature embryos. Methods Mol. Biol., 1223, pp. 189-198. https://doi.org/10.1007/978-1-4939-1695-5_15

48. Wang, Y., Xu, M., Yin, G., Tao, L., Wang, D. & Ye, X. (2009). Transgenic wheat plants derived from Agrobacterium-mediated transformation of mature embryo tissues. Cereal Res. Commun., 37, pp. 1-12. https://doi.org/10.1556/CRC.37.2009.1.1

49. Aadel, R., Abdelwahd, L., Udupa, S., Diria, G., Mouhtadi, A.E., Ahansal, K., Gaboun, F., Douira, A. & Iraqi, D. (2018). Agrobacterium-mediated Transformation of Mature Embryo Tissues of Bread Wheat (Triticum aestivum L.) Genotypes. Cereal Res. Commun., 46, No. 1, pp. 10-20. https://doi.org/10.1556/0806.45.2017.055

50. Medvecka, E. & Harwood, W.A. (2015). Wheat (Triticum aestivum L.) transformation using mature embryos in Agrobacterium Protocols: 1. Wang, K., Ed. of Methods in Molecular Biology, 1223, pp. 199-209. Springer New York, NY USA. https://doi.org/10.1007/978-1-4939-1695-5_16

51. Ahansal, K., Abdelwahd, R. & Udupa, S. (2022). Effect of type of mature embryo explants and acetosyringone on Agrobacterium-mediated transformation of Moroccan durum wheat. Biosci. J., 38:e38007. https://doi.org/10.14393/BJ-v38n0a2022-54513

52. Ding, L., Li, S., Gao, J., Wang, Y., Yang, G. & He, G. (2009). Optimization of Agrobacterium mediated transformation conditions in mature embryos of elite wheat. Mol. Biol. Rep., 36, pp. 29-36. https://doi.org/10.1007/s11033-007-9148-5

53. Chauhan, H. & Khurana, P. (2011). Use of doubled haploid technology for development of stable drought tolerant bread wheat (Triticum aestivum L.) transgenics. Plant Biotechnol. J., 9, No. 3, pp. 408-417. https://doi.org/10.1111/j.1467-7652.2010.00561.x

54. Gorbatyuk, I.R. (2016). Optimization of Agrobacterium-mediated biotechnology of the transformation of Triticum aestivum in culture in vitro and in planta method: dyss. cand. biol. nauk. Kyiv [in Ukrainian]. https://ela.kpi.ua/handle/123456789/16344

55. Mykhalska, S.I., Komisarenko, A.G., Kurchiy, V.M. & Tishchenko, O.M. (2018). Genetic transformation in planta of winter wheat (Triticum aestivum L.). Factors of experimental evolution of organisms, 22, pp. 293-298 [in Ukrainian]. https://doi.org/10.7124/FEEO.v22.964

56. Slyvka, L.V. & Dubrovna, O.V. (2020). Genetic transformation of new perspective winter wheat genotypes in vitro. Factors of experimental evolution of organisms, 26, pp. 270-275 [in Ukrainian]. http://jnas.nbuv.gov.ua/article/UJRN-0001188372 https://doi.org/10.7124/FEEO.v26.1278

57. Dubrovna, O.V., Stasik, O.O., Priadkina, G.O., Zborivska, O.V. & Sokolovska-Sergiienko, O.G. (2020). Resistance of genetically modified wheat plants, containing a double-stranded RNA suppressor of the proline dehydrogenase gene, to soil moisture deficiency. Agricult. Sci. Pract., 7, No. 2, pp. 24-34. https://doi.org/10.15407/agrisp7.02.024

58. Dubrovna, O.V., Priadkina, G.O., Mykhalska, S.I. & Komisarenko, A.G. (2022). Drought-tolerance of transgenic winter wheat with partial suppression of the proline dehydrogenase gene. Regul. Mechan. Biosyst., 13, No. 4, pp. 385-392 https://doi.org/10.15421/022251

59. Gorbatyuk, I.R., Shcherbak, N.L., Bannikova, M.O., Velykozhon, L.H., Kuchuk, M.V. & Morgun, B.V. (2016). Establishing transgenic wheat plants of cv. Zymoyarka resistant to the herbicide phosphinothricin in vitro. Fiziol. rast. genet, 48, No. 1, pp. 65-74 [in Ukrainian]. https://doi.org/10.15407/frg2016.01.065

60. Tarafdar, A., Vishwakarma, H. & Gothandapani, S. (2019). A quick, easy and cost-effective in planta method to develop direct transformants in wheat. Biotechnol., 9, p. 180. https://doi.org/10.1007/s13205-019-1708-6

61. Saeger, de J., Park, J., Chung, H.S., Hernalsteens, J.P., Lijsebettens, M., Van Inzѕ, D., Montagu, M. & Van Depuydt, S. (2021). Agrobacterium strains and strain improvement: present and outlook. Biotechnol. Adv., 53, p. 107677. https://doi.org/10.1016/j.biotechadv.2020.107677

62. Hensel, G., Marthe, C. & Kumlehn, J. (2017). Agrobacterium-mediated transformation of wheat using immature embryos. Methods Mol. Biol., 1679, pp. 129-139. https://doi.org/10.1007/978-1-4939-7337-8_8

63. Peters, N., Ackerman, S. & Davis, E. (1999). A modular vector for Agrobacterium mediated transformation of wheat. Plant Mol. Biol. Rep., 17, pp. 323-331. https://doi.org/10.1023/A:1007686408369

64. Borisjuk, N., Kishchenko, O., Eliby, S., Schramm, C., Anderson, P., Jatayev, S., Kurishbayev, A. & Shavrukov, Y. (2019). Genetic modification for wheat improvement: from transgenesis to genome editing. BioMed Res. Int. Article ID 6216304, 18 p. https://doi.org/10.1155/2019/6216304

65. Hamada, H., Linghu, Q., Nagira, Y., Miki, R., Taoka, N. & Imai, R. (2017). An in planta biolistic method for stable wheat transformation. Sci. Rep., 7, p. 11443. https://doi.org/10.1038/s41598-017-17188-2

66. Supartana, P., Shimizu, T., Nogawa, M., Shioiri, H., Nakajima, T., Haramoto, N., Nozue, M. & Kojima, M. (2006). Development of simple and efficient in planta transformation method for wheat (Triticum aestivum L.) using Agrobacterium tumefaciens. J. Biosci. Bioengin., 102, No. 3, pp. 162-170. https://doi.org/10.1263/jbb.102.162

67. Oltmanns, H., Frame, B., Lee, L-Y., Johnson, S., Li, B., Wang, K. & Gelvin, S.B. (2010). Generation of backbone-free, low transgene copy plants by launching T-DNA from the Agrobacterium chromosome. Plant Physiol, 152, No. 3, pp. 1158-1166. https://doi.org/10.1104/pp.109.148585

68. Rathore, D.S. & Mullins, E. (2018). Alternative non-Agrobacterium based methods for plant transformation. Ann. Plant Rev. Online, 1, No. 3, pp. 891-908. https://doi.org/10.1002/9781119312994.apr0659

69. Cho, H.J., Moy, Y., Rudnick, N.A., Klein, T.M., Yin, J., Bolar, J., Hendrick, C., Beatty, M., Castaneda, L., Kinney, A.J., Jones, T.J. & Chilcoat, N.D. (2022). Development of an efficient marker-free soybean transformation method using the novel bacterium Ochrobactrum haywardense H1. Plant Biotechnol. J., 2, No. 5, pp. 977-990. https://doi.org/10.1111/pbi.13777

70. Mukherjee, S., Stasolla, C., Brule-Babel, A. & Ayele, B.T. (2015). Isolation and characterization of rubisco small subunit gene promoter from common wheat. Plant Signal Behav, 10, No. 2, e989033. https://doi.org/10.4161/15592324.2014.989033

71. He, Y.B., Zhang, T., Sun, H., Zhan, H.D. & Zhao, Y.D. (2020). A reporter for noninvasively monitoring gene expression and plant transformation. Hortic. Res., 7, p. 152. https://doi.org/10.1038/s41438-020-00390-1

72. Lonsdale, D., Lindup, S., Moisan, L. & Harvey, A. (1998). Using firefly luciferase to identify the transition from transient to stable expression in bombarded wheat scutellar tissue. Physiol. Plant., 102, pp. 447-453. https://doi.org/10.1034/j.1399-3054.1998.1020313.x

73. Liu, H.Y., Wang, K., Wang, J., Du, L.P., Pei, X.W. & Ye, X.G. (2020). Genetic and agronomic traits stability of marker-free transgenic wheat plants generated from Agrobacterium-mediated co-transformation in T 2 and T 3 generations. J. Int. Agric., 19, pp. 23-32. https://doi.org/10.1016/S2095-3119(19)62601-8

74. Shri, M., Rai, A., Verma, P.K., Misra, P., Dubey, S., Kumar, S., Verma, S., Gautam, N., Tripathi, R.D., Trivedi, P.K. & Chakrabarty, D. (2013). An improved Agrobacterium-mediated transformation of recalcitrant indica rice (Oryza sativa L.) cultivars. Protoplasma, 250, pp. 631-636. https://doi.org/10.1007/s00709-012-0439-x

75. Hassan, M.F. & Islam, S.M.S. (2021). Effect of silver nitrate and growth regulators to enhance anther culture response in wheat (Triticum aestivum L.). Heliyon, 7, No. 5, e07075. https://doi.org/10.1016/j.heliyon.2021.e07075

76. Cho, M.J., Wu, E., Kwan, J., Yu, M., Banh, J., Linn, W., Anand, A., Li, Z., TeRonde, S., Register, J.C., Jones, T.J. & Zhao, Z.Y. (2014). Agrobacterium-mediated high frequency transformation of an elite commercial maize (Zea mays L.) inbred line. Plant Cell Rep., 33, pp. 1767-1777. https://doi.org/10.1007/s00299-014-1656-x

77. Sparks, C., Doherty, A. & Jones, H. (2014). Genetic transformation of wheat via Agrobacterium-mediated DNA delivery. Methods Mol. Biol., 1099, pp. 235-250. https://doi.org/10.1007/978-1-62703-715-0_19

78. Teixeira da Silva, J.A., Dobr«nszki, J. & Ross S. (2013). Phloroglucinol in plant tissue culture. In Vitro Cell. Dev. Biol. Plant, 49, pp. 1-16. https://doi.org/10.1007/s11627-013-9491-2

79. Blanco, M., Valverde, R. & GЩmez, L. (2012). Optimization of genetic transformation with Agrobacterium rhizogenes. AgronomHa Costarricense, 27, No. 1, pp. 19-28. https://inis.iaea.org/search/35070405 https://doi.org/10.15517/rac.v27i1.61655

80. Schmiderer, C., Grausgruber-GrШger, S., Grassi, P., Steinborn, R. & Novak, J. (2010). Influence of gibberellin and daminozide on the expression of terpene synthases and on monoterpenes in common sage (Salvia officinalis). J. Plant Physiol, 167, pp. 779-786. https://doi.org/10.1016/j.jplph.2009.12.009

81. Wu, H., Sparks, C.A., Amoah, B. & Jones, H.D. (2003). Factors influencing successful Agrobacterium-mediated genetic transformation of wheat. Plant Cell Rep., 21, pp. 659-668. https://doi.org/10.1007/s00299-002-0564-7

82. Dubrovna, O.V. & Slivka, L.V. (2020). The effect of picloram on the morphogenesis of callus cultures of breeding-valued winter wheat genotypes by Agrobacterium-mediated transformation. Fiziol. rosl. genet., 52, No. 6, pp. 528-537 [in Ukrainian]. https://doi.org/10.15407/frg2020.06.528

83. Dan, Y. (2008). Biological functions of antioxidants in plant transformation. In Vitro Cellular & Developmental Biology - Plant, 44, No. 3, pp. 149-161. https://doi.org/10.1007/s11627-008-9110-9

84. Dan, Y., Armstrong, C., Dong, J. & Feng, X. (2009). Lipoic acid - anunique plant transformation enhancer. In Vitro Cellular & Developmental Biology - Plant, 45, pp. 630-638. https://doi.org/10.1007/s11627-009-9227-5

85. Coskun, Y.R., Duran, E., Savaskan, C., Demirci, T. & Hakan, M.T. (2013). Efficient plant regeneration with arabinogalactan-proteins on various ploidy levels of cereals. J. Int. Agric., 12, No. 3, pp. 420-425. https://doi.org/10.1016/S2095-3119(13)60242-7

86. Kumar, R., Mamrutha, H.M., Kaur, A., Venkatesh, K., Grewal, A., Kumar, R. & Tiwari, V. (2017). Development of an efficient and reproducible regeneration system in wheat (Triticum aestivum L.). Physiol. Mol. Biol. Plants, 2, No. 4, pp. 945-954. https://doi.org/10.1007/s12298-017-0463-6

87. Sathyanarayana, B.N. & Varghese, D.B. (2007) Plant Tissue Culture: Practices and New Experimental Protocols. I.K. International Publishing Hse. Pvt. Ltd., New Delhi, 316 p.

88. Eastmond, P.J. (2004). Glycerol-insensitive Arabidopsis mutants: gli1 seedlings lack glycerol kinase, accumulate glycerol and are more resistant to abiotic stress. Plant J., 37, pp. 617-625. https://doi.org/10.1111/j.1365-313X.2003.01989.x

89. Anand, A., Bass, S.H., Wu, E., Wang, N., McBride, K.E., Annaluru, N., Miller, M., Hua, M. & Jones, T.J. (2018). An improved ternary vector system for Agrobacterium-mediated rapid maize transformation. Plant Mol. Biol., 97, No. 1-2, pp. 187-200. https://doi.org/10.1007/s11103-018-0732-y

90. Giovanella, T., Degenhardt, J., Zanella, L. & Filho, J. (2021). Organogenesis and Sonication-Assisted Agrobacterium-Mediated Transformation of Poplar Roots. Research Square. https://doi.org/10.21203/rs.3.rs-465228/v1

91. Bi, H., Shi, J., Kovalchuk, N., Luang, S., Bazanova, N., Chirkova, L., Zhang, D., Shavrukov, Y., Stepanenko, A., Tricker, P., Langridge, P., Hrmova, M., Lopato, S. & Borisjuk, N. (2018). Overexpression of the TaSHN1 transcription factor in bread wheat leads to leaf surface modifications, improved drought tolerance, and no yield penalty under controlled growth conditions. Plant, Cell Environ., 41, No. 11, pp. 2549-2566. https://doi.org/10.1111/pce.13339

92. Dubrovna, O.V., Mykhal'ska, S.I. & Komisarenko, A.G. (2024). Genetic control of plant morphogenesis in in vitro culture. Bull. Ukr. Soc. Genet. Breed., 22, No. 1-2. pp. 37-55 [in Ukrainian]. https://doi.org/10.7124/visnyk.utgis.22.1-2.1688

93. Chang, Y., Liu, J., Liu, C., Liu, H., Tang, H., Qiu, Y., Lin, Z., Wang, K., Yan, Y. & Ye, X. (2024). Establishment of a transformation system in close relatives of wheat under the assistance of TaWOX5. J. Integr. Agricult., 23, No. 6, pp. 1839-1849. https://doi.org/10.1016/j.jia.2023.06.021

94. Zhao, S., Jiang, Q., Ma, J., Zhang, X., Zhao, Q., Wang, X., Wang, C., Cao, X., Lu, Z., Zheng, Y. & Wei, Y. (2014). Characterization and expression analysis of WOX5 genes from wheat and its relatives. Gene, 537, pp. 63-69. https://doi.org/10.1016/j.gene.2013.12.022

95. Zhou, Z., Yang, Y., Ai, G., Zhao, M., Han, B., Zhao, C., Chen, Y., Zhang, Y., Pan, H., Lan, C., Li, Q., Xu, J. & Yan, W. (2022). Boosting transformation in wheat by BBM-WUS 1 bioRxiv. https://doi.org/10.1101/2022.03.13.483388

96. Qiu, F., Xing, S., Xue, C., Liu, J., Chen, K., Chai, T. & Gao, C. (2022). Transient expression of a TaGRF4-TaGIF1 complex stimulates wheat regeneration and improves genome editing. Sci. China Life Sci., 6, No. 4, pp. 731-738. https://doi.org/10.1007/s11427-021-1949-9

97. Lowe, K., Wu, E., Wang, N., Hoerster, G., Hastings, C., Cho, M.J., Scelonge, C., Lenderts, B., Chamberlin, M., Cushatt, J., Wang, L., Ryan, L., Khan, T., Chow-Yiu, J., Hua, W., Yu, M., Banh, J., Bao, Z., Brink, K., Igo, E., Rudrappa, B., Shamseer, P.M., Bruce, W., Newman, L., Shen, B., Zheng, P., Bidney, D., Falco, C., Register, J., Zhao, Z.Y., Xu, D., Jones, T. & Gordon-Kamm, W. (2016). Morphogenic regulators Baby boom and Wuschel improve monocot transformation. Plant Cell, 28, No. 9, pp. 1998-2015. https://doi.org/10.1105/tpc.16.00124

98. WЩjcik, A.M., WЩjcikowska, B. & Gaj, M.D. (2020). Current perspectives on the auxin-mediated genetic network that controls the induction of somatic embryogenesis in plants. Int. J. Mol. Sci., 21, p. 1333. https://doi.org/10.3390/ijms21041333

99. Horstman, A., Li, M., Heidmann, I., Weemen, M., Chen, B., Muino, J.M., Angenent, G.C. & Boutilier, K. (2017). The BABY BOOM transcription factor activates the LEC1-ABI3-FUS3-LEC2 network to induce somatic embryogenesis. Plant Physiol., 175, pp. 848-857. https://doi.org/10.1104/pp.17.00232

100. Dolzblasz, A., Nardmann, J., Clerici, E., Causier, B., Graaff, E., Chen, J., Davies, B., Werr, W. & Laux, T. (2016). Stem cell regulation by Arabidopsis WOX genes. Mol. Plant, 9, No. 7, pp. 1028-1039. https://doi.org/10.1016/j.molp.2016.04.007

101. Jha, P., Ochatt, S.J. & Kumar, V. (2020). WUSCHEL: A master regulator in plant growth signaling. Plant Cell Rep., 39, No. 4, pp. 431-444. https://doi.org/10.1007/s00299-020-02511-5

102. Lee, G.H., Kim, T., Park, Y.-J., Altpeter, F. & Kim, J.Y. (2024). Agrobacterium-mediated transformation of recalcitrant hexaploid wheat cultivars using morphogenic regulators and/or expressing effector AvrPto with the type III secretion system. Plant Biotechnol. Rep., 18, No. 7, pp. 881-891. https://doi.org/10.1007/s11816-024-00939-9

103. Gao, H., Gadlage, M.J., Lafitte, H.R., Lenderts, B., Yang, M., Schrode, M., Farrell, J., Snopek, K., Peterson, D., Feigenbutz, L., Jones, S., St Clair, G., Rahe, M., Sanyour-Doyel, N., Peng, C., Wang, L., Young, J.K., Beatty, M., Dahlke, B., Hazebroek, J., Greene, T.W., Cigan, A.M., Chilcoat, N.D. & Meeley, R.B. (2020). Superior field performance of waxy corn engineered using CRISPR-Cas9. Nat. Biotechnol., 38, No. 5, pp. 579-581. https://doi.org/10.1038/s41587-020-0444-0

104. Hoerster, G., Wang, N., Ryan, L., Wu, E., Anand, A., McBride, K., Lowe, K., Jones, T. & Gordon-Kamm, B. (2020). Use of non-integrating Zm-Wus2 vectors to enhance maize transformation. Vitro Cell Dev. Biol. Plant, 56, pp. 265-279. https://doi.org/10.1007/s11627-019-10042-2

105. Richardson, T., Thistleton, J., Higgins, T.J., Howitt, C. & Ayliffe, M. (2014). Efficient agrobacterium transformation of elite wheat germplasm without selection. Plant Cell Tissue and Organ Culture, 119, No. 3, pp. 647-659. https://doi.org/10.1007/s11240-014-0564-7

106. Luo, J., Li, S., Xu, J., Yan, L., Ma, Y. & Xia, L. (2021). Pyramiding favorable alleles in an elite wheat variety in one generation by CRISPR-Cas9-mediated multiplex gene editing. Mol. Plant, 14, No. 6, pp. 847-850. https://doi.org/10.1016/j.molp.2021.03.024

107. Xu, J., Yin, Y., Jian, L., Han, B., Chen, Z., Yan, J. & Liu, X. (2021). Seeing is believing: a visualization toolbox to enhance selection efficiency in maize genome editing. Plant Biotechnol. J., 19, No. 5, pp. 872-874. https://doi.org/10.1111/pbi.13575

108. Ashrafi-Dehkordi, E., Alemzadeh, A., Tanaka, N. & Razi, H. (2021). Effects of vacuum infiltration, Agrobacterium cell density and acetosyringone concentration on Agrobacterium-mediated transformation of bread wheat. J. Consumer Protect. Food Safety, 16, pp. 59-69. https://doi.org/10.1007/s00003-020-01312-y

109. Ye, X., Shrawat, A., Moeller, L., Rode, R., Rivlin, A., Kelm, D., Martinell, B.J., Williams, E.J., Paisley, A., Duncan, D.R. & Armstrong, C.L. (2023). Agrobacterium-mediated direct transformation of wheat mature embryos through organogenesis. Front. Plant Sci., 14, p. 1202235. https://doi.org/10.3389/fpls.2023.1202235

110. Matres, J.M., Hilscher, J., Datta, A., Armario-N«jera, V., Baysal, C., He, W., Huang, X., Zhu, C., Valizadeh-Kamran, R., Trijatmiko, K.R. (2021). Genome editing in cereal crops: an overview. Transgenic Res., 30, pp. 461-498. https://doi.org/10.1007/s11248-021-00259-6

111. Awan, M.J.A., Pervaiz, K., Rasheed, A., Amin, I., Saeed, N.A., Dhugga, K.S., Zhou, Z., Yang, Y., Ai, G., Zhao, M., Han, B., Zhao, C., Chen, Y., Zhang, Y., Pan, H., Lan, C., Li, Q., Xu, J. & Yan, W. (2022). Boosting transformation in wheat by BBM-WUS 1 bioRxiv. https://doi.org/10.1101/2022.03.13.483388

112. Basu, U., Ahmed, S.R., Bhat, B.A., Anwar, Z., Ali, A., Ijaz, A., Gulzar, A., Bibi, A., Tyagi, S.M., Nebapure, C.M., Goud, C.A., Ahanger, S.A., Ali, S. & Mushtag, M. (2023). A CRISPR way for accelerating cereal crop improvement: Progress and challenges. Front. Genet., 13. https://doi.org/10.3389/fgene.2022.866976

113. Weisberg, A.J., Davis, E.W., Tabima, J., Belcher, M.S., Miller, M., Kuo, C.H., Loper, J.E., Grтnwald, N.J., Putnam, M.L. & Chang, H.J. (2020). Unexpected conservation and global transmission of agrobacterial virulence plasmids. Science, 36, No. 6495, eaba5256. https://doi.org/10.1126/science.aba5256

114. Lv, Z., Jiang, R., Chen, J. & Chen, W. (2020). Nanoparticle-mediated gene transformation strategies for plant genetic engineering. Plant J., 104, pp. 880-891. https://doi.org/10.1111/tpj.14973

115. Naqvi, S., Farre, G., Sanahuja, G., Capell, T., Zhu, C. & Christou, P. (2010). When more is better: multigene engineering in plants. Trends Plant Sci., 15, pp. 48-56. https://doi.org/10.1016/j.tplants.2009.09.010

116. Shehryar, K., Khan, R.S., Iqbal, A., Hussain, S.A., Imdad, S., Bibi, A., Hamayun, L. & Nakamura, I. (2020). Transgene stacking as effective tool for enhanced disease resistance in plants. Mol. Biol., 62, pp. 1-7. https://doi.org/10.1007/s12033-019-00213-2

117. Yu, W., Yau, Y. & Birchler, J.A. (2016). Plant artificial chromosome technology and its potential application in genetic engineering. Plant Biotechnol. J., 14, No. 5, pp. 1175-1182. https://doi.org/10.1111/pbi.12466

118. Yuan, J., Shi, Q., Guo, X., Liu, Y., Su, H., Guo, X., Lv, Z. & Han, F. (2017). Site-specific transfer of chromosomal segments and genes in wheat engineered chromosomes. J. Genet. Genomics, 44, No. 11, pp. 531-539. https://doi.org/10.1016/j.jgg.2017.08.005