Plants are a natural source of biologically active compounds. Due to these properties, they are used both in alternative medicine and as raw material for the production of drugs with a wide spectrum of activity. At the same time, biotechnological roots obtained by genetic transformation using Agrobacterium (Rhizobium) rhizogenes may have a higher content of bioactive compounds. Therefore, determining the conditions for obtaining extracts with high bioactivity from such roots is an important stage in the development of technologies for using the transgenic lines. Among the plants that are of interest as a source of biologically active compounds with a wide spectrum of activity there is spanish needle (beggarticks) Bidens pilosa L. These are plants of the tropical region, which, however, also grow in temperate latitudes. In this work, the effect of ethanol concentration on the flavonoids content in extracts of Bidens pilosa L. and the bioactivity of such extracts was analysed. Studies conducted using in vitro cultivated plants and three lines of biotechnological roots revealed a significant increase in these compounds content in extracts obtained using ethanol at concentrations of 70 % and 96 % — up to 41.86±5.5 mg RE/g dry weight (DW) in non-transformed roots and 60.17±4.6...82.15±5.5 mg RE/g DW in biotechnological roots. The lowest flavonoids content was in aqueous extracts (34.25±5.0 in the roots of control plants and 24.47±1.6...32.09±2.1 mg RE/g DW in transgenic roots). Extracts with a high content of flavonoids were also characterized by greater antiradical activity in the reaction with the 2.2-diphenyl-1-picrylhydrazyl radical (DPPH). In particular, the percentage of inhibition of DPPH radical in extracts obtained using 70 % ethanol was 2.60, 3.65 and 2.96 times higher than those of aqueous extracts from three root lines, respectively. Therefore, to obtain an extract from plants and biotechnological roots of B. pilosa with a high content of flavonoids and high antiradical activity, it is advisable to use ethanol at a concentration of 70 %.
Keywords: Bidens pilosa L., biotechnological roots, flavonoids, antiradical activity
Full text and supplemented materials
Free full text: PDFReferences
1. Ballard, R. (1986). Bidens pilosa complex (Asteraceae) in North and Central America. Amer. J. Bot., 73, pp. 1452-1465. https://doi.org/10.1002/j.1537-2197.1986.tb10891.x
2. Bhatt, K.C., Sharama, N. & Pandey, A. (2009). «Ladakhi tea» Bidens pilosa L. (Asteraceae): a cultivated species in the cold desert of Ladakh Himalaya. India. Genet Resour Crop Evol., 56, pp. 879-882. https://doi.org/10.1007/s10722-009-9441-3
3. Mitich, L.W. (1994). Beggarticks. Weed Technol., 8, pp. 172-175. https://doi.org/10.1017/S0890037X00039403
4. Tran Dang Xuan & Tran Dang Khanh. (2016). Chemistry and pharmacology of Bidens pilosa: an overview. J. Pharm. Investig., 46, No. 2, pp. 91-132. https://doi.org/10.1007/s40005-016-0231-6
5. Alvarez, L., Marquina, S., Villarreal, M.L., Alonso, D., Aranda, E. & Delgado, G. (1996). Bioactive polyacetylens from Bidens pilosa. Planta Medica, 62, pp. 355-357. https://doi.org/10.1055/s-2006-957902
6. Bartolome, A.P., VillaseФor, I.M. & Yang, W.-C. (2013). Bidens pilosa L. (Asteraceae): botanical properties, traditional uses, phytochemistry, and pharmacology. Evidence-Based Complementary and Alternative Medicine 2013, 340215. https://doi.org/10.1155/2013/340215
7. Horiuchi, M. & Seyama, Y. (2008). Improvement of the anti-inflamatorу and anti-allergic activity of Bidens pilosa L. var. radiata Scherff treated with enzyme (Cellulosine). J. Health Sci., 54, pp. 294-301. https://doi.org/10.1248/jhs.54.294
8. Lawal, O.A., Amisu, K.O., Akinyemi, S.K., Sanni, A.A., Simelane, M.B.C., Mosa, R.A. & Opoku A.R. (2015). In vitro Antibacterial Activity of Aqueous Extracts of Bidens pilosa L. (Asteraceae) from Nigeria. British Microbiol. Res. J., 8, No. 4, pp. 525-531. https://doi.org/10.9734/BMRJ/2015/17900
9. Jager, A.K., Hutchings, A. & van Staden, J. (1996). Screening of Zulu medicinal plants for prostaglandin synthesis inhibitors. J. Ethnopharmacol., 52, No. 2, pp. 95-100. https://doi.org/10.1016/0378-8741(96)01395-5
10. Dimo, T., Rakotonirina, S.V., Tan, P.V., Azay, J., Dongo, E. & Cros, G. (2002). Leaf methanol extract of Bidens pilosa prevents and attenuates the hypertension induced by high-fructose diet in Wistar rats. J. Ethnopharmacol., 83, No. 3, pp. 183-191. https://doi.org/10.1016/S0378-8741(02)00162-9
11. Matvieieva, N.A. & Shakhovskyi, A.M. (2015). Establishment of Bidens pilosa L. 'hairy' root culture. Bull. Ukr. Soc. Genet. Breed., 13(1), pp. 46-50 [in Ukrainian]. http://jnas.nbuv.gov.ua/article/UJRN-0000436321
12. Pekal, A. & Pyrzynska, K. (2014). Evaluation of Aluminium Complexation Reaction for Flavonoid Content Assay. Food Analyt. Methods, 7, No. 9, pp. 1776-1782. https://doi.org/10.1007/s12161-014-9814-x
13. Brand-Williams, W., Cuvelier, M.E. & Berset, C. (1995). Use of a free radical method to evaluate antioxidant activity. LWT - Food Sci. Technol., 28, No. 1, pp. 25-30. https://doi.org/10.1016/S0023-6438(95)80008-5
14. Matvieieva, N.A., Morgun, B.V., Lakhneko, O.R., Duplij, V.P., Shakhovsky, A.M., Ratushnyak, Y.I., Sidorenko, M., Mickevicius, S. & Yevtushenko, D.P., (2020). Agrobacterium rhizogenes-mediated transformation enhances the antioxidant potential of Artemisia tilesii Ledeb. Plant Physiol. Biochem., 152, pp. 177-183. https://doi.org/10.1016/j.plaphy.2020.04.020
15. Cortѕs-Rojas, D.F., Chagas-Paula, D.A., Da Costa, F.B., Souza, C.R.F. & Oliveira, W.P. (2013). Bioactive compounds in Bidens pilosa L. populations: a key step in the standardization of phytopharmaceutical preparations. Rev. Bras. Farmacogn., 23, No. 1, pp. 28-35 https://doi.org/10.1590/S0102-695X2012005000100
16. Chiang, Y.M., Chuang, D.Y., Wang, S.Y., Kuo, Y.H., Tsai, P.W. & Shyur, L.F. (2004). Metabolite profiling and chemopreventive bioactivity of plant extracts from Bidens pilosa. J. Ethnopharmacol., 95, No. 2-3, pp. 9-19. https://doi.org/10.1016/j.jep.2004.08.010
17. Geissberger, P. & Sequin, U. (1991). Constituents of Bidens pilosa L.: do the components found so far explain the use of this plant in traditional medicine? Acta Tropicana, 48, No. 4, pp. 251-261. https://doi.org/10.1016/0001-706X(91)90013-A
18. Ubillas, R.P., Mendez, C.D., Jolad, S.D., Luo, J., King, S.R., Carlson, T.J. & Fort, D.M. (2000). Antihyperglycemic acetylenic glucosides from Bidens pilosa. Planta Medica, 66, No. 1, pp. 82-83. https://doi.org/10.1055/s-0029-1243117
19. Wang, R., Wu, Q.X. & Shi, Y.P. (2010). Polyacetylenes and flavonoids from the aerial parts of Bidens pilosa. Planta Medica, 76, No. 9, pp. 893-896. https://doi.org/10.1055/s-0029-1240814
20. Yang, H.L., Chen, S.C., Chang, N.W., Chang, J.M., Lee, M.L., Tsai, P.C., Fu, H.H., Kao, W.W., Chiang, H.C., Wang, H.H. & Hseu, Y.C. (2006). Protection from oxidative damage using Bidens pilosa extracts in normal human erythrocytes. Food Chem. Toxicol., 44, No. 9, pp. 1513-1521. https://doi.org/10.1016/j.fct.2006.04.006
21. Abajo, C., Boffill, M.A., del Campo, J., Alexandra Mѕndez, M., Gonz«lez, Y., Mitjans, M. & Pilar Vinardell, M. (2004). In vitro study of the antioxidant and immunomodulatory activity of aqueous infusion of Bidens pilosa. J. Ethnopharmacol., 93, No. 2-3, pp. 319-323. https://doi.org/10.1016/j.jep.2004.03.050
22. Kviecinski, M.R., Felipe, K.B., Schoenfelder, T., de Lemos Wiese, L.P., Rossi, M.H., Goncalez, E., Felicio, J.D., Filho, D.W. & Pedrosa, R.C. (2008). Study of the antitumor potential of Bidens pilosa (Asteraceae) used in Brazilian folk medicine. J. Ethnopharmacol., 117, No. 1, pp. 69-75. https://doi.org/10.1016/j.jep.2008.01.017
23. Horiuchi, M., Wachi, H. & Seyama, Y. (2010). Effects of Bidens pilosa L. var. radiata Scherff on experimental gastric lesion. J. Natural Medicines, 64, No. 4, pp. 430-435. https://doi.org/10.1007/s11418-010-0426-5
24. Chien, S.C., Young, P.H., Hsu, Y.J., Chen, C.H., Tien, Y.J., Shiu, S.Y., Li, T.H., Yang, C.W., Marimuthu, P., Tsai, L.F. & Yang, W.C. (2009). Anti-diabetic properties of three common Bidens pilosa variants in Taiwan. Phytochemistry, 70, No. 10, pp. 1246-1254. https://doi.org/10.1016/j.phytochem.2009.07.011
25. Yoshida, N., Kanekura, T., Higashi, Y. & Kanzaki, T. (2006). Bidens pilosa suppresses interleukin-1beta-induced cyclooxygenase-2 expression through the inhibition of mitogen activated protein kinases phosphorylation in normal human dermal fibroblasts. J. Dermatol., 33, No. 10, pp. 676-683. https://doi.org/10.1111/j.1346-8138.2006.00158.x
26. Chang, S.L., Chiang, Y.M., Chang, C.L., Yeh, H.H., Shyur, L.F., Kuo, Y.H., Wu, T.K. & Yang, W.C. (2007). Flavonoids, centaurein and centaureidin, from Bidens pilosa, stimulate IFN-gamma expression. J. Ethnopharmacol., 112, No. 2, pp. 232-236. https://doi.org/10.1016/j.jep.2007.03.001
27. Kumari, P., Misra, K., Sisodia, B.S., Faridi, U., Srivastava, S., Luqman, S., Darokar, M.P., Negi, A.S., Gupta, M.M., Singh, S.C. & Kumar, J.K. (2009). A promising anticancer and antimalarial component from the leaves of Bidens pilosa. Planta Medica, 75, No. 1, pp. 59-61. https://doi.org/10.1055/s-0028-1088362
28. Chang, C.L., Kuo, H.K., Chang, S.L., Chiang, Y.M., Lee, T.H., Wu, W.M., Shyur, L.F. & Yang, W.C. (2005). The distinct effects of a butanol fraction of Bidens pilosa plant extract on the development of Th1-mediated diabetes and Th2-mediated airway inflammation in mice. J. Biomed. Sci., 12, No. 1, pp. 79-89. https://doi.org/10.1007/s11373-004-8172-x
29. Suzigan, M.I., Battochio, A.P., Coelho, K.L. & Coelho, C.A. (2009). An acqueous extract of Bidens pilosa L. protects liver from cholestatic disease: experimental study in young rats. Acta Cirurgica Brasil., 24, No. 5, pp. 347-352. https://doi.org/10.1590/S0102-86502009000500003
30. Andrade-Neto, V.F., Brand±o, M.G., Oliveira, F.Q., Casali, V.W., Njaine, B., Zalis, M.G., Oliveira, L.A. & Krettli, A.U. (2004). Antimalarial activity of Bidens pilosa L. (Asteraceae) ethanol extracts from wild plants collected in various localities or plants cultivated in humus soil. Phytotherapy Res., 18, No. 8, pp. 634-639. https://doi.org/10.1002/ptr.1510
31. Tsuruta, K., Shidara, T., Miyagishi, H., Nango, H., Nakatani, Y., Suzuki, N., Amano, T., Suzuki, T. & Kosuge, Y. (2023). Anti-Inflammatory Effects of Miyako Bidens pilosa in a Mouse Model of Amyotrophic Lateral Sclerosis and Lipopolysaccharide-Stimulated BV-2 Microglia. Int. J. .Mol. Sci., 24, No. 18, 13698. https://doi.org/10.3390/ijms241813698
32. Pereira, C.H., Martins, A.F.L., Morais, M.O., de Sousa-Neto, S.S., da Silva, A.C.G., Arantes, D.A.C., De Oliveira Moreira, V.H.L., Valadares, M.C., Freitas, N.M.A., Leles, C.R. & Mendonca, E.F. (2024). Oral mucositis management with photobiomodulation, Bidens pilosa L. (Asteraceae) and Curcuma longa L. (Zingiberaceae), the FITOPROT herbal medicine, and its influence on inflammatory cytokine levels: a randomized clinical trial. Support Care Cancer, 32, No. 9, p. 628. https://doi.org/10.1007/s00520-024-08842-3
33. Vargas-Casanova, Y., Bravo-Chaucanes, C.P., MartНnez, A.X.H., Costa, G.M., Contreras-Herrera, J.L., Medina, R.F., Rivera-Monroy, Z.J., GarcНa-CastaФeda, J.E. & Parra-Giraldo, C.M. (2023). Combining the peptide RWQWRWQWR and an Ethanolic Extract of Bidens pilosa Enhances the activity against sensitive and resistant Candida albicans and C. auris strains. J..Fungi (Basel), 9, No. 8, 817. https://doi.org/10.3390/jof9080817
34. Ali, D.S., El-Haddad, A.E., Mohamed, H.S., El-Bassuony, A.A., Hegab, M.M., AbdElgayed, G., Ebaid, H., Ahmed, S.A. & Kamel, E.M. (2025). Quercetin Derivatives from Bidens pilosa Suppressed Cell Proliferation via Inhibition of RSK2 Kinase and Aldose Reductase Enzymes: UPLC-MS/MS, GC-MS, In Vitro, and Computational Studies. Appl. Biochem. Biotechnol. https://doi.org/10.1007/s12010-024-05134-8