Fìzìol. rosl. genet. 2025, vol. 57, no. 3, 223-257, doi: https://doi.org/10.15407/frg2025.03.223

Use of growth stimulators for regulation of morphogenesis, optimization of trophic supply and increasing the productivity of cultivated plants

Rogach V.V.1, Kuryata V.G.2, Stasik О.О.1, Kiriziy D.A.,1 Rogach T.I.2

  1. Institute of Plant Physiology and Genetics, National Academy of Sciences of Ukraine 31/17 Vasylkivska St., Kyiv, 03022, Ukraine
  2. Mykhailo Kotsiubynskyi Vinnytsia State Pedagogical University 32 Ostrozhsky St., Vinnytsia, 21100, Ukraine

An important factor of the crop productivity improvement is the enhancement of the realization of their genetic potential through the use of natural and synthetic growth stimulators. This review examines literature data and the authors’ own research results regarding the effects of exogenous native phytohormones and their synthetic analogs on a wide range of physiological processes in plants, the production process, and crop formation in cultivated plants. It is noted that the action of growth-stimulating preparations is associated with accelerated growth, increased plant size, expanded assimilating surface area, higher chlorophyll concentration, activation of photosynthetic processes, and optimized accumulation and distribution of assimilates within the plant’s source-sink system, and, as a result, increased productivity. Growth stimulators enhance the growth of axial vegetative organs and intensify their branching, increase the mass and area of leaves, and raise the leaf area index of crops. It is shown that growth stimulators thicken leaf blades by expanding chlorenchyma, increase the volume of palisade parenchyma cells, and enlarge spongy mesophyll cells. The review highlights the specific effects of natural and synthetic growth stimulators on the activity of the photosynthetic apparatus, particularly on the quantum efficiency of photochemical processes in Photosystem II, optimization of light energy use, and the rate of electron transport in chloroplasts. It is demonstrated that the general stimulatory effect of growth regulators is linked to the development of more powerful source and more potent sink organs in plants, thereby improving the realization of their potential for assimilate synthesis and accumulation, as well as the formation and growth of economically valuable organs.

Keywords: growth activators, cultivated plants, morphometry, mesostructure, leaf apparatus, chlorophyll, photosynthesis, trophic supply, hormonal status, yield

Fìzìol. rosl. genet.
2025, vol. 57, no. 3, 223-257

Full text and supplemented materials

Free full text: PDF  

References

1. Verma, S., Upadhyay, A., Kumari, M., Kumar, A., Kumar, A., Kumar, S., Sunny & Tandle, S.S. (2024). Role of Plant Growth Regulators in Improving Vegetable Crop Productivity: A Review. J. Sci. Res. Rep., 30(12), 681-697. https://doi.org/10.9734/jsrr/2024/v30i122712

2. Shamsi, I.H., Sagonda, T., Zhang, X., Zvobgo, G. & Joan, H.I. (2019). The role of growth regulators in senescence. Senesc. Sign. Contr. Plan. Elsevier, pp. 99-110. https://doi.org/10.1016/B978-0-12-813187-9.00006-8

3. Pramanik, K. & Mohapatra, P. (2017). Role of auxin on growth, yield and quality of tomato - A review. Int. J. Curr. Microbiol. App. Sci., 6(11), pp. 1624-1636. https://doi.org/10.20546/ijcmas.2017.611.195

4. Kuriata, V.H. (1999). Physiological and biochemical mechanisms of action of retardants and ethylene producers on berry plants (Unpublished Doctoral thesis). Institute of Plant Physiology and Genetics, Kyiv, Ukraine [in Ukrainian].

5. Terek, O.I. (2007). Plant growth. Lviv: Vydavnychyi tsentr LNU im. Ivana Franka [in Ukrainian].

6. Rocha, T.M., Marcelino, P.R.F., Da Costa, R.A.M., Rubio-Ribeaux, D., Barbosa, F.G. & da Silva, S.S. (2024). Agricultural bioinputs obtained by solid-state fermentation: From production in biorefineries to sustainable agriculture. Sustainability, 16(3), 1076. https://doi.org/10.3390/su16031076

7. Husen, A. (2021). Plant Performance under Environmental Stress: Hormones, Biostimulants and Sustainable Plant Growth Management. Springer International Publishing AG. https://doi.org/10.1007/978-3-030-78521-5

8. Basra, A.S. (2000). Plant Growth Regulators in Agriculture and Horticulture: Their Role and Commercial Uses. Haworth Press.

9. Vedenychova, N.P. & Kosakivska, I.V. (2017). Cytokinins as regulators of plant ontogenesis under different growth conditions. Kyiv: Nash format [in Ukrainian].

10. Ponomarenko, S.P. (1999). Plant growth regulators based on N-oxides of pyridine derivatives (Physicochemical properties and biological activity). Kyiv: Tekhnika [in Ukrainian].

11. Khuriwal, K.S., Kumar, M., Pandey, S.K., Kasera, S. & Singh, V.K. (2018). Effect of plant growth regulators on plant growth, flower yield and quality of Dahlia (Dahlia variabilis L.) cv. Kenya. J. Pharmacogn. Phytochem., pp. 603-605.

12. Tomar, S., Rajiv, D.P. & Kumari, M. (2020). Effect of GA and NAA on growth and yield of tomato (Lycopersicon esculentum Mill.) - A review. Plant Archiv., 20, pp. 71-72.

13. Hern«ndez RodrНguez, A., DНaz Pacheco, A., MartНnez Tolibia, S.E., Melendez Xicohtencatl, Y., Granados Balbuena, S.Y. & LЩpez y LЩpez, V.E. (2024). Bioprocess of gibberellic acid by Fusarium fujikuroi: the challenge of regulation, raw materials, and product yields. J. Fungi, 10(6), 418. https://doi.org/10.3390/jof10060418

14. Rademacher, W. (2016). Chemical regulators of gibberellin status and their application in plant production. Ann. Plant Rev., 49, pp. 359-404. https://doi.org/10.1002/9781119210436.ch12

15. Phawa, T., Prasad, V.M. & Rajwade, V.B. (2017). Effect of plant growth regulators on growth and flowering of pomegranate (Punica granatum L.) cv. Kandhari in Allahabad agro-climatic conditions. Int. J. Curr. Microbiol. App. Sci., 6(8), pp. 116-121. https://doi.org/10.20546/ijcmas.2017.608.015

16. Khan, A., Hamayun, M., Kang, S.-M., Kim, Y.-H., Jung, H.-Y., Lee, J.-H. & Lee, I.-J. (2012). Endophytic fungal association via gibberellins and indole acetic acid can improve plant growth under abiotic stress: An example of Paecilomyces formosus LHL10. BMC Microbiol., 12(1), 3. https://doi.org/10.1186/1471-2180-12-3

17. Nguyen, C.T., Dang, L.H., Nguyen, D.T., Tran, K.P., Giang, B.L. & Tran, N.Q. (2019). Effect of GA3 and gly plant growth regulators on productivity and sugar content of sugarcane. Agriculture, 9(7), 136. https://doi.org/10.3390/agriculture9070136

18. Abdel Kader, H., El-Boraie, E., Hamza, A. & Badawya, M. (2016). Effect of mineral fertilization with some growth regulators on growth of Magnolia grandiflora L. seedling. I. Effect on vegetative growth. J. Plant Prod., 7(4), pp. 401-407. https://doi.org/10.21608/jpp.2016.45379

19. Hidayatullah, T.M., Farooq, M., Khokhar, M.A. & Hussain, S.I. (2012). Plant growth regulators affecting sex expression of bottle gourd (Lagenaria siceraria Molina) plants. Pakistan J. Agric. Res., 25(1), p. 50.

20. Fang, S., Gao, K., Hu, W., Wang, S., Chen, B. & Zhou, Z. (2019). Foliar and seed application of plant growth regulators affects cotton yield by altering leaf physiology and floral bud carbohydrate accumulation. Field Crops Res., 231, pp. 105-114. https://doi.org/10.1016/j.fcr.2018.11.012

21. Sood, M.K., Kachawaya, D.S. & Singh, M.C. (2018). Effect of bio-fertilizers and plant growth regulators on growth, flowering, fruit ion content, yield and fruit quality of strawberry. Int. J. Agric. Environ. Biotechnol., 11(3), pp. 439-449. https://doi.org/10.30954/0974-1712.06.2018.4

22. Qiu, L.-H., Chen, R.-F., Luo, H.-M., Fan, Y.-G., Huang, X., Liu, J.-X., Xiong, F.-Q., Zhou, H.-W., Gan, C.-K., Wu, J.-M. & Li, Y.-R. (2019). Effects of exogenous GA3 and DPC treatments on levels of endogenous hormone and expression of key gibberellin biosynthesis pathway genes during stem elongation in sugarcane. Sug. Tech, 21(6), pp. 936-948. https://doi.org/10.1007/s12355-019-00728-7

23. Hou, K., Chen, J.W., Li, J.Y., Shen, H., Chen, L. & Wu, W. (2013). Effect of gibberellic acid and chlormequat chloride on growth, coumarin content and root yield of Angelica dahurica var. Formosana. J. Agr. Sci. Tech., 15, pp. 1415-1423.

24. Mohanta, H.C., Hossain, M.M., Islam, M.S., Salam, M.A. & Saha, S.R. (2015). Effect of plant growth regulators on seed yield of carrot. Ann. Bangladesh Agric., 19, pp. 23-31.

25. Abido, W.A.E., Allem, A., Zsombic, L. & Attila, N. (2018). Effect of gibberellic acid on germination of six wheat cultivars under salinity stress levels. Asian J. Biol. Sci., 12(1), pp. 51-60. https://doi.org/10.3923/ajbs.2019.51.60

26. Aldesuquy, H. (2015). Synergistic effect of phytohormones on pigment and fine structure of chloroplasts in flag leaf of wheat plants irrigated by seawater. Egypt. J. Bas. Appl. Sci., 2(4), pp. 310-317. https://doi.org/10.1016/j.ejbas.2015.07.002

27. Saeidi-Sar, S., Abbaspour, H., Afshari, H. & Yaghoobi, S.R. (2012). Effects of ascorbic acid and gibberellin A3 on alleviation of salt stress in common bean (Phaseolus vulgaris L.) seedlings. Acta Physiol. Plant., 35(3), pp. 667-677. https://doi.org/10.1007/s11738-012-1107-7

28. Ribeiro, D.M., Araуjo, W.L., Fernie, A.R., Schippers, J.H.M. & Mueller-Roeber, B. (2012). Translatome and metabolome effects triggered by gibberellins during rosette growth in Arabidopsis. J. Exp. Bot., 63(7), pp. 2769-2786. https://doi.org/10.1093/jxb/err463

29. Mehouachi, J., Tadeo, F.R., Zaragoza, S., Primo-Millo, E. & Talon, M. (1996). Effects of gibberellic acid and paclobutrazol on growth and carbohydrate accumulation in shoots and roots of citrus rootstock seedlings. J. Horticult. Sci., 71(5), pp. 747-754. https://doi.org/10.1080/14620316.1996.11515455

30. Song, S.-w., Lei, Y.-L., Huang, X.-m., Su, W., Chen, R.-y. & Hao, Y.-w. (2019). Crosstalk of cold and gibberellin effects on bolting and flowering in flowering Chinese cabbage. J. Integr. Agric., 18(5), pp. 992-1000. https://doi.org/10.1016/S2095-3119(18)62063-5

31. Rao, G.K., Ashok, P., Swami, D.V. & Sasikala, K. (2017). Influence of plant growth regulators on growth, root tuber yield and quality of orange flesh sweet potato (Ipomoea batatas (L.) Lam.) varieties. Int. J. Curr. Microbiol. App. Sci., 6(6), pp. 2017-2025. https://doi.org/10.20546/ijcmas.2017.606.237

32. Kumari, K., Kant, K., Kumar, R. & Singh, V.K. (2019). Effect of plant growth regulators on growth and yield of bottle gourd (Lagenaria siceraria (Mol.) Standl.). Int. J. Curr. Microbiol. App. Sci.,, 8(7), pp. 1881-1885. https://doi.org/10.20546/ijcmas.2019.807.223

33. Xiang, J., Wu, H., Zhang, Y., Zhang, Y., Wang, Y., Li, Z., Lin, H., Chen, H., Zhang, J. & Zhu, D. (2017). Transcriptomic analysis of gibberellin- and paclobutrazol-treated rice seedlings under submergence. Int. J. Mol. Sci., 18(10), 2225. https://doi.org/10.3390/ijms18102225

34. Surya, M.I., Ismaini, L., Normasiwi, S., Putri, D.M. & Kurniawan, V. (2020). Plant growth regulators affecting leaf traits of loquat seedling. Ann. Res. Rev. Biol., 35(11), pp. 73-85. https://doi.org/10.9734/arrb/2020/v35i1130301

35. Kim, S.K., Lee, S.C., Kim, K.U., Choo, Y.S., Kim, H.Y. & Lee, I.J. (2004). Effects of gibberellic acid and gibberellin biosynthesis retardants on ethylene production, batatasins, and free sugars in dormant tubers of Chinese yam. Kor. J. Crop Sci., 49(4), pp. 300-304.

36. Singh, S.K., Kumar, A., Beer, K.P., Singh, V. & Sohan, K. Patel. (2018). Effect of naphthalene acetic acid (NAA) and gibberellic acid (GA3) on growth and fruit quality of tomato (Lycopersicon esculentum Mill.). Int. J. Curr. Microbiol. App. Sci., 7(3), pp. 306-311. https://doi.org/10.20546/ijcmas.2018.703.036

37. Rahman, M., Nahar, M.A., Sahariar, M.S. & Karim, M.R. (2015). Plant growth regulators promote growth and yield of summer tomato (Lycopersicon esculentum Mill.). Progr. Agric., 26(1), pp. 32-37. https://doi.org/10.3329/pa.v26i1.24512

38. Khalloufi, M., MartНnez-Andуjar, C., Lacha­l, M., Karray-Bouraoui, N., Pѕrez-Alfocea, F. & Albacete, A. (2017). The interaction between foliar GA3 application and arbuscular mycorrhizal fungi inoculation improves growth in salinized tomato (Solanum lycopersicum L.) plants by modifying the hormonal balance. J. Plant Physiol., 214, pp. 134-144. https://doi.org/10.1016/j.jplph.2017.04.012

39. Kumar, S., Singh, R., Singh, V., Singh, M.K. & Singh, A.K. (2018). Effect of plant growth regulators on growth, flowering, yield and quality of tomato (Solanum lycopersicum L.). J. Pharmacogn. Phytochem., 7(1), pp. 41-44.

40. Kumar, A., Biswas, T.K., Singh, N. & Lal, E.P. (2014). Effect of gibberellic acid on growth, quality and yield of tomato (Lycopersicon esculentum Mill). J. Agric. Vet. Sci., 7(7), pp. 28-30. https://doi.org/10.9790/2380-07742830

41. Verma, O., Thakre, B. & Soni, U. (2018). Chemical control of pre harvest fruit drop in Nagpur mandarin (Citrus reticulata) of Chhindwara district of Madhya Pradesh, India. Int. J. Curr. Microbiol. App. Sci., 7(1), pp. 2258-2263. https://doi.org/10.20546/ijcmas.2018.701.273

42. Tiwari, A.K. & Singh, D.K. (2014). Use of plant growth regulators in tomato (Solanum lycopersicum L.) under tarai conditions of Uttarkhand. Ind. J. Hill Farm., 27(2), pp. 38-40.

43. Bodlaender, K.B.A. & Waart, M.V.D. (1989). Influence of gibberellic acid (GA3) applied to the crop on growth, yield and tuber size distribution of seed potatoes. Netherl. J. Agric. Sci., 37(3), pp. 185-196. https://doi.org/10.18174/njas.v37i3.16630

44. Abeuova, L.S., Kali, B.R., Rakhimzhanova, A.O., Bekkuzhina, S.S. & Manabayeva, S.A. (2020). High frequency direct shoot regeneration from Kazakh commercial potato cultivars. PeerJ, 8, e9447. https://doi.org/10.7717/peerj.9447

45. Pѕrez-Jimѕnez, M., Pazos-Navarro, M., LЩpez-MarНn, J., G«lvez, A., VarЩ, P. & Amor, F.M.d. (2015). Foliar application of plant growth regulators changes the nutrient composition of sweet pepper (Capsicum annuum L.). Scient. Hortic., 194, pp. 188-193. https://doi.org/10.1016/j.scienta.2015.08.002

46. Falcioni, R., Moriwaki, T., de Oliveira, D.M., Andreotti, G.C., de Souza, L.A., dos Santos, W.D., Bonato, C.M. & Antunes, W.C. (2018). Increased gibberellins and light levels promotes cell wall thickness and enhance lignin deposition in xylem fibers. Front. Plant Sci., 9, 1391. https://doi.org/10.3389/fpls.2018.01391

47. Upreti, K.K., Shivu Prasad, S.R., Reddy, Y.T.N. & Rajeshwara, A.N. (2014). Paclobutrazol induced changes in carbohydrates and some associated enzymes during floral initiation in mango (Mangifera indica L.) cv. Totapuri. Ind. J. Plant Physiol., 19(4), pp. 317-323. https://doi.org/10.1007/s40502-014-0113-8

48. Rohach, V.V., Kiriziy, D.A., Stasik, O.O., Mickevicius, S. & Rohach, T.I. (2020). The effect of growth promotors and retardants on the morphogenesis, photosynthesis and productivity of tomatoes (Lycopersicon esculentum Mill.). Fiziol. rast. genet., 52(4), pp. 279-294. https://doi.org/10.15407/frg2020.04.279

49. Rohach, V.V., Kuryata, V.G., Stasik, O.O., Kiriziy, D.A., Grabyk, I.H., Kaitanyuk, O.V., Rohach, T I. & Tarasyuk, M.V. (2024). Effect of growth promotors on morphogenesis, photosynthetic apparatus, productivity and residual substances content in sweet pepper (Capsicum annuum) fruits. Reg. Mech. Biosyst., 15(2), pp. 189-197. https://doi.org/10.15421/022428

50. Rogach, V.V., Kiriziy, D.A., Stasik, O.O. & Rogach, T.I. (2020). Morphogenesis, photosynthesis and productivity of eggplants under the influence of growth regulators with various action mechanisms. Fiziol. rast. genet., 52(2), pp. 152-168 [in Ukrainian]. https://doi.org/10.15407/frg2020.02.152

51. Rogach, V.V., Voytenko, L.V., Shcherbatiuk, M.M., Kuryata, V.G., Kosakivska, I.V. & Rogach, T.I. (2021a). Effects of exogenous plant growth regulators on morphogenesis, physiological and biochemical characteristics, and productivity of sweet pepper Capsicum annuum L. Fiziol. rast. genet., 53(4), pp. 320-335 [in Ukrainian]. https://doi.org/10.15407/frg2021.04.320

52. Rogach, V.V., Kiriziy, D.A., Kuryata, V.G. & Rogach, T.I. (2022). Morphogenesis, photosynthesis, and productivity of pepper (Capsicum annuum L.) under the impact of growth substances with different directions and mechanisms of action. Fiziol. rast. genet., 54(3), pp. 214-232 [in Ukrainian]. https://doi.org/10.15407/frg2022.03.214

53. Rohach, V.V., Voitenko, L.V., Shcherbatiuk, M.M., Rohach, T.I. & Kosakivska, I.V. (2020). The effect of foliar treatment with synthetic growth regulators on morphogenesis, pigment content, phytohormones, and productivity of Solanum melongena L. Visn. Khark. nat. ahrar.univ. Ser. : Biol., 50(2), pp. 105-118. [in Ukrainian]. https://doi.org/10.35550/vbio2020.02.105

54. Rohach, V.V, Rohach, T.I., Kylivnyk, A.M., Polyvanyi, S.V., Bayurko, N.V., Nikitchenko, L.O., Tkachuk, O.O., Shevchuk, O.A., Hudzevych, L.S. & Levchuk, N.V. (2020). The influence of synthetic growth promoters on morphophysiological characte­ristics and biological productivity of potato culture. Modern Phytomorph., 14(1), pp. 111-114.

55. Schlicht, M., Ludwig-Mтller, J., Burbach, C., Volkmann, D. & Baluska, F. (2013). Indole-3-butyric acid induces lateral root formation via peroxisome-derived indole-3-acetic acid and nitric oxide. New Phytol., 200(2), pp. 473-482. https://doi.org/10.1111/nph.12377

56. Yin, B., Zhang, Y. & Zhang, Y. (2011). Effects of plant growth regulators on growth and yields characteristics in adzuki beans (Phaseolus angularis). Front. Agric. China, 5(4), pp. 519-523. https://doi.org/10.1007/s11703-011-1150-y

57. Xing, X., Jiang, H., Zhou, Q., Xing, H., Jiang, H. & Wang, S. (2016). Improved drought tolerance by early IAA- and ABA-dependent H2O2 accumulation induced by a-naphthaleneacetic acid in soybean plants. Plant Growth Regul., 80(3), pp. 303-314. https://doi.org/10.1007/s10725-016-0167-x

58. Li, L.L., Gu, W.R., Li, C.F., Li, W.H., Chen, X.C., Zhang, L.G. & Wei, S. (2019). Dual application of ethephon and DCPTA increases maize yield and stalk strength. Agr. J., 111(2), pp. 612-627. https://doi.org/10.2134/agronj2018.06.0363

59. Zhou, J., Cheng, K., Huang, G., Chen, G., Zhou, S., Huang, Y., Zhang, J., Duan, H. & Fan, H. (2020). Effects of exogenous 3-indoleacetic acid and cadmium stress on the physiological and biochemical characteristics of Cinnamomum camphora. Ecotoxic. Environ. Safety, 191, 109998. https://doi.org/10.1016/j.ecoenv.2019.109998

60. Mao, J.-P., Zhang, D., Zhang, X., Li, K., Liu, Z., Meng, Y., Lei, C. & Han, M.-Y. (2018). Effect of exogenous indole-3-butanoic acid (IBA) application on the morphology, hormone status, and gene expression of developing lateral roots in Malus hupehensis. Scient. Hortic., 232, pp. 112-120. https://doi.org/10.1016/j.scienta.2017.12.013

61. Hakim, A., Jaganath, S., Honnabyraiah, M.K., Mohan Kumar, S., Anil Kumar, S. & Dayamani, K.J. (2018). Influence of biofertilizer and auxin on growth and rooting of pomegranate (Punica granatum L.) cuttings. Int. J. Curr. Microbiol. App. Sci., 7(2), pp. 1187-1193. https://doi.org/10.20546/ijcmas.2018.702.146

62. Kim, J.-H., Kwon, B.-M., Ho, T.-T. & Park, S.-Y. (2020). Phloroglucinol improves direct rooting of in vitro cultured apple rootstocks M9 and M26. Agronomy, 10(8), 1079. https://doi.org/10.3390/agronomy10081079

63. Rogach, V.V., Stasik, O.O., Kiriziy, D.A., Sytnyk, S.K., Kuryata, V.G. & Rogach, T.I. (2023a). The effects of growth regulators on the photosynthetic apparatus of the sweet pepper (Capsicum annuum L.) in relation to the productivity. Fiziol. rast. genet., 55(1), pp. 25-45 [in Ukrainian]. https://doi.org/10.15407/frg2023.01.025

64. Rogach, V.V., Stasik, O.O., Kiriziy, D.A., Sytnyk, S.K., Kuryata, V.G., Rogach, T.I. & Tarasiuk, M.V. (2023b). Effects of growth regulators on morphogenesis, development and function of the photosynthetic apparatus of eggplant (Solanum melongena L.). Fiziol. rast. genet., 55(3), pp. 234-250 [in Ukrainian]. https://doi.org/10.15407/frg2023.03.234

65. Kirilova, L.L., Nazarova, H.N. & Ivanova, E.P. (2016). p-Aminobenzoic acid stimulates seed germination, plant growth, photosynthesis, and nitrogen assimilation in amaranth (Amaranthus L.). Silskohosp. biol., 51(5), pp. 688-695 [in Ukrainian]. https://doi.org/10.15389/agrobiology.2016.5.688eng

66. Leliuk, A. & Terek, O. (2007). The use of plant growth regulators as protective compounds in case of heavy metal contamination of soybean and sunflower plants. Visn. Lviv. univ. Ser. biol., 43, pp. 228-232 [in Ukrainian].

67. Ewais, E.E.D. (2013). Effect of ascorbic acid, benzyl adenine and paclobutrazol on growth, yield and some metabolic constituents of sunflower plants. Al-Azhar J. Pharmaceut. Sci., 47(1), pp. 12-21. https://doi.org/10.21608/ajps.2013.7105

68. Hu, J., Ren, B., Dong, S., Liu, P., Zhao, B. & Zhang, J. (2020). Comparative proteomic analysis reveals that exogenous 6-benzyladenine (6-BA) improves the defense system activity of waterlogged summer maize. BMC Plant Biol., 20, pp. 1-19. https://doi.org/10.1186/s12870-020-2261-5

69. Ren, B., Zhang, J., Dong, S., Liu, P. & Zhao, B. (2017). Regulations of 6-benzyladenine (6-BA) on leaf ultrastructure and photosynthetic characteristics of waterlogged summer maize. J. Plant Growth Reg., 36(3), pp. 743-754. https://doi.org/10.1007/s00344-017-9677-7

70. Ricci, A., Carra, A., Torelli, A., Maggiali, C.A., Vicini, P., Zani, F. & Branca, C. (2001). Cytokinin-like activity of N¢-substituted N-phenylureas. Plant Growth Reg., 34(2), pp. 167-172. https://doi.org/10.1023/A:1013399927783

71. Stasik, O.O., Priadkina, H.O., Kirizii, D.A., Sokolovska-Serhiienko, O.H., Sytnyk, S.K., Kapitanska, O.S. & Zborivska, O.V. (2021). Photosynthesis and production process of high-intensity winter wheat varieties in relation to mineral nutrition conditions. Kyiv: Interservis [in Ukrainian].

72. Wen, Y., Su, S., Ma, L. & Wang, X. (2018). Effects of gibberellic acid on photosynthesis and endogenous hormones of Camellia oleifera Abel. in 1st and 6th leaves. J. Forest Res., 23(5), pp. 309-317. https://doi.org/10.1080/13416979.2018.1512394

73. Kang, S.-M., Radhakrishnan, R., Khan, A.L., Kim, M.-J., Park, J.-M., Kim, B.-R., Shin, D.-H. & Lee, I.-J. (2014). Gibberellin secreting rhizobacterium, Pseudomonas putida H-2-3 modulates the hormonal and stress physiology of soybean to improve the plant growth under saline and drought conditions. Plant Physiol. Biochem., 84, pp. 115-124. https://doi.org/10.1016/j.plaphy.2014.09.001

74. El-Sayed, M. (2014). Effect of gibberellic acid and paclobutrazol on growth and chemical composition of Schefflera arboricola plants. Middle East J., 3(4), pp. 782-792.

75. Sable, S.S., Lahane, G.R. & Dhakulkar, S.J. (2017). Effect of various plant growth regulators on growth and yield of cotton (Gossypium hirsutum). Int. J. Curr. Microbiol. App. Sci. 6(11), pp. 978-989. https://doi.org/10.20546/ijcmas.2017.611.115

76. Hossain, M.E., Amin, R., Sani, M.N.H., Ahamed, K.U., Hosain, M.T. & Nizam, R. (2018). Impact of exogenous application of plant growth regulators on growth and yield contributing attributes of summer tomato. Int. J. Plant Soil Sci., 24, pp. 1-14. https://doi.org/10.9734/IJPSS/2018/43935

77. Khan, M.N. & Mohammad, F. (2013). Interactive effect of GA3, N and P ameliorate growth, seed and fibre yield by enhancing photosynthetic capacity and carbonic anhydrase activity of linseed: A dual purpose crop. J. Integr. Agric., 12(7), pp. 1183-1194. https://doi.org/10.1016/S2095-3119(13)60443-8

78. Chen, J., Wu, X., Yao, X., Zhu, Z., Xu, S. & Zha, D. (2015). Exogenous 6-benzylaminopurine confers tolerance to low temperature by amelioration of oxidative damage in eggplant (Solanum melongena L.) seedlings. Braz. J. Bot., 39(2), pp. 409-416. https://doi.org/10.1007/s40415-015-0241-z

79. Singh, S. & Prasad, S.M. (2014). Growth, photosynthesis and oxidative responses of Solanum melongena L. seedlings to cadmium stress: Mechanism of toxicity amelioration by kinetin. Scient. Hortic., 176, pp. 1-10. https://doi.org/10.1016/j.scienta.2014.06.022

80. Ahanger, M.A., Alyemeni, M.N., Wijaya, L., Alamri, S.A., Alam, P., Ashraf, M. & Ahmad, P. (2018). Potential of exogenously sourced kinetin in protecting Solanum lycopersicum from NaCl-induced oxidative stress through up-regulation of the antioxidant system, ascorbate-glutathione cycle and glyoxalase system. PLОS One, 13(9), e0202175. https://doi.org/10.1371/journal.pone.0202175

81. Mesejo, C., Rosito, S., Reig, C., MartНnez-Fuentes, A. & AgustН, M. (2011). Synthetic auxin 3,5,6-TPA provokes citrus clementina (Hort. ex Tan) fruitlet abscission by reducing photosynthate availability. J. Plant Growth Reg., 31(2), pp. 186-194. https://doi.org/10.1007/s00344-011-9230-z

82. Tsiakaras, G., Petropoulos, S.A. & Khah, E.M. (2014). Effect of GA3 and nitrogen on yield and marketability of lettuce (Lactuca sativa L.). Aust. J. Crop Sci., 8 (1), pp. 127-132.

83. Ouzounidou, G., Ilias, I., Giannakoula, A. & Papadopoulou, P. (2010). Comparative study on the effects of various plant growth regulators on growth, quality and physiology of Capsicum annuum L. Pak. J. Bot., 42(2), pp. 805-814.

84. Mobli, M. & Baninasab, B. (2008). Effects of plant growth regulators on growth and carbohydrate accumulation in shoots and roots of two almond rootstock seedlings. Fruits, 63(6), pp. 363-370. https://doi.org/10.1051/fruits:2008032

85. Wu, H., Xiang, J., Chen, H.Z., Zhang, Y.P., Zhang, Y.K. & Zhu, F. (2018). Effects of exogenous growth regulators on plant elongation and carbohydrate consumption of rice seedlings under submergence. J. Appl. Ecol., 29(1), pp. 149-157. https://doi.org/ 10.13287/j.1001-9332.201801.021

86. Iqbal, M. & Ashraf, M. (2013). Gibberellic acid mediated induction of salt tolerance in wheat plants: Growth, ionic partitioning, photosynthesis, yield and hormonal homeostasis. Environ. Exp. Bot., 86, pp. 76-85. https://doi.org/10.1016/j.envexpbot.2010.06.002

87. Rai, R.K., Tripathi, N., Gautam, D. & Singh, P. (2017). Exogenous application of ethrel and gibberellic acid stimulates physiological growth of late planted sugarcane with short growth period in sub-tropical India. J. Plant Growth Reg., 36(2), pp. 472-486. https://doi.org/10.1007/s00344-016-9655-5

88. Ferrari, J.V., Furlani Jуnior, E., Ferrari, S. & Luques, A.P.P.G. (2015). Vegetative growth response of cotton plants due to growth regulator supply via seeds. Acta Scient. Agr., 37(3), pp. 361-366. https://doi.org/10.4025/actasciagron.v37i3.19664

89. Sugiura, D., Sawakami, K., Kojima, M., Sakakibara, H., Terashima, I. & Tateno, M. (2015). Roles of gibberellins and cytokinins in regulation of morphological and physiological traits in Polygonum cuspidatum responding to light and nitrogen availabilities. Funct. Plant Biol., 42(4), pp. 397-409. https://doi.org/10.1071/FP14212

90. Kumari, S. (2017). Effect of kinetin (6-FAP) and cycocel (CCC) on growth, metabolism and cellular organelles in pearl millet (Pennisetum glaucum) under water stress. Int. J. Curr. Microbiol. App. Sci., 6(8), pp. 2711-2719. https://doi.org/10.20546/ijcmas.2017.608.325

91. Xiaotao, D., Yuping, J., Hong, W., Haijun, J., Hongmei, Z., Chunhong, C. & Jizhu, Y. (2012). Effects of cytokinin on photosynthetic gas exchange, chlorophyll fluorescence parameters, antioxidative system and carbohydrate accumulation in cucumber (Cucumis sativus L.) under low light. Acta Physiol. Plant., 35(5), pp. 1427-1438. https://doi.org/10.1007/s11738-012-1182-9

92. SchrШder, M., Link, H. & Bangerth, K.F. (2013). Correlative polar auxin transport to explain the thinning mode of action of benzyladenine on apple. Scient. Hortic., 153, pp. 84-92. https://doi.org/10.1016/j.scienta.2013.02.001

93. Matthews, J.S.A. & Lawson, T. (2019). Climate change and stomatal physiology. Ann. Plant Rev., 2(3), pp. 713-751. https://doi.org/10.1002/9781119312994.apr0667

94. Miceli, A., Moncada, A., Sabatino, L. & Vetrano, F. (2019). Effect of gibberellic acid on growth, yield, and quality of leaf lettuce and rocket grown in a floating system. Agronomy, 9(7), 382. https://doi.org/10.3390/agronomy9070382

95. Luo, Y., Yang, D., Yin, Y., Cui, Z., Li, Y., Chen, J., Zheng, M., Wang, Y., Pang, D., Li, Y. & Wang, Z. (2016). Effects of exogenous 6-BA and nitrogen fertilizers with varied rates on function and fluorescence characteristics of wheat leaves post anthesis. Sci. Agr. Sinica, 49(6), pp. 1060-1083.

96. Wang, H., Atkin, O.K., Keenan, T.F., Smith, N.G., Wright, I.J., Bloomfield, K.J., Kattge J., Reich, P.B. & Prentice, I.C. (2020). Acclimation of leaf respiration consistent with optimal photosynthetic capacity. Glob. Change Biol., 26, pp. 2573-2583. https://doi.org/10.1111/gcb.14980

97. Cui, C., Shang, M., Li, Z. & Xiao, J. (2025). Synthetic biology approaches to improve Rubisco carboxylation efficiency in C3 Plants: Direct and Indirect Strategies. J. Plant Physiol., 307, 154470. https://doi.org/10.1016/j.jplph.2025.154470

98. Alexopoulos, A.A., Karapanos, I.C., Akoumianakis, K.A. & Passam, H.C. (2016). Effect of gibberellic acid on the growth rate and physiological age of tubers cultivated from true potato seed. J. Plant Growth Reg., 36(1), pp. 1-10. https://doi.org/10.1007/s00344-016-9616-z

99. Ghorbani Javid, M., Sorooshzadeh, A., Modarres Sanavy, S.A.M., Allahdadi, I. & Moradi, F. (2011). Effects of the exogenous application of auxin and cytokinin on carbohydrate accumulation in grains of rice under salt stress. Plant Growth Reg., 65(2), pp. 305-313. https://doi.org/10.1007/s10725-011-9602-1

100. Ahmed, W., Tahir, F.M., Rajwana, I.A., Raza, S.A. & Asad, H.U. (2012). Comparative evaluation of plant growth regulators for preventing premature fruit drop and improving fruit quality parameters in 'Dusehri' mango. Int. J. Fruit Sci., 12(4), pp. 372-389. https://doi.org/10.1080/15538362.2012.679175

101. Khalid, S., Malik, A.U., Khan, A.S., Razzaq, K. & Naseer, M. (2016). Plant growth regulators application time influences fruit quality and storage potential of young kinnow mandarin trees. Int. J. Agric. Biol., 18(3), pp. 623-629. https://doi.org/10.17957/IJAB/15.0136

102. Cruz-Castillo, J.G., Baldicchi, A., Frioni, T., Marocchi, F., Moscatello, S., Proietti, S., Battistelli, A. & Famiani, F. (2014). Pre-anthesis CPPU low dosage application increases 'Hayward' kiwifruit weight without affecting the other qualitative and nutritional characteristics. Food Chem., 158, pp. 224-228. https://doi.org/10.1016/j.foodchem.2014.01.131

103. Rohach, V.V. (2019). Dynamics of accumulation and reverse of different forms of carbohydrates in eggplants organs under the effects of growth stimulators. Scient. Iss. TNPU. Series: Biology, 76(2), pp. 97-103 [in Ukrainian]. https://doi.org/10.25128/2078-2357.19.2.16

104. Macedo, W.R., Araуjo, D.K., Santos, V.M., Castro, P.R.d.C.e. & Fernandes, G.M. (2017). Plant growth regulators on sweet sorghum: Physiological and nutritional value analysis. Com. Sci., 8(1), p. 170. https://doi.org/10.14295/cs.v8i1.1315

105. Vedenychova, N.P. & Kosakivska, I.V. (2016). Recent aspects of cytokinin research: evolution and interaction with other phytohormones. Fiziol. rast. genet., 48(1), pp. 3-19 [in Ukrainian]. https://doi.org/10.15407/frg2016.01.003

106. Li, J., Yang, Y., Chai, M., Ren, M., Yuan, J., Yang, W., Dong, Y., Liu, B., Jian, Q., Wang, S., Peng, B., Yuan, H. & Fan, H. (2020). Gibberellins modulate local auxin biosynthesis and polar auxin transport by negatively affecting flavonoid biosynthesis in the root tips of rice. Plant Sci., 298, 110545. https://doi.org/10.1016/j.plantsci.2020.110545

107. Qiu, L.-H., Chen, R.-F., Luo, H.-M., Fan, Y.-G., Huang, X., Liu, J.-X., Xiong, F.-Q., Zhou, H.-W., Gan, C.-K., Wu, J.-M. & Li, Y.-R. (2019). Effects of exogenous GA3 and DPC treatments on levels of endogenous hormone and expression of key gibberellin biosynthesis pathway genes during stem elongation in sugarcane. Sug. Tech, 21(6), pp. 936-948. https://doi.org/10.1007/s12355-019-00728-7

108. Hidayat, U. & Asghari, B. (2011). Effect of seed soaking treatment with growth regulators on phytohormone level and sex modification in cucumber (Cucumis sativus L.). Afr. J. Plant Sci., 5(10), pp. 599-608.

109. Zhang, Y.-L. & Zhang, R.-G. (2009). Effects of ABA content on the development of abscission zone and berry falling after harvesting of grapes. Agric. Sci. China, 8(1), pp. 59-67. https://doi.org/10.1016/S1671-2927(09)60009-2

110. Aremu, A.O., Pla№kov«, L., Masondo, N.A., Amoo, S.O., Moyo, M., Nov«k, O., Doleыal, K. & Van Staden, J. (2017). Regulating the regulators: Responses of four plant growth regulators during clonal propagation of Lachenalia montana. Plant Growth Reg., 82(2), pp. 305-315. https://doi.org/10.1007/s10725-017-0260-9

111. Hikosaka, S. & Sugiyama, N. (2015). Effects of exogenous plant growth regulators on yield, fruit growth, and concentration of endogenous hormones in gynoecious parthenocarpic cucumber (Cucumis sativus L.). Hort. J., 84(4), pp. 342-349. https://doi.org/10.2503/hortj.MI-051

112. Li, Y., Zhang, D., Xing, L., Zhang, S., Zhao, C. & Han, M. (2015). Effect of exogenous 6-benzylaminopurine (6-BA) on branch type, floral induction and initiation, and related gene expression in 'Fuji' apple (Malus domestica Borkh). Plant Growth Reg., 79(1), pp. 65-70. https://doi.org/10.1007/s10725-015-0111-5

113. Wang, X., Han, F., Yang, M., Yang, P. & Shen, S. (2013). Exploring the response of rice (Oryza sativa) leaf to gibberellins: A proteomic strategy. Rice, 6(1), 17. https://doi.org/10.1186/1939-8433-6-17

114. Honda, I., Matsunaga, H., Kikuchi, K., Matuo, S., Fukuda, M. & Imanishi, S. (2017). Involvement of cytokinins, 3-indoleacetic acid, and gibberellins in early fruit growth in pepper (Capsicum annuum L.). Hort. J., 86(1), pp. 52-60. https://doi.org/10.2503/hortj.MI-120

115. Stasik, O.O., Kiriziy, D.A. & Priadkina, G.O. (2021). Photosynthesis and productivity: main scientific achievements and innovative developments. Fiziol. rast. genet., 53(2), pp. 160-184 [in Ukrainian]. https://doi.org/10.15407/frg2021.02.160

116. Zhao, H., Cao, H.H., Pan, M.Z., Sun, Y.X. & Liu, T.X. (2017). The role of plant growth regulators in a plant-aphid-parasitoid tritrophic system. J. Plant Growth Reg., 36(4), pp. 868-876. https://doi.org/10.1007/s00344-017-9689-3

117. Mohtashami, M., Naderi, A., Ghanbari, A.A., Alavifazel, M. &, Lak. S. (2016). Effect of seed pre-treatment with growth regulators on seed yield and yield components of common beans (Phaseolus vulgaris L.). Turk. J. Field Crops, 21(2), pp. 313-317. https://doi.org/10.17557/tjfc.57207

118. Gonzatto, M.P., BШettcher, G.N., Schneider, L.A., Lopes, ".A., Silveira Jуnior, J.C., Petry, H.B., Oliveira, R.P.d. & Schwarz, S.F. (2016). 3,5,6-trichloro-2-pyridinyloxyacetic acid as effective thinning agent for fruit of 'Montenegrina' mandarin. CiГn. Rural, 46(12), pp. 2078-2083. https://doi.org/10.1590/0103-8478cr20140057

119. Verma, P.P.S., Meena, M.L. & Meena, S.K. (2014). Influence of plant growth regulators on growth, flowering and quality of tomato (Lycopersicon esculentum Mill), cv. H-86. Ind. J. Hill Farm., 27(2), pp. 19-22.

120. YПldПrПm, B., Yeкiloglu, T., Incesu, M., Kamiloglu, M., Зimen, B. & Tamer, џ. (2012). Effects of 2,4-DP (2,4-dichlorophenoxypropionic acid) plant growth regulator on fruit size and yield of Valencia oranges (Citrus sinensis Osb). New Zealand J. Crop Hort. Sci., 40(1), pp. 55-64. https://doi.org/10.1080/01140671.2011.604091

121. Pujari, R., Patil, S., S, A., Anda, S., Babaleshwar, B., Dhar, S., Dodamani, M. & Shivanand, M.R. (2018). Effect of growth regulators on growth and yield of turmeric var. Suroma. Int. J. Curr. Microbiol. App. Sci., 7(1), pp. 3156-3158. https://doi.org/10.20546/ijcmas.2018.701.374

122. Lamo, K., Bhat, D.J., Wali, V.K., Bakshi, P., Jasrotia, A. & Mehta, G. (2017). Influence of Pre Harvest and Pre Flower Sprays of Gibberellic acid, Napthalene acetic acid and Ethrel on Flowering Behaviour, Fruit Yield of Phalsa Cultivar Purple Round under Jammu- Sub Tropics. Int. J. Curr. Microbiol. App. Sci., 6 (10), pp. 3504-3508. https://doi.org/10.20546/ijcmas.2017.610.413

123. Miliє, B., Tarlanoviє, J., Keseroviє, Z., Zoriє, L., Blagojeviє, B. & Magazin, N. (2016). The growth of apple central fruits as affected by thinning with NAA, BA and naphthenic acids. Erwerbs-Obstbau, 59(3), pp. 185-193. https://doi.org/10.1007/s10341-016-0310-x

124. Prajapati, S., Jamkar, T., Singh, O.P., Raypuriya, N., Mandloi, R. & Jain, P.K. (2015). Plant growth regulators in vegetable production: An overview. Plant Archiv., 15(2), pp. 619-626.

125. Tantasawat, P.A., Sorntip, A. & Pornbungkerd, P. (2015). Effects of exogenous application of plant growth regulators on growth, yield, and in vitro gynogenesis in cucumber. HortSci., 50(3), pp. 374-382. https://doi.org/10.21273/HORTSCI.50.3.374

126. Wamiq, M. (2020). Effect of GA3 and NAA on yield of Bottle Gourd (Lagenaria siceraria) cv (MGH-4). Int. J. Curr. Microbiol. App. Sci., 9(10), pp. 2217-2221. https://doi.org/10.20546/ijcmas.2020.910.268

127. Acharya, S.K., Thakar, C., Brahmbhatt, J.H. & Joshi, N. (2020). Effect of plant growth regulators on cucurbits: A review. J. Pharmacogn. Phytochem., 9(4), pp. 540-544.

128. Ransing, S.K., Kengare, R.A., Chavan, C.K. & Totre, A.S. (2018). Effect of growth regulators on yield and yield contributing characters of sunflower (Helianthus annuus L.) variety Phule Bhaskar during kharif season. Int. J. Chem. Stud., 6(6), pp. 967-968.

129. Jasmin, B.L., Kumar, S. & Modi, S. (2018). Influence of plant growth regulators on growth and yield of greenhouse tomato (Solanum lycopersicum L.). Int. J. Curr. Microbiol. App. Sci., 7(8), pp. 1603-1609. https://doi.org/10.20546/ijcmas.2018.708.183

130. Akter, N., Rafiqul Islam, M., Abdul Karim, M. & Hossain, T. (2014). Alleviation of drought stress in maize by exogenous application of gibberellic acid and cytokinin. J. Crop Sci. Biotechnol., 17(1), pp. 41-48. https://doi.org/10.1007/s12892-013-0117-3

131. Khan, M.M.A., Khan, R., Singh, M., Nasir, S., Naeem, M., Siddiqui, M.H. & Mohammad, F. (2007). Gibberellic acid and triacontanol can ameliorate the opium yield and morphine production in opium poppy (Papaver somniferum L.). Acta Hort., 756, pp. 289-298. https://doi.org/10.17660/ActaHortic.2007.756.30

132. Biswas, A., Mandal, T., Das, S. & Thakur, B. (2018). Effect of plant growth regulators on growth and flowering of pansy (Viola ' wittrockiana Gams.) under west bengal condition. Int. J. Curr. Microbiol. App. Sci., 7(1), pp. 2125-2130. https://doi.org/10.20546/ijcmas.2018.701.256

133. Sindhuja, M. & Prasad, V.M. (2018). Effect of different plant growth regulators and their levels on floral yield and economics of china aster [Callistephus chinensis (L.) Nees] cv. Shashank. Int. J. Curr. Microbiol. App. Sci., 7(12), pp. 1208-1212. https://doi.org/10.20546/ijcmas.2018.712.150

134. Singh, K., Sharma, M. & Singh, S. (2017). Effect of plant growth regulators on fruit yield and quality of guava (Psidium guajava) cv. Allahabad Safeda. J. Pure Appl. Microbiol., 11(2), pp. 1149-1154. https://doi.org/10.22207/JPAM.11.2.61

135. Passam, H.C., Koutri, A.C. & Karapanos, I.C. (2008). The effect of chlormequat chloride (CCC) application at the bolting stage on the flowering and seed production of lettuce plants previously treated with water or gibberellic acid (GA3). Scient. Hortic., 116(2), pp. 117-121. https://doi.org/10.1016/j.scienta.2007.11.004

136. Jabir, B.M.O., Kinuthia, K.B., Faroug, M.A., NureldinAwad, F., Muleke, E.M., Ahmadzai, Z. & Liu, L. (2017). Effects of gibberellin and gibberellin biosynthesis inhibitor (paclobutrazol) applications on radish (Raphanus sativus) taproot expansion and the presence of authentic hormones. Int. J. Agric. Biol, 19(4), pp. 779-786. https://doi.org/10.17957/IJAB/15.0359

137. Geeta, B., Chetti, M.B. & Navalgatti, C.M. (2014). Effect of plant growth regulators on leaf biochemical characters and fruit yield components of bittergourd (Momordica charantia L.) cvs. MHBI-15 and Chaman Plus. J. Hortl. Sci., 9(1), pp. 43-47. https://doi.org/10.24154/jhs.v9i1.217

138. Sreenivas, M., Sharangi, A.B. & Raj, A.C. (2017). Evaluation of bio-efficacy and phytotoxicity of gibberellic acid on chilli. J. Crop Weed, 13(3), pp. 174-177.

139. Jakhar, D., Eshwari, T., Nain, S. & Jakhar, N. (2018). Effect of plant growth regulator on growth, yield & quality of tomato (Solanum lycopericum) cultivar 'Shivaji' under Punjab condition. Int. J. Curr. Microbiol. App. Sci., 7(6), pp. 2630-2636. https://doi.org/10.20546/ijcmas.2018.706.311

140. Pichardo-Gonzaґlez, J.M., Guevara-Olvera, L., Couoh-Uicab, Y.L., Gonzaґlez-Cruz, L., Bernardino-Nicanor, A., Medina, H.R., Gonzaґlez-Chavira, M.M. & Acosta-Garciґa, G. (2018). Efecto de las giberelinas en el rendimiento de chile jalapeФo (Capsicum annuum L.). R. Mex. Cien. Agr., 9(5), pp. 925-934. https://doi.org/10.29312/remexca.v9i5.1502

141. Gelmesa, D., Abebie, B. & Desalegn, L. (2013). Effects of gibberellic acid and 2,4-dichlorophenoxy acetic acid spray on vegetative growth, fruit anatomy and seed setting of tomato (Lycopersicon esculentum Mill.). Sci. Technol. Arts Res. J., 2(3), pp. 25-34. https://doi.org/10.4314/star.v2i3.98720

142. Kamran, M., Ahmad, I., Wu, X., Liu, T., Ding, R. & Han, Q. (2018). Application of paclobutrazol: A strategy for inducing lodging resistance of wheat through mediation of plant height, stem physical strength, and lignin biosynthesis. Environ. Sci. Pollut. Res., 25(29), pp. 29366-29378. https://doi.org/10.1007/s11356-018-2965-3

143. FrШschle, M., Horn, H. & Spring, O. (2016). Effects of the cytokinins 6-benzyladenine and forchlorfenuron on fruit-, seed- and yield parameters according to developmental stages of flowers of the biofuel plant Jatropha curcas L. (Euphorbiaceae). Plant Growth Reg., 81(2), pp. 293-303. https://doi.org/10.1007/s10725-016-0206-7

144. Gouveia, E.J., Rocha, R.B., Laviola, B.G., Ramalho, A.R., Ferreira, M.D.G.R. & Dias, L.A.D.S. (2012). Grain yield increase of physic nut by field-application of benzyladenine. Pesqui. Agropecu. Bras., 47, pp. 1541-1545. https://doi.org/10.1590/S0100-204X2012001000018

145. Fu, Q., Niu, L., Zhang, Q., Pan, B.-Z., He, H. & Xu, Z.-F. (2014). Benzyladenine treatment promotes floral feminization and fruiting in a promising oilseed crop Plukenetia volubilis. Ind. Crops Prod., 59, pp. 295-298. https://doi.org/10.1016/j.indcrop.2014.05.028

146. Ullah, F. & Bano, A. (2011). Effect of plant growth regulators on oil yield and biodiesel production of safflower (Carthamus tinctorius L.). Braz. J. Plant Physiol., 23(1), pp. 27-31. https://doi.org/10.1590/S1677-04202011000100005