Fìzìol. rosl. genet. 2025, vol. 57, no. 3, 187-222, doi: https://doi.org/10.15407/frg2025.03.187

Current state of research on wheat grain quality

Sandetska N.V., Dubrovna O.V.

  • Institute of Plant Physiology and Genetics, National Academy of Sciences of Ukraine 31/17 Vasylkivska St., Kyiv, 03022, Ukraine

Wheat is one of the main food crops in the world, which is grown on more than 17 % of arable land and consumed by approximately one third of the world’s population. The grain of this crop is well stored and relatively easily processed into food and feed products, provides more than 20 % of the total calorie content of the human diet, therefore improving the quality of wheat grain is of global importance. This review presents the current state of research on wheat grain quality and the progress that has occurred in recent decades in the field of studying its main indices, as well as methods for genetic improvement of this trait. The main morphological, technological and physicochemical characteristics of wheat grain quality are considered in detail. Modern data on genes and key enzymes of the biosynthesis of the main wheat grain proteins, in particular gluten and non-gluten, are presented, as well as their composition, structure, function, and their role in the baking properties of flour. Data on the genetics of storage proteins, gene expression, and the prevalence of their alleles are presented. The possibilities of increasing the protein content in wheat grain are analyzed as one of the strategic tasks of modern breeding. The role of starch and grain hardness in determining the technological and baking properties of flour is highlighted. Attention is paid to the genetic control of quality traits and the influence of environmental factors on them. Biotechnological approaches that are currently widely used to improve the wheat grain quality are considered. Information on modern strategies in breeding for the wheat grain quality is presented. Practical achievements of scientists of the Institute of Plant Physiology and Genetics of National Academy of Sciences of Ukraine in improving the wheat grain quality are considered.

Keywords: wheat, grain quality, morphological, technological, physicochemical characteristics, genetic improvement

Fìzìol. rosl. genet.
2025, vol. 57, no. 3, 187-222

Full text and supplemented materials

Free full text: PDF  

References

1. Erenstein, O., Jaleta, M., Mottaleb, K., Sonder, K., Donovan, J. & Braun, H. (2022). Global trends in wheat production, consumption and trade. Wheat Improv., 5, pp. 47-66. https://doi.org/10.1007/978-3-030-90673-3_4

2. Mitura, K., Cacak-Pietrzak, G., Feledyn-Szewczyk, B., Szablewski, T. & Studnicki, M. (2023). Yield and grain quality of common wheat (Triticum aestivum L.) depending on the different farming systems (organic vs. integrated vs. conventional). Plants, 12(5), 1022. https://doi.org/10.3390/plants12051022

3. Lachutta, K. & Jankowski, K.J. (2024). The quality of winter wheat grain by different sowing strategies and nitrogen fertilizer rates: A case study in northeastern Poland. Agricult., 14(4), 552. https://doi.org/10.3390/agriculture14040552

4. Guzm«n, C., Ammar, K., Govindan, V. & Singh, R. (2019). Genetic improvement of wheat grain quality at CIMMYT Front. Agr. Sci. Eng., 6(3), pp. 265-272 https://doi.org/10.15302/J-FASE-2019260

5. Reynolds, M.P., Slafer, G.A., Foulkes, J.M., Griffiths, S., Murchie, E.H., Carmo-Silva, E., Asseng, S., Chapman, S.C., Sawkins, M., Gwyn, J. & Flavell, R.B. (2022). A wiring diagram to integrate physiological traits of wheat yield potential. Nat. Food, 3, pp. 318-324. https://doi.org/10.1038/s43016-022-00512-z

6. Khalid, A., Hameed, A. & Tahir, M.F. (2023). Wheat quality: A review on chemical composition, nutritional attributes, grain anatomy, types, classification, and function of seed storage proteins in bread making quality. Front. Nutr., 10. https://doi.org/10.3389/fnut.2023.1053196

7. ˜aba, S., Cacak-Pietrzak, G., ˜aba, R., SuУek, A. & Szczepanski, K. (2022). Food losses in consumer cereal production in Poland in the context of food security and environmental impact. Agricult., 12(5), 665. https://doi.org/10.3390/agriculture12050665

8. Morgun, V.V., Rybalka, O.I. & Dubrovna, O.V. (2021). Genetic improvement of plants: main scientific achievements and innovative developments. Fiziol. rosl. genet., 53(2), pp. 112-127 [in Ukrainian]. https://doi.org/10.15407/frg2021.02.112

9. Garutti, M., Nevola, G., Mazzeo, R., Cucciniello, L., Totaro, F., Bertuzzi, C.A., Caccialanza, R., Pedrazzoli, P. & Puglisi, F. (2022). The impact of cereal grain composition on the health and disease outcomes. Front. Nutr., 9, 888974. https://doi.org/10.3389/fnut.2022.888974

10. Biel, W., Kazimierska, K. & Bashutska, U. (2020). Nutritional value of wheat, triticale, barley and oat grains. Acta Sci. Pol. Zootech., 19(2), pp. 19-28. https://doi.org/10.21005/asp.2020.19.2.03

11. Guzm«n, C., Ibba, M.I., Ђlvarez, J.B., Sissons, M. & Morris, C. (2022). Wheat quality. In: Reynolds, M.P., Braun, H.J. (Eds.). Wheat improvement food security in a changing climate (pp. 177-193). Cham, Switzerland: Springer International Publishing. https://doi.org/10.1007/978-3-030-90673-3_11

12. Ma, W.J., Yu, Z.T., She, M.Y., Zhao, Y. & Islam, S. (2019). Wheat gluten protein and its impacts on wheat processing quality. Front. Agr. Sci. Eng. 6, pp. 279-287. https://doi.org/10.15302/J-FASE-2019267

13. Scherf, K.A., Koehler, P. & Wieser, H. (2015). Gluten and wheat sensitivities-An overview. J. Cereal Sci., 67, pp. 2-11. https://doi.org/10.1016/j.jcs.2015.07.008

14. Kaur, A., Shevkani, K., Katyal, M., Singh, N., Ahlawat, A.K. & Singh, A.M. (2016). Physicochemical and rheological properties of starch and flour from different durum wheat varieties and their relationships with noodle quality. J Food Sci. Technol., 53(4), pp. 2127-2138. https://doi.org/10.1007/s13197-016-2202-3

15. Brankovic, G., Dodig, D., Pajic, V., Kandic, V., Knezevic, D., Duric, N. & Zivanovic, T. (2018). Genetic parameters of Triticum aestivum and Triticum durum for technological quality properties in Serbia. Zemd.-Agric., 105(1), pp. 39-48. https://doi.org/10.13080/z-a.2018.105.006

16. Kiszonas, A.M. & Morris, C.F. (2018). Wheat breeding for quality: a historical review. Cereal Chem., 95(1), pp. 17-34. https://doi.org/10.1094/CCHEM-05-17-0103-FI

17. Ceseviciene, J., Gorash, A., Liatukas, Z., Armoniene, R., Ruzgas, V., Statkeviciute, G., Jaskune, K. & Brazauskas, G. (2022). Grain yield performance and quality characteristics of waxy and non-waxy winter wheat cultivars under high and low-input farming systems. Plants, 11(7), 882. https://doi.org/10.3390/plants11070882

18. Pei, H., Li, Y., Liu, Y., Liu, P., Zhang, J., Ren, X. & Lu, Z. (2023). Chromatin accessibility landscapes revealed the subgenome-divergent regulation networks during wheat grain development. aBIOTECH, 4(1), pp. 8-19. https://doi.org/10.1007/s42994-023-00095-8

19. Zhi, J., Zeng, J., Wang, Yaqiong, Zhao, H., Wang, G., Guo, J., Wang, Yuesheng, Chen, M., Yang, G., He, G., Chen, X., Chang, J. & Li, Y. (2023). A multi-omic resource of wheat seed tissues for nutrient deposition and improvement for human health. Sci., 10, 269. https://doi.org/10.1038/s41597-023-02133-y

20. Li, N., Miao, Y., Ma, J., Zhang, P., Chen, T., Liu, Y., Che, Z., Shahinnia, F. & Yang, D. (2023). Consensus genomic regions for grain quality traits in wheat revealed by Meta-QTL analysis and in silico transcriptome integration. Plant Genom., 16(2). https://doi.org/10.1002/tpg2.20336

21. Victorio, V.C.M., Alves, T.O., Souza, G.H.M.F., Gutkoski, L.C., Cameron, L.C. & Ferreira, M.S.L. (2021). NanoUPLC-MSE reveals differential abundance of gluten proteins in wheat flours of different technological qualities. J. Prot., 239, 104181. https://doi.org/10.1016/j.jprot.2021.104181

22. Afzal, M., Sielaff, M., Distler, U., Schuppan, D., Tenzer, S. & Longin, C.F.H. (2023). Reference proteomes of five wheat species as starting point for future design of cultivars with lower allergenic potential. NPJ Sci. Food, 7(1), 9. https://doi.org/10.1038/s41538-023-00188-0

23. Min, B., Salt, L., Wilde, P., Kosik, O., Hassall, K., Przewieslik-Allen, A., Burridge, A.J., Poole, M., Snape, J., Wingen, L., Haslam, R., Griffiths, S. & Shewry, P.R. (2020). Genetic variation in wheat grain quality is associated with differences in the galactolipid content of flour and the gas bubble properties of dough liquor. Food Chem., 6(7), 100093. https://doi.org/10.1016/j.fochx.2020.100093

24. Sinto, A., Sathee, L., Singh, D., Jha, S.K., Chinnusamy, V. & Singh, M.P. (2022). Interactive effect of elevated CO2 and nitrogen dose reprograms grain ionome and associated gene expression in bread wheat. Plant Physiol. Biochem., 179, pp. 134-143. https://doi.org/10.1016/j.plaphy.2022.03.017

25. Sharma, A., Garg, S., Sheikh, I., Vyas, P. & Dhaliwal, H.S. (2020). Effect of wheat grain protein composition on end-use quality. J. Food Sci. Technol., 57(8), pp. 2771-2785. https://doi.org/10.1007/s13197-019-04222-6

26. Safdar, L.B., Dugina, K., Saeidan, A., Yoshicawa, G.V., Caporaso, N., Gapare, B., Umer, J.M., Bhosale, R.A., Searle, I.R., Foulkes, M.J., Boden, S.A. & Fisk, I.D. (2023). Reviving grain quality in wheat through non-destructive phenotyping techniques like hyperspectral imaging. Food and Energy Secur., 12(5), 498. https://doi.org/10.1002/fes3.498

27. Taneva, K., Bozhanova, V. & Petrova, I. (2019). Variability, heritability and genetic advance of some grain quality traits and grain yield in durum wheat genotypes. Bulg. J. Agric. Sci., 25(2), pp. 288-295.

28. Warechowska, M., Markowska, A., Warechowski, J., Mis, A. & Nawrocka, A. (2016). Effect of tempering moisture of wheat on grinding energy, middlings and flour size distribution, and gluten and dough mixing properties. J. Cer. Sci., 69, pp. 306-312. https://doi.org/10.1016/j.jcs.2016.04.007

29. Brinton, J. & Uauy, C. (2019). A reductionist approach to dissecting grain weight and yield in wheat. J. Int. Plant Biol., 61(3), pp. 337-358. https://doi.org/10.1111/jipb.12741

30. Wang, K. & Fu, B.X. (2020). Inter-relationships between test weight, thousand kernel weight, kernel size distribution and their effects on durum wheat milling, semolina composition and pasta processing quality. Foods, 9(9), 1308. https://doi.org/10.3390/foods9091308

31. Newberry, M., Zwart, A.B., Whan, A., Mieog, J.C., Sun, M., Leyne, E., Pritchard, J., Daneri-Castro, S.N., Ibrahim, K., Diepeveen, D., Howitt, C.A. & Ral, J.-P.F. (2018). Does late maturity alpha-amylase impact wheat baking quality? Front. Plant Sci., 9, 1356. https://doi.org/10.3389/fpls.2018.01356

32. Caporaso, N., Whitworth, M.B. & Fisk, I.D. (2018). Protein content prediction in single wheat kernels using hyperspectral imaging. Food Chem., 240, pp. 32-42. https://doi.org/10.1016/j.foodchem.2017.07.048

33. Shewry, P.R. & Hey, S.J. (2015). The contribution of wheat to human diet and health. Food Energy Secur., 4(3), pp. 178-202. https://doi.org/10.1002/fes3.64

34. Cauvain, S.P. (2020). Breadmaking: improving quality. Woodhead Publishing Series in Food Science, Technology and Nutrition.

35. Iqbal, M.J, Shams, N. & Fatima, K. (2022). Nutritional quality of wheat. In: Ansari M.R. (Eds.). Wheat. London: Intech Open. https://doi.org/10.5772/intechopen.104659

36. Rybalka, O.I. (2011). Wheat quality and its improvement. Kyiv: Logos [in Ukrainian].

37. Thorwarth, P., Piepho, H.P., Zhao, Y., Ebmeyer, E., Schacht, J., Schachschneider, R., Kazman, E., Reif, J.C., Wтrschum, T. & Longin, C.F.H. (2018). Higher grain yield and higher grain protein deviation underline the potential of hybrid wheat for a sustainable agriculture. Plant Breed., 137(4), pp. 326-337. https://doi.org/10.1111/pbr.12588

38. Yang, Y., Chai, Y., Zhang, X., Lu, S., Zhao, Z., Wei, D., Chen, L. & Hu, Y.-G. (2020). Multi-locus GWAS of quality traits in bread wheat: mining more candidate genes and possible regulatory network. Front Plant Sci., 11, 1091. https://doi.org/10.3389/fpls.2020.01091

39. Shewry, P. (2019). What is gluten-why is it special? Front Nutr., 6, 101. https://doi.org/10.3389/fnut.2019.00101

40. Wieser, H., Koehler, P. & Scherf, K.A. (2023). Chemistry of gluten proteins: quantitative composition. Cereal Chem., 100(1), pp. 36-55. https://doi.org/10.1002/cche.10553

41. Shang, Q., Wang, Y., Tang, H., Sui, N., Zhang, X. & Wang, F. (2021). Genetic, hormonal, and environmental control of tillering in wheat. The Crop J., 9(5), pp. 986-991. https://doi.org/10.1016/j.cj.2021.03.002

42. Yu, Z., She, M., Zheng, T., Diepeveen, D., Islam, S., Zhao, Y., Zhang, Yingquan, Tang, G., Zhang, Yujian, Zhang, Jingjuan, Blanchard, C.L. & Ma, W. (2021). Impact and mechanism of sulphur-deficiency on modern wheat farming nitrogen-related sustainability and gliadin content. Commun. Biol., 4(1), 945. https://www.nature.com/articles/s42003-021-02458-7 https://doi.org/10.1038/s42003-021-02458-7

43. Zhou, Z., Liu, C., Qin, M., Li, W., Hou, J., Shi, X., Dai, Z., Yao, W., Tian, B., Lei, Z., Li, Y. & Wu, Z. (2022). Promoter DNA hypermethylation of TaGli-g-2.1 positively regulates gluten strength in bread wheat. J. Adv. Res., 36, pp. 163-173. https://doi.org/10.1016/j.jare.2021.06.021

44. Zeibig, F., Kilian, B. & Frei, M. (2022). The grain quality of wheat wild relatives in the evolutionary context. Theor. Appl. Genet., 135, pp. 4029-4048. https://doi.org/10.1007/s00122-021-04013-8

45. Shewry, P.R., Wood, A.J., Hassall, K.L., Pellny, T.K., Riche, A., Hussain, A., Shi, Z., Mosleth, E.F., Charlton, M., Poole, M., Jones, S., Newton, K., Penson, S., Tucker, G., Griffiths, S. & Hawkesford, M.J. (2023). Identification of traits underpinning good breadmaking performance of wheat grown with reduced nitrogen fertilisation. J. Sci. Food Agric., 103(15), pp. 7664-7672. https://doi.org/10.1002/jsfa.12848

46. Guo, X., Sun, X., Zhang, Y., Wang, R. & Ya, X. (2018). Interactions between soy protein hydrolyzates and wheat proteins in noodle making dough. Food Chem., 245, pp. 500-507. https://doi.org/10.1016/j.foodchem.2017.10.126

47. Barak, S., Mudgil, D. & Khatkar, B.S. (2015). Biochemical and functional properties of wheat gliadins: a review. Crit. Rev. Food Sci. Nutr., 55(3), pp. 357-368. https://doi.org/10.1080/10408398.2012.654863

48. Huo, N., Zhu, T., Altenbach, S., Dong, L., Wang, Y., Mohr, T., Liu, Z., Dvorak, J., Luo, M.C. & Gu, Y.Q. (2018). Dynamic evolution of alpha-gliadine prolamin gene family in homeologous genome of hexaploid wheat. Sci. Rep., 8, 5181. https://doi.org/10.1038/s41598-018-23570-5

49. Metakovsky, E., Melnik, V., Rodriguez-Quijano, M., Upelniek, V. & Carrillo J.M. (2018). A catalog of gliadin alleles: Polymorphism of 20th-century common wheat germplasm. The Crop J., 6(6), pp. 628-641. https://doi.org/10.1016/j.cj.2018.02.003

50. Pour-Aboughadareh, A., Kianersi, F., Poczai, P. & Moradkhani, H. (2021). Potential of wild relatives of wheat: ideal genetic resources for future breeding programs. Agron., 11(8), 1656. https://doi.org/10.3390/agronomy11081656

51. Li, Y., Fu, J., Shen, Q. & Yang, D. (2020). High-molecular-weight glutenin subunits: genetics, structures, and relation to end use qualities. Int. J. Mol. Sci., 22(1), 184. https://doi.org/10.3390/ijms22010184

52. Branlard, G., Faye, A., Rhazi, L., Tahir, A., Lesage, V.S. & Aussenac, T. (2020). Genetic and environmental factors associated to glutenin polymer characteristics of wheat. Foods, 9(5), 683. https://doi.org/10.3390/foods9050683

53. Yu, Z., Peng, Y., Islam, S., She, M., Lu, M., Lafiandra, D., Roy, N., Juhasz, A., Yan, G. & Ma, W. (2019). Molecular characterization and phylogenetic analysis of active y-type high molecular weight glutenin subunit genes at Glu-A1 locus in wheat. J. Cereal Sci., 86(9), pp. 9-14. https://doi.org/10.1016/j.jcs.2019.01.003

54. Roy, N., Islam, S., Al-Habbar, Z., Yu, Z., Liu, H., Lafiandra, D., Masci, S., Lu, M., Sultana, N. & Ma, W. (2021). Contribution to breadmaking performance of two different HMW glutenin 1Ay alleles expressed in hexaploid wheat. J. Agr. Food Chem., 69(1), pp. 36-44. https://doi.org/10.1021/acs.jafc.0c03880

55. Lee, J.Y., Beom, H.R., Altenbach, S.B., Lim, S.H., Kim, Y.T., Kang, C.S., Yoon, U.H., Gupta, R., Kim, S.T., Ahn, S.N. & Kim, Y.M. (2016). Comprehensive identification of LMW-GS genes and their protein products in a common wheat variety. Funct. Integr. Genomics, 16(3), pp. 269-279. https://doi.org/10.1007/s10142-016-0482-3

56. Payne, P.I. (1987). Genetics of wheat storage proteins and the effect of allelic variation on breadmaking quality. Ann. Rev. Plant Physiol., 38, pp. 141-153. https://doi.org/10.1146/annurev.pp.38.060187.001041

57. Gao, Y., An, K., Guo, W., Chen, Y., Zhang, R., Zhang, X., Chang, S., Rossi, V., Jin, F., Cao, X., Xin, M., Peng, H., Hu, Z., Guo, W., Du, J., Ni, Z., Sun, Q. & Yao Y. (2021). The endosperm-specific transcription factor TaNAC019 regulates glutenin and starch accumulation and its elite allele improve wheat grain quality. The Plant Cell, 33(3), pp. 603-622. https://doi.org/10.1093/plcell/koaa040

58. Makai, S., Eva, C., Tamas, L. & Juhasz, A. (2015). Multiple elements controlling the expression of wheat high molecular weight glutenin paralogs. Funct. Integr. Genomics, 15(6), pp. 661-672. https://doi.org/10.1007/s10142-015-0441-4

59. Boudet, J., Merlino, M., Plessis, A., Gaudin, J.-C., Dardevet, M., Perrochon, S., Alvarez, D., Rizacher, T., Martre, P. & Ravel, C. (2019). The bZIP transcription factor SPA Heterodimerizing protein represses glutenin synthesis in Triticum aestivum. Plant J., 97(5), pp. 858-871. https://doi.org/10.1111/tpj.14163

60. Zhu, J.T., Fang, L.L., Yu, J.Q., Zhao, Y., Chen, F.G. & Xia, G.M. (2018). 5-Azacytidine treatment and TaPBF-D over-expression increases glutenin accumulation within the wheat grain by hypomethylating the Glu-1 promoters. Theor. Appl. Genet., 131, pp. 735-746. https://doi.org/10.1007/s00122-017-3032-z

61. Sun, F., Liu, X., Wei, Q., Liu, J., Yang, T., Jia, L., Wang, Y., Yang, G. & He, G. (2017). Functional characterization of TaFUSCA3, a B3-superfamily transcription factor gene in the wheat. Front. Plant Sci., 8, 1133. https://doi.org/10.3389/fpls.2017.01133

62. Filip, E. (2018). Composition of high molecular weight glutenin subunits in polish common wheat cultivars (Triticum aestivum L.). J. Food Qual., 3, pp. 1-8. https://doi.org/10.1155/2018/2473420

63. Giraldo, P., Rodriguez-Quijano, M., Simon, C., Vazquez, J.F. & Carrillo, J.M. (2010). Allelic variation in HMW glutenins in Spanish wheat landraces and their relationship with bread quality. Span. J. Agric. Res., 8(4), pp. 1012-1023. https://doi.org/10.5424/sjar/2010084-1394

64. Sandetska, N.V. & Radchenko, O.M. (2022). Diversity of alleles of storage protein loci of wheat varieties. Fact. Exper. Evolut. Organ., 30, pp. 24-29 [in Ukrainian]. https://doi.org/10.7124/FEEO.v30.1456

65. Gao, X., Appelbee, M.J., Mekuria, G.T., Chalmers, K.J. & Mather, D.E. (2012). A second 'overexpression' allele at the Glu-B1 high-molecular weight glutenin locus of wheat: Sequence characterisation and functional effects. Theor. Appl. Genet., 124(2), pp. 333-343. https://doi.org/10.1007/s00122-011-1708-3

66. Bekes, F., Cavanagh, C.R., Martinov, S., Bushuk, S. & Wrigley, C.W.F. (2008). PART II. Composition table for the HMW subunits of glutenin. In The Gluten Composition of Wheat Varieties and Genotypes; AACC International: St. Paul, MN, USA.

67. Rybalka, O.I., Morgun, B.V. & Polishchuk, S.S. (2018). Gpc-B1 (NAM-B1) gene as a new genetic resource in wheat breeding to increase the content of protein in grain and microelements. Fiziol. rosl. genet., 50(4), pp. 279-298 [in Ukrainian]. http://jnas.nbuv.gov.ua/article/UJRN-0000957313 https://doi.org/10.15407/frg2018.04.279

68. Yakymchuk, R.A. (2020). Grain quality of productive mutants of Triticum aestivum L. induced by technogenic environmental pollution. Fiziol. rosl. genet., 52(2), pp. 140-151 [in Ukrainian]. https://doi.org/10.15407/frg2020.02.140

69. Yakymchuk, R.A. (2022). Improvement of economically valuable traits of winter wheat under the action of technogenic mutagenic environmental factors. Fiziol. rosl. genet., 54(1), pp. 65-84 [in Ukrainian]. https://doi.org/10.15407/frg2022.01.065

70. Venegas, J., Graybosh, R.A., Wienhold, B., Rose, D., Waters, B.M., Baenziger, P.S., Eskridge, K., Bai, G. & Amand, P.St. (2018). Biofortification of hard red winter wheat by genes conditioning low phytate and high grain protein concentration. Crop Sci., 58(5), pp. 1942-1953. https://doi.org/10.2135/cropsci2018.03.0175

71. Singh, C., Srivastava, P., Sharma, A., Kaur, H., Sohu, V.S. & Bains, N.S. (2019). Gpc-B1 mediated grain protein enhancement in wheat is compatible with high grain protein weight at moderated yield thresholds. Ind. J. Genet. Breed., 79(2), pp. 494-498. https://doi.org/10.31742/IJGPB.79.2.14

72. Morgun, B.V., Sandetska, N.V. & Velykozhon, L.H. (2023). The effect of the Gpc-B1 gene on the protein content of soft winter wheat grain against the background of genetic environment of Ukrainian varieties. Sci. Inn., 19(6.) pp. 31-39 [in Ukrainian]. https://doi.org/10.15407/scine19.06.031

73. Zi, Y., Cheng, D., Li, H., Guo, J., Ju, W., Wang, C., Humphreys, D.G., Liu, A., Cao, X., Liu, C., Liu, J., Zhao, Z. & Song, J. (2022). Effects of the different waxy proteins on starch biosynthesis, starch physicochemical properties and Chinese noodle quality in wheat. Mol. Breed., 42(4), 23. https://doi.org/10.1007/s11032-022-01292-x

74. Li, Y., Karim, H., Wang, B., Guzman, C., Harwood, W., Xu, Q., Zhang, Y., Tang, H., Jiang, Y., Qi, P., Deng, M., Ma, J., Lan, J., Wang, J., Chen, G., Lan, X., Wei, Y., Zheng, Y. & Jiang, Q. (2022). Regulation of amylose content by single mutations at an active site in the Wx-B1 gene in a tetraploid wheat mutant. Int. J. of Mol. Sci., 23(15), 8432. https://doi.org/10.3390/ijms23158432

75. Sung, E., Chung, W.Y. & Lee, D. (2023). Factors that affect consumer trust in product quality: a focus on online reviews and shopping platforms. Hum. and Soc. Sci. Commun., 10(1), pp. 1-10. https://doi.org/10.1057/s41599-023-02277-7

76. Graybosh, R.A. (1998). Waxy wheat: origin, properties and prospects. Trends Food Sci. Technol., 9, pp. 135-142. https://doi.org/10.1016/S0924-2244(98)00034-X

77. Rybalka, O.I., Morgun, V.V., Morgun, B.V. & Polishchuk, S.S. (2019). Genetic foundations of a new direction of breeding original in grain quality wheat (Triticum aestivum L.) and triticale (x Triticosecale Whittmack). Fiziol. rosl. genet., 51(3), pp. 207-240 [in Ukrainian]. https://doi.org/10.15407/frg2019.03.207

78. Ikeda, T.M., Ohnishi, N., Nagamine, T., Oda, S., Hisatomi, T. & Yano, H. (2005). Identification of new puroindoline genotypes and their relations hip to flour texture among wheat cultivars. J. Cereal Sci., 41(1), pp. 1-6. https://doi.org/10.1016/j.jcs.2004.10.002

79. Lesage, V.S., Bouchet, B., Rhazi, L., Elmorjani, K., Branlard, G. & Mario, D. (2011). New insight into puroindoline function inferred from their subcellular localization in developing hard and soft near-isogenic endosperm and their relationship with polymer size of storage proteins. J. Cereal Sci., 53(2), pp. 231-238. https://doi.org/10.1016/j.jcs.2011.01.002

80. McIntosh, R.A., Yamazaki, Y., Dubcovsky, J., Rogers, W.J,, Morris, C.F, Appels, R. & Xia, X.C. (2013). Catalogue of gene symbols for wheat. In: 12th international wheat genetic symposium, 8-13 September, Yokohama.

81. Chen, F., He, Z.H., Xia, X.C., Xia, L.Q., Zhang, X.Y., Lillemo, M. & Morris, C.F. (2006). Molecular and biochemical characterization of puroindoline a and b alleles in chinese landraces and historical cultivars. Theor. Appl. Genet., 112(3), pp. 400-409. https://doi.org/10.1007/s00122-005-0095-z

82. Elmorjani, К., Geneix, N., Dalgalarrondo, M., Branlard, G. & Marion, D. (2013). Wheat grain softness protein (Gsp1) is a puroindoline-like protein that displays a specific post-translational maturation and does not interact with lipids. J. of Cereal Sci., 58(1), pp. 117-122 https://doi.org/10.1016/j.jcs.2013.03.012

83. Hogg, A.C., Stripo, T., Beecher, B., Martin, J.M. & Giroux, M.J. (2004). Wheat puroindolines interact to form friabilin and control wheat grain hardness. Theor. Appl. Genet., 108(6), pp. 1089-1097. https://doi.org/10.1007/s00122-003-1518-3

84. Swan, C.G., Meyer, F.D., Hogg, A., Martin, J.M. & Giroux, M. (2006). Puroindoline b limits binding of puroindoline at starch and grain softness. Crop Sci., 46(4), pp. 1656-1665. https://doi.org/10.2135/cropsci2005.06-0135

85. Colasuonno, P., Marcotuli, I., Blanco, A., Maccaferri, M., Condorelli, G.E., Tubeorsa, R., Parada, R., Costa de Camargo, A., Schwember, A. & Gadaleta, A. (2019). Carotenoid pigment content in durum wheat (Triticum turgidum L. var durum): an overview of quantitative trait loci and candidate genes. Front. Plant Sci., 10, pp. 1-18. https://doi.org/10.3389/fpls.2019.01347

86. Stepanenko, A.I., Troyanovska, A.V., Morgun, B.V., Chugunkova, T.V., Velykozhon, L.G., Rybalka, O.I. & Polishchuk, S.S. (2014). Marker analysis of polyphenol oxidase (PPO) genes in bread wheat varieties. Fiziol. rosl. genet., 46(6), pp. 490-497 [in Ukrainian]. http://jnas.nbuv.gov.ua/article/UJRN-0000714064

87. Shevkani, K., Singh, N., Bajaj, R. & Kaur, A. (2017). Wheat starch production, structure, functionality and applications - a review. Int. J. Food Sci. Technol., 52(1), pp. 38-58. https://doi.org/10.1111/ijfs.13266

88. Thungo, Z., Shimelis, H., Odindo, A. & Mashilo, J. (2020). Genotype-by-environment effects on grain quality among heat and drought tolerant bread wheat (Triticum aestivum L.) genotypes. J. Plant Int., 15(1), pp. 83-92. https://doi.org/10.1080/17429145.2020.1748732

89. Hernandez-Espinosa, N., Mondal, S., Autrique, E., Gonzalez-Santoyo, H., Crossa, J., Huerto-Espino, J., Singh, R.P. & Guzman, C. (2018). Milling, processing and end-use quality traits of CIMMYT spring bread wheat germplasm under drought and heat stress. Field Crop Res., 215, pp. 104-112. https://doi.org/10.1016/j.fcr.2017.10.003

90. Poudel, P.B. & Poudel, M.R. (2020). Heat stress effects and tolerance in wheat: A review. J. Biol. Today's World, 9(3), pp. 1-6. https://doi.org/10.35248/2322-3308.20.09.217

91. Wang, X. & Liu, F. (2021). Effects of elevated CO2 and heat on wheat grain quality. Plants, 10, 1027. https://doi.org/10.3390/plants10051027

92. Barro, F., Barcelo, P., Lazzeri, P.A., Shewry, P.R., Ballesteros, J. & Martin, A. (2003). Functional properties of flours from field grown transgenic wheat lines expressing the HMW glutenin subunit 1Ax1 and 1Dx5 genes. Mol. Breed., 12(3), pp. 223-229. https://doi.org/10.1023/A:1026367214120

93. Li, Y., Wang, Q., Li, X., Xiao, X., Sun, F., Wang, C., Hu, W., Feng, Z., Chang, J., Chen, M., Wang, Y., Li, K., Yang, G. & He, G. (2012). Coexpression of the high molecular weight glutenin subunit 1Ax1 and puroindoline improves dough mixing properties in durum wheat (Triticum turgidum L. ssp. durum). PLoS One, 7(11), 50057. https://doi.org/10.1371/journal.pone.0050057

94. Gil-Humanes, J., Piston, F., Hernando, A., Alvarez, J.B., Shewry, P.R. & Barro, F. (2008). Silencing of g-gliadins by RNA interference (RNAi) in bread wheat. J. Cereal Sci., 48(3), pp. 565-568. https://doi.org/10.1016/j.jcs.2008.03.005

95. Wieser, H., Koehler, P., Folck, A. & Becker, D. (2006, September). Characterization of wheat with strongly reduced a-gliadin content. 9th Annual Gluten Workshop (pp. 13-16), San Francisco.

96. Altenbach, S.B., Tanaka, C.K. & Seabourn, B.W. (2014). Silencing of omega-5 gliadins in transgenic wheat eliminates a major source of environmental variability and improves dough mixing properties of flour BMC. Plant Biol., 14, 393. https://doi.org/10.1186/s12870-014-0393-1

97. Gil-Humanes, J., Piston, F., Tollefsen, S., Sollid, L.M. & Barro, F. (2010). Effective shutdown in the expression of celiac disease-related wheat gliadin T-cell epitopes by RNA interference. Proc. Natl Acad. Sci. USA, 107(39), pp. 17023-17028. https://doi.org/10.1073/pnas.1007773107

98. Sanchez-Leon, S., Gil-Humanes, J., Ozuna, C.V., Gimenez, M.J., Sousa, C., Voytas, D.F. & Barro, F. (2018). Low-gluten, nontransgenic wheat engineered with CRISPR/Cas9. Plant Biotechnol. J., 16(4), pp. 902-910. https://doi.org/10.1111/pbi.12837

99. Wen, S., Wen, N., Pang, J., Langen, G., Brew-Appiah, R.A., Mejias, J.H., Osorio, C., Yang, M., Gemini, R., Moehs, C.P., Zemetra, R.S., Kogel, K.H., Liu, B., Wang, X., von Wettstein, D. & Rustgi, S. (2012). Structural genes of wheat and barley 5-methylcytosine DNA glycosylases and their potential applications for human health. Proc. Natl Acad. Sci. USA, 109(50), pp. 20543-20548. https://doi.org/10.1073/pnas.1217927109

100. Gasparis, S., Orczyk, W., Zalewski, W. & Nadolska-Orczyk, A. (2011). The RNA-mediated silencing of one of the Pin genes in allohexaploid wheat simultaneously decreases the expression of the other, and increases grain hardness. J. Exp. Bot., 62(11), pp. 4025-4036. https://doi.org/10.1093/jxb/err103

101. Liu, G., Wu, Y., Xu, M., Gao, T., Wang, P., Wang, L., Guo, T. & Kang, G. (2016). Virus-induced gene silencing identifies an important role of the TaRSR1 transcription factor in starch synthesis in bread wheat. Int. J. Mol. Sci., 17(10), 1557. https://doi.org/10.3390/ijms17101557

102. Sestili, F., Janni, M., Doherty, A., Botticella, E., D'Ovidio, R., Masci, S., Jones, H. & Lafiandra, D. (2010). Increasing the amylose content of durum wheat through silencing of the SBEIIa genes. BMC Plant Biol., 10, 144. https://doi.org/10.1186/1471-2229-10-144

103. Ral, J.-P., Bowerman, A.F., Li, Z., Sirault, X., Furbank, R., Pritchard, J.R., Bloemsma, M., Cavanagh, C.R., Howitt, C.A. & Morell, M.K. (2012). Down-regulation of glucan, water-dikinase activity in wheat endosperm increases vegetative biomass and yield. Plant Biotechnol. J., 10(7), pp. 871-882. https://doi.org/10.1111/j.1467-7652.2012.00711.x

104. Cong, L., Wang, C., Chen, L., Liu, H., Yang, G. & He, G. (2009). Expression of phytoene synthase1 and carotene desaturase crtl genes result in an increase in the total carotenoids content in transgenic elite wheat (Triticum aestivum L.). J. Agric. Food Chem., 57(18), pp. 8652-8660. https://doi.org/10.1021/jf9012218

105. Liang, Z., Chen, K., Li, T., Zhang, Y., Wang, Y., Zhao, Q., Liu, J., Zhang, H., Liu, C., Ran, Y. & Gao, C. (2017). Efficient DNA-free genome editing of bread wheat using CRISPR/Cas9 ribonucleoprotein complexes. Nat. Commun., 8, 14261. https://doi.org/10.1038/ncomms14261

106. Wang, W., Simmonds, J., Pan, Q., Davidson, D., He, F., Battal, A., Akhunova, A., Trick, H.N., Uauy, C. & Akhunov, E. (2018). Gene editing and mutagenesis reveal inter-cultivar differences and additivity in the contribution of TaGW2 homoeologues to grain size and weight in wheat. Theor. Appl. Genet., 131(11), pp. 2463-2475. https://doi.org/10.1007/s00122-018-3166-7

107. Liang, Z., Chen, K., Zhang, Y., Liu, J., Yin, K., Qiu, J.-L. & Gao, C. (2018). Genome editing of bread wheat using biolistic delivery of CRISPR/Cas9 in vitro transcripts or ribonucleoproteins. Nat. Protoc., 13(3), pp. 413-430. https://doi.org/10.1038/nprot.2017.145

108. Zhao, D., Derkx, A.P., Liu, D.C., Buchner, P. & Hawkesford, M.J. (2015). Overexpression of a NAC transcription factor delays leaf senescence and increases grain nitrogen concentration in wheat. Plant Biol., 17(4), pp. 904-913. https://doi.org/10.1111/plb.12296

109. Zhang, S., Zhang, R., Gao, J., Song, G., Li, J., Li, W., Qi, Y., Li, Y. & Li, G. (2021). CRISPR/Cas9-mediated genome editing for wheat grain quality improvement. Plant Biotechnol. J., 19(9), pp. 1684-1686. https://doi.org/10.1111/pbi.13647

110. Zhao, X.-G., Nie, X.-L., & Xiao, X.-G. (2013). Over-expression of a tobacco nitrate reductase gene in wheat (Triticum aestivum L.) increases seed protein content and weight without augmenting nitrogen supplying. PLoS One, 8(9), 74678. https://doi.org/10.1371/journal.pone.0074678

111. Connorton, J., Jones, E., RodrНguez-Ramiro, I., Fairweather-Tait, S., Uauy, C. & Balk, J. (2017). Wheat vacuolar iron transporter TaVIT2 transports Fe and Mn and is effective for biofortification. Plant Physiol., 174(4), pp. 2434-2444. https://doi.org/10.1104/pp.17.00672

112. Raffan, S. & Halford, N.G. (2019). Acrylamide in food: Progress in and prospects for genetic and agronomic solutions. Ann. Appl. Biol., 175(3), pp. 259-281. https://doi.org/10.1111/aab.12536

113. Raffan, S. & Halford, N.G. (2021). Cereal asparagine synthetase genes. Ann. Appl. Biol. 178(1), pp. 6-22. https://doi.org/10.1111/aab.12632

114. Dixon, L.E., Pasquariello, M., Badgami, R., Levin, K.A., Poschet, G., Ng, P.Q., Orford, S., Chayut, N., Adamski, N.M., Brinton, J., Simmonds, J., Burkhard, S., Searle, I.R., Uauay, C. & Boden, S.A. (2022). MicroRNA-resistant alleles of HOMEOBOX DOMAIN-2 modify inflorescence branching and increase grain protein content of wheat. Sci. Adv., 8(19), 5907. https://doi.org/10.1126/sciadv.abn5907

115. Fradgley, N., Gardner, K., Kerton, M., Swarbreck, S. & Bentley, A. (2024). Balancing quality with quantity: A case study of UK bread wheat. Plants, People, Planet, 6(5), pp. 1000-1013. https://doi.org/10.1002/ppp3.10462

116. Wang, Z., Huang, L., Wu, B., Hu, J., Jiang, Z., Qi, P., Zheng, Y. & Liu, D. (2018). Characterization of an integrated active Glu-1Ay allele in common wheat from wild emmer and its potential role in flour improvement. Int. J. Mol. Sci., 19(4), 923. https://doi.org/10.3390/ijms19040923

117. Roy, N., Islam, S., Yu, Z.T., Lu, M.Q., Lafiandra, D., Zhao, Y., Anwar, M., Mayer, J.E. & Ma, W.J. (2019). Introgression of an expressed HMW 1Ay glutenin subunit allele into bread wheat cv. Lincoln increases grain protein content and breadmaking quality without yield penalty. Theor. Appl. Genet. 133(2), pp. 517-528. https://doi.org/10.1007/s00122-019-03483-1

118. Rybalka, O.I., Morgun, V.V., Morgun, B.V., Polyshchuk, S.S., Chervonis, M.V. & Sokolov, V.M. (2023). New genetic variation related to wheat (Triticum aestivum L.) breeding for quality. Cytology and Genet., 57, pp. 1-11. https://doi.org/10.3103/S0095452723010103

119. Morgun, V.V., Rybalka, O.I. & Morgun, B.V. (2021). New scientific directions in genetic improvement of cereal crops. Fiziol. rosl. genet. 2021(3), pp. 187-215 [in Ukrainian]. https://doi.org/10.15407/frg2021.03.187

120. Rybalka, O.I., Morgun, V.V. & Morgun, B.V. (2020). Colored grain of wheat and barley - a new strategy for breeding grain crops with high biological value of grain. Fiziol. rosl. genet. 52(2), pp. 95-127 [in Ukrainian]. https://doi.org/10.15407/frg2020.02.095

121. Rybalka, O.I., Morgun, V.V., Polishchuk, S.S., Chervonis, M.V., Morgun, B.V. & Sokolov V.M. (2024). Whole grain products - a global health strategy. Fiziol. rosl. genet., 56(2), pp. 95-129 [in Ukrainian]. https://doi.org/10.15407/frg2024.02.095

122. Rybalka, O.I., Polishchuk, S.S., Chervonis, M.V., Morgun, V.V. & Morgun, B.V. (2024). Unique spelt wheat (Triticum aestivum ssp. spelta L.) with dark purple grains. Fiziol. rosl. genet., 56(5), pp. 419-430 [in Ukrainian]. https://doi.org/10.15407/ frg2024.05.419

123. Stepanenko, A.I., Morgun, B.V., Chugunkova, T.V., Adamenko, N.I. & Velykozhon, L.G. (2012). Screening of winter bread wheat varieties for the presence of wheat-rye translocation by DNA markers. Bull. of the Ukrainian Society of Geneticists and Breeders, 10(2), pp. 311-318 [in Ukrainian].

124. Morgun, V.V. & Kots, S.Ya. (2021). Contribution of scientists of the Institute of Plant Physiology and Genetics of the NAS of Ukraine to the development of biological science and the country's economy. Fiziol. rosl. genet., 53(2), pp. 95-111 [in Ukrainian]. https://doi.org/10.15407/frg2021.02.095

125. Poladova, G.H., Gasanova, G.M., Mammedova, S.M. & Ibrahimova, Sh.G. (2024). Molecular and genetic basis for improving the quality of soft wheat grain. Sci. Hor., 27(3), pp. 53-63. https://doi.org/10.48077/scihor3.2024.53