Today, the generally recognized stress hormone is abscisic acid (ABA), which is involved in the regulation of plant resistance to a number of abiotic stressors — drought, salinity, high and low temperatures, heavy metals. Oil pollution of soil, which is quite widespread, is a complex multicomponent stress for plants. Plants growing on oil-polluted soil suffer from drought, hypoxia and elevated temperature. Despite the wide range of regulatory roles of ABA during plant growth and development, the mechanism of its action is primarily due to the regulation of water balance in plants under stress. The aim of our study was to characterize the role of ABA in maintaining the water balance of phytoremediant plants Carex hirta L. under the influence of polystress — oil pollution of the soil. It was found that under conditions of multicomponent stress, the endogenous content of ABA increased in the above-ground organs of C. hirta to a greater extent than in the underground ones. The increase in the ABA content in the roots contributed to an increase in the total volume of the root system. An increase in the number of semi-open stomata and a decrease in fully open stomata, and an increase in the thickness of the cuticle of the upper and lower epidermis were found due to an increase in the content of the pool of free and bound forms of endogenous ABA. This should contribute to a decrease in water loss by the plant through transpiration. In general, an increase in the ABA concentration in various organs of C. hirta under multicomponent stress (oil pollution of the soil) triggered a cascade of morphophysiological changes that contributed to the preservation of plants water balance and increase of their stress resistance.
Keywords: Carex hіrta L., abscisic acid, water balance, stress resistance, polycomponent stress, oil pollution of soil
Full text and supplemented materials
Free full text: PDFReferences
1. Shahzad, K., Hussain, S., Arfan, M., Hussain, S., Waraich, E.A., Zamir, S., Saddique, M., Rauf, A., Kamal, K.Y., Hano, C. & El-Esawi, M.A. (2021). Exogenously applied gibberellic acid enhances growth and salinity stress tolerance of maize through modulating the morpho-physiological, biochemical and molecular attributes. Biomolecul., 11(7). https://doi.org/10.3390/biom11071005
2. Zandalinasa, S.I., Fichman, Y., Devireddy, A.R., Sengupta, S., Azad, R.K. & Mittler, R. (2020). Systemic signaling during abiotic stress combination in plants. Proc. Natl. Acad. Sci., 117(24), pp. 13810-13820. https://doi.org/10.1073/pnas.2005077117
3. Zandalinas, S.I., Fritschi, F.B. & Mittler, R. (2020). Signal transduction networks during stress combination. J. Exp. Bot., 71 (5), pp. 1734-1741. https://doi.org/10.1093/jxb/erz486
4. Jing, Z., Liu, N., Zhang, Z. & Hou, X. (2024). Research progress on plant responses to stress combinations in the context of climate change. Plants, 13. https://doi.org/10.3390/plants13040469
5. Vescio, R., Caridi, R., Laudani, F., Palmeri, V., Zappala, L., Badiani, M. & Sorgona, A. (2022). Abiotic and herbivory combined stress in tomato: additive, synergic and antagonistic effects and within-plant phenotypic plasticity. Life, 12. https://doi.org/10.3390/life12111804
6. Oyebamiji, Y.O., Adigun, B.A., Shamsudin, N.A.A., Ikmal, A.M., Salisu, M.A., Malike, F.A. & Lateef, A.A. (2024). Recent advancements in mitigating abiotic stresses in crops. Horticult., 10 (2). https://doi.org/10.3390/horticulturae10020156
7. Moradi, S., Sarikhani, M.R., Ale-Agha, A.B., Hasanpur, K. & Shiri, J. (2024). Effects of natural and prolonged crude oil pollution on soil enzyme activities. Geoderma R., 36. https://doi.org/10.1016/j.geodrs.2023.e00742
8. Jabbarov, Z., Nomozov, U., Kenjaev, Y., Abdushukurova, Z., Zakirova, S., Mahkamova, A., Kamilov, B., Kurvantaev, R., Kholdarov, D., Turdaliev, A. & Yuldashev, G. (2024). Effects of pollution of saline soils with oil and oil products on soil physical properties. E3S Web of Conferences, 497. https://doi.org/10.1051/e3sconf/202449703006
9. Sharma, K., Shah, G., Singhal, K. & Soni, V. (2024). Comprehensive insights into the impact of oil pollution on the environment. Reg. Stud. Marine Science, 74(6), 103516. https://doi.org/10.1016/j.rsma.2024.103516
10. Kanungo, J., Sahoo, T., Bal, M. & Behera, I.D. (2023). Performance of bioremediation strategy in waste lubricating oil pollutants: a review. Geomicrobiol. J., 4, pp. 360-373. https://doi.org/10.1080/01490451.2023.2245395
11. Khan, S., Masoodi, T.H., Pala, N.A., Murtaza, S., Mugloo, J.A., Sofi, P.A., Zaman, M.U., Kumar, R. & Kumar, A. (2023). Phytoremediation prospects for restoration of contamination in the natural ecosystems. Water, 15(8). https://doi.org/10.3390/w15081498
12. Aloud, S.S., Alotaibi, K.D., Almutairi, K.F. & Albarakah, F.N. (2023). Phytoremediation potential of native plants growing in industrially polluted soils of al-qassim, saudi arabia. Sustainability, 15(3). https://doi.org/10.3390/su15032668
13. Azizi, M., Faz, A., Zornoza, R., Martinez-Martinez, S. & Acosta, J.A. (2023). Phytoremediation potential of native plant species in mine soils polluted by metal(loid)s and rare earth elements. Plants, 12(6). https://doi.org/10.3390/plants12061219
14. Paes, Q.C., Veloso, G.V., Filho, M.N.C., Barroso, S.H., Fernandes-Filho, E.I., Fontes, M.P.F. & Soares, E.M.B. (2023). Potential of plant species adapted to semi-arid conditions for phytoremediation of contaminated soils. J. Hazardous Materials, 449. https://doi.org/10.1016/j.jhazmat.2023.131034
15. Kafle, A., Timilsina, A., Gautam, A., Adhikari, K., Bhattarai, A. & Arya, N. (2022). Phytoremediation: mechanisms, plant selection and enhancement by natural and synthetic agents. Env. Adv., 8. https://doi.org/10.1016/j.envadv.2022.100203
16. Yang, X., Jia, Z., Pu, Q., Tian, Y., Zhu, F. & Liu, Y. (2022). ABA mediates plant development and abiotic stress via alternative splicing. Int. J. Mol. Sci., 23(7). https://doi.org/10.3390/ijms23073796
17. Kosakivska, I.V., Shcherbatiuk, M.M., Vasjuk, V.A. & Voytenko, L.V., (2024). Phytohormones in growth regulation and the formation of stress resistance in cultivated cereals. Fiziol. rast. genet., 56(2), pp. 130-150 [in Ukrainian]. https://doi.org/10.15407/frg2024.02.130
18. Shabbir, R., Singhal, R.K., Mishra, U.N., Chauhan, J., Javed, T., Hussain, S., Kumar, S., Anuragi, H., Lal, D. & Chen, P. (2022). Combined abiotic stresses: challenges and potential for crop improvement. Agronomy, 12. https://doi.org/10.3390/agronomy12112795
19. Rehman, A., Azhar, M.T., Hinze, L., Qayyum, A., Li, H., Penge, Z., Qina, G., Jiae, Y., Pane, Z., He, S. & Du, X. (2021). Insight into abscisic acid perception and signaling to increase plant tolerance to abiotic stress. J. Plant Interact., 16(1), pp. 222-237. https://doi.org/10.1080/17429145.2021.1925759
20. Kosakivska, I.V., Vasyuk, V.A., Voytenko, L.V. & Shcherbatiuk, M.M. (2021). Regulation of hormonal balance of wheat by exogenous abscisic acid under heat stress. Visn. Hark. nac. agrar. univ., Ser. Biol., 1(52), pp. 52-66 [in Ukrainian]. https://doi.org/10.35550/vbio2021.01.052
21. Parshykova, T.V. (Eds.). (2010). Plant physiology: practical. Lutsk: Teren, 420 p. [in Ukrainian].
22. Israel, W.K., Watson-Lazowski, A., Chen, Z.-H. & Ghannoum, O. (2022). High intrinsic water use efficiency is underpinned by high stomatal aperture and guard cell potassium flux in C3 and C4 grasses grown at glacial CO2 and low light. J. Exp. Bot., 73(5), pp. 1546-1565. https://doi.org/10.1093/jxb/erab477
23. Yeung, E.C. (1998). A beginner's guide to the study of plant structure. pp. 125-141. In: Tested studies for laboratory teaching, 19. Ed. S. J. Karcher. Proceedings of the 19th Workshop/Conference of the Association for Biology Laboratory Education (ABLE). https://www.researchgate.net/ publication/228552007
24. Bunio, L.V. & Tsvilynyuk, O.M. (2021). Influence of crude oil pollution on the content and electrophoretic spectrum of proteins in Carex hirta plants at the initial stages of vegetative development. Reg. Mech. Bio., 12(3), pp. 459-466. https://doi.org/10.15421/022163
25. Kosakivska, I.V., Vasyuk, V.A., Voytenko, L.V. & Shcherbatiuk, M.M. (2022). Plant hormonal system under heavy metal stress. Kyiv: M.G. Kholodny Institute of Botany [in Ukrainian].
26. Teng, Z., Lyu, J., Chen, Y., Zhang, J. & Ye, N. (2023). Effects of stress-induced ABA on root architecture development: Positive and negative actions. Crop Journal, 11(4), pp. 1072-1079. https://doi.org/10.1016/j.cj.2023.06.007
27. Buckley, T.N. (2019). How do stomata respond to water status? New Phytol., 224, pp. 21-36. https://doi.org/10.1111/nph.15899
28. Muhammad Aslam, M., Waseem, M., Jakada, B.H., Okal, E.J., Lei, Z., Saqib, H.S.A., Yuan, W., Xu, W. & Zhang, Q. (2022). Mechanisms of abscisic acid-mediated drought stress responses in plants. Int. J. Mol. Sci., 23(3). https://doi.org/10.3390/ijms23031084
29. Bajguz, A. & Piotrowska-Niczyporuk, A. (2023). Biosynthetic pathways of hormones in plants. Metabolites, 13(8). https://doi.org/10.3390/metabo13080884
30. Toups, H.S., Cochetel, N., Deluc, L. & Crame, G.R. (2022). Abscisic acid metabolism pathways differ between grapevine species, leaves, and roots during water deficit. OENO One, 56(4), pp. 125-137. https://doi.org/10.20870/oeno-one.2022.56.4.5483
31. Rai, G.K., Khanday, D.M., Choudhary, S.M., Kumar, P., Kumari, S., Martnez-Andjar, C., Martnez-Melgarejo, P.A., Rai, P.K. & Perez-Alfocea, F. (2024). Unlocking nature's stress buster: Abscisic acid's crucial role in defending plants against abiotic stress. Plant Stress, 11. https://doi.org/10.1016/j.stress.2024.100359
32. Liu, Y., Chen, S., Wei, P., Guo, S. & Wu, J. (2022). A briefly overview of the research progress for the abscisic acid analogues. Front. Chem. 10. https://doi.org/10.3389/fchem.2022.967404
33. Kane, C.N. & McAdam, S.A.M. (2023). Abscisic acid driven stomatal closure during drought in anisohydric Fagus sylvatica. J. Plant Hydraul., 9. https://doi.org/10.20870/jph.2023.002
34. Takahashi, F., Kuromori, T., Urano, K., Yamaguchi-Shinozaki, K. & Shinozaki, K. (2020) Drought stress responses and resistance in plants: from cellular responses to long distance intercellular communication. Front. Plant Sci., 11. https://doi.org/10.3389/fpls.2020.556972
35. Hu, B., Cao, J., Ge, K. & Li, L. (2016). The site of water stress governs the pattern of ABA synthesis and transport in peanut. Sci. Rep., 6. https://doi.org/10.1038/srep32143
36. Kosakivska, I.V., Voytenko, L.V., Vasyuk, V.A. & Shcherbatiuk, M.M. (2019). Effect of zinc on growth and phytohormones accumulation in Triticum aestivum L. priming with abscisic acid. Dopov. Nac. akad. nauk Ukr., 11, pp. 93-99. https://doi.org/10.15407/dopovidi2019.11.093
37. Conceicao-Sabino, F., Souza, L.S.B., Souza, M.A.G., Barros, J.P.A., Lucena L.R.R., Jardim, A.M.R.F., Rocha, A.K.P. & Silva, T.G.F. (2021). Morphological characteristics, biomass accumulation and gas exchange of an important species native for restoration in Semi-arid Brazilian areas affected by salt and water stress. Plant Stress, 2. https://doi.org/10.1016/j.stress.2021.100021
38. Seleiman, M.F., Al-Suhaibani, N., Ali, N., Akmal, M., Alotaibi, M., Refay, Y., Dindaroglu, T., Abdul-Wajid, H.H. & Battaglia, M.L. (2021). Drought stress impacts on plants and different approaches to alleviate its adverse effects. Plants, 10(2). https://doi.org/10.3390/plants10020259
39. Sandar, M.M., Ruangsiri, M., Chutteang, C., Arunyanark, A., Toojinda, T. & Siangliw, J.L. (2022). Root characterization of myanmar upland and lowland rice in relation to agronomic and physiological traits under drought stress condition. Agronomy, 12(5). https://doi.org/10.3390/agronomy12051230
40. Manandhar, A., Pichaco, J. & McAdam, S.A.M. (2024). Abscisic acid increase correlates with the soil water threshold of transpiration decline during drought. Plant Cell Environ., 47(12), pp. 5067-5075. https://doi.org/10.1111/pce.15087
41. Caine, R.S., Harrison, E.L., Sloan, J., Flis, P.M., Fischer, S., Khan, M.S., Nguyen, P.T., Nguyen, L.T., Gray, J.E. & Croft, H. (2023). The influences of stomatal size and density on rice abiotic stress resilience. New Phytol., 237, pp. 2180-2195. https://doi.org/10.1111/nph.18704
42. Bawa, G., Yu, X., Liu, Z., Zhou, Y. & Sun, X. (2023). Surviving the enemies: Regulatory mechanisms of stomatal function in response to drought and salt stress. Env. Exp. Botany, 209. https://doi.org/10.1016/j.envexpbot.2023.105291
43. Korovetska, H., Sohanchak, R., Djura, N., Tsvilynjuk, O. & Terek, O. (2008). Tomatal behaviour in Carex hirta L. plants under oil pollution. Visnyk of Lviv Univ. Biology series, 47. pp. 166-171 [in Ukrainian].
44. Driesen, E., Proft, M. & Saeys, W. (2023). Article drought stress triggers alterations of adaxial and abaxial stomatal development in basil leaves increasing water-use efficiency. Horticult. Res., 10(6). https://doi.org/10.1093/hr/uhad075
45. Wang, L., Zhang, Y., Luo, D., Hu, X., Feng, P., Mo, Y., Li, H. & Gong, S. (2024). Integrated effects of soil moisture on wheat hydraulic properties and stomatal regulation. Plants, 13(16). https://doi.org/10.3390/plants13162263
46. Zhang, Q., Tang, W., Xiong, Z., Peng, S. & Li, Y. (2023). Stomatal conductance in rice leaves and panicles responds differently to abscisic acid and soil drought. J. Exp. Bot., 74(5), pp. 1551-1563. https://doi.org/10.1093/jxb/erac496
47. Brookbank, B.P., Patel, J., Gazzarrini, S. & Nambara, E. (2021). Role of basal ABK in plant growth and development. Genes, 12 (12). https://doi.org/10.3390/genes12121936
48. He, M., He, C.-Q. & Ding, N.-Z. (2018). Abiotic stresses: general defenses of land plants and chances for engineering multistress tolerance. Front. Plant Sci., 9. https://doi.org/10.3389/fpls.2018.01771
49. Romero, P. & Lafuente, M.T. (2021). The combination of abscisic acid (ABA) and Water Stress Regulates the Epicuticular Wax Metabolism and cuticle properties of detached citrus fruit. Int. J. Mol. Sci., 22 (19). https://doi.org/10.3390/ijms221910242
50. Yan, S., Weng, B., Jing, L. & Bi, W. (2023). Effects of drought stress on water content and biomass distribution in summer maize (Zea mays L.). Front. Plant Sci., 14.