Fìzìol. rosl. genet. 2025, vol. 57, no. 2, 137-151, doi: https://doi.org/10.15407/frg2025.02.137

Scientific developments and achievements of scientists of the section «Growth and development of plants, physiologically active substances» of the Ukrainian society of plant physiologists (2020—2024)

Kosakivska I.V., Zolotarova O.K., Voytenko L.V.

  • M.G. Kholodny Institute of Botany, National Academy of Sciences of Ukraine 2 Tereshchenkivska St., Kyiv, 01004, Ukraine

The Section «Growth and Development of Plants, Physiologically Active Substances» of the Ukrainian Society of Plant Physiologists (USPPh) consists of 19 members from the Department of Phytohormonology and the Department of Membranology and Phytochemistry of the M.G. Kholodny Institute of Botany NAS of Ukraine. During the reporting period, plant physiologists have demonstrated that dynamic changes in phytohormone accumulation, localization, and balance in cereal crop organs are integral to their multicomponent response to abiotic stressors. The scientific principles of applied phytohormonology have been developed for the early diagnosis of stress-resistant cereal crop genotypes. An original model has been created to illustrate the role of phytohormones in stress resistance formation in wheat, spelt, and rye. Studies have confirmed the stress-protective effects of priming and foliar treatment with exogenous phytohormones, laying the groundwork for an environmentally safe method to enhance cereal resistance. The phytoremediation capacity of Salvinia aquatic macrophytes for biologically adsorbing heavy metals from polluted water has been established. This research has set the stage for developing recommendations on using exogenous phytohormones to regulate plant growth and development. Phytochemical studies have explored alternative electron transport pathways that prevent the over-reduction of the electron transport chain and excessive reactive oxygen species formation. Research has also demonstrated that biological CO2 fixation using plants and microorganisms capable of converting carbon into mineral carbonates is a promising approach for air purification. The process is significantly accelerated in the presence of plant enzymes. These findings enhance our understanding of CO2 capture and fixation in plants with different photosynthetic pathways and the coordination of photosynthesis and respiration in plant cells. A scientific basis has been developed for remote monitoring of chemical pollution in open water bodies using spectral analysis of water and macrophytes.

Keywords: phytohormonology, phytochemistry, membranology, biotechnology, photosynthesis, heavy metals, stress tolerance

Fìzìol. rosl. genet.
2025, vol. 57, no. 2, 137-151

Full text and supplemented materials

Free full text: PDF  

References

1. Babenko, L.M., Futorna, O.A., Akimov, Y.A., Romanenko, R.O., Kosakivska, I.V., Skwarek, E. & Wiнniewska, M. (2024). How short-term temperature stresses afect leaf micromorphology and ultrastructure of mesophyll cells in winter rye Secale cereale L. Acta Physiol. Plantarum, 46, 111. https://doi.org/10.1007/s11738-024-03743-8

2. Babenko, L.M., Futorna, O.A., Romanenko, K.O., Smirnov, O.E., Rogalsky, S.P., Kosakivska, I.V., Skwarek, E. & Wisniewska, M. (2024). Exogenous N-hexanoyl-L-homoserine lactone mitigates acid rain stress effects through modulation of structural and functional changes in Triticum aestivum leaf. App. Soil Ecol., 193(3), 105151. https://doi.org/10.1016/j.apsoil.2023.105151

3. Babenko, L.M., Kosakivska, I.V. & Romanenko, K.O. (2022). Molecular mechanisms of N-acyl homoserine lactone signals perception by plants. Cell Biol. Int., 46(4), pp. 523-534. https://doi.org/10.1002/cbin.11749

4. Babenko, L.M., Romanenko, K.O. & Kosakivska, I.V. (2020). Stress temperature and soil drought effects on amino acid composition in winter wheat. Dopov. Nac. Akad. Nauk Ukr., No. 2, pp. 87-92. https://doi.org/10.15407/dopovidi2020.02.087

5. Babenko, L.M., Romanenko, K.O. & Kosakivska, I.V. (2021). Differential impact of the temperature stress and soil drought on lipoxygenase activity in winter rye plants. Ukr. Bio. J., 93(6), pp. 130-138. https://doi.org/10.15407/ubj93.06.130

6. Belyavskaya, N.A., Fediuk, O.M. & Zolotareva, E.K. (2020). Soluble carbohydrates and plant cold acclimation. Visn. Hark. Nac. Agrar. Univ., Ser. Biol., 2(50), pp. 6-34 [in Ukrainian]. https://doi.org/10.35550/vbio2020.02.006

7. Bilous, O., Afanasyev, S., Lietytska, O., Manturova, O., Polishchuk, O., Nezbrytska, I., Pohorielova, M. & Barinova, S. (2021). Preliminary assessment of ecological status of the Siversky Donets river basin (Ukraine) based on phytoplankton parameters and its verification by other biological data. Water, 13(23), pp. 33-68. https://doi.org/10.3390/w13233368

8. Bilyavska, N.A., Fediuk, O.M. & Zolotareva, E.K. (2021). Morpho-anatomical features of cryophyte leaves during cold adaptation. Visn. Hark. Nac. Agrar. Univ., Ser. Biol., 1 (52), pp. 6-31 [in Ukrainian]. https://doi.org/10.35550/vbio2021.01.006

9. Garmanchuk, L.V., Vedenicheva, N.P., Al-Maali, G.A., Ostapchenko, D.I., Tseyslyer, Yu.V., Liashenko, V.A., Bisko, N.A., Kosakivska, I.V. & Ostapchenko, L.I. (2022). Antiproliferative activities of extracts from mycelial biomass of some medicinal basidiomycetes in human colon cancer cells Colo 205. Exp. Oncol., 44(3), pp. 213-216. https://doi.org/10.32471/exp-oncology.2312-8852.vol-44-no-3.18434

10. Khalaim, O., Zabarna, O., Kazantsev, T., Panas, I. & Polishchuk, O. (2021). Urban green infrastructure inventory as a key prerequisite to sustainable cities in Ukraine under extreme heat events. Sustainability, 13(5), 2470. https://doi.org/10.3390/su13052470

11. Kordyum, E., Akimov, Y., Polishchuk, O., Panas, I., Stepanov, S. & Kozeko, L. (2024). Psammophytes Alyssum desertorum Stapf and Secale sylvestre Host are sensitive to soil flooding. Plants, 13(3), 413. https://doi.org/10.3390/plants13030413

12. Kordyum, E., Polishchuk, O., Akimov, Y. & Brykov, V. (2022). Photosynthetic apparatus of hydrocharis morsus-ranae in different solar lighting. Plants, 11(19), 2658. https://doi.org/10.3390/plants11192658

13. Kosakivska, I.V., Babenko, L.M., Romanenko, K.O., Korotka, I.Y. & Potters, G. (2021). Molecular mechanisms of plant adaptive responses to heavy metals stress. Cell Biol. Int., 45(2), pp. 258-272. https://doi.org/10.1002/cbin.11503

14. Kosakivska, I.V., Babenko, L.M., Romanenko, K.O. & Futorna, O.A. (2020). Effects of exogenous bacterial quorum sensing signal molecule (messenger) N-hexanoyl-L-homoserine lactone (C6-HSL) on morphological and physiological responses of winter wheat under simulated acid rain. Dopov. Nac. Akad. Nauk Ukr., No. 8, pp. 92-100. https://doi.org/10.15407/dopovidi2020.07.092

15. Kosakivska, I.V., Babenko, L.M., Vasyuk, V.A., Voytenko, L.V. & Shcherbatiuk M.M. (2024). Chapter 2. Natural growth regulators as inducers of resistance in cereal plants against extreme environmental factors. In book: Regulation of adaptive responses in plants. Ed: Yastreb T.O., Kolupaev Y.E., Yemets A.I., Blume Y.B. Nova Science Publication, Inc. New York, pp. 33-82. https://doi.org/10.52305/TXQB2084

16. Kosakivska, I.V. & Vasyuk, V.A. (2021). Gibberellins in regulation of plant growth and development under abiotic stresses. Biotechnol. Acta, 14(2), pp. 5-18. https://doi.org/10.15407/biotech14.02.005

17. Kosakivska, I.V., Vasyuk, V.A. & Voytenko, L.V. (2020). Effect of priming with abscisic acid on the growth and post-stress rehabilitation of the wheat and spelt under conditions of a simulated moderate soil drought. Fiziol. rast. genet., 52(1), pp. 74-83 [in Ukrainian]. https://doi.org/10.15407/frg2020.01.074

18. Kosakivska, I.V., Vasyuk, V.A., Voytenko, L.V. & Shcherbatiuk, M.M. (2021). Regulation of hormonal balance of wheat by exogenous abcisic acid under heat stress. Visn. Hark. Nac. Agrar. Univ., Ser. Biol., 1 (52), pp. 52-66, 1(52), pp. 52-66 [in Ukrainian]. https://doi.org/10.35550/vbio2021.01.052

19. Kosakivska, I.V., Vasyuk, V.A., Voytenko, L.V. & Shcherbatiuk, M.M. (2022). Changes in hormonal status of winter wheat (Triticum aestivum L.) and spelt wheat (Triticum spelta L.) after heat stress and in recovery period. Cereal Res. Comm., 50(4), pp. 821-830. https://doi.org/10.1007/s42976-021-00206-5

20. Kosakivska, I.V., Vasyuk, V.A., Voytenko, L.V. & Shcherbatiuk, M.M. (2022). Plant hormonal system under heavy metal stress. Kyiv: M.G. Kholodny Institute of Botany [in Ukrainian]. https://www.botany.kiev.ua/doc/hormonal_monograph_2022.pdf

21. Kosakivska, I.V., Vasyuk, V.A., Voytenko, L.V. & Shcherbatiuk, M.M. (2023). The effects of moderate soil drought on phytohormonal balance of Triticum aestivum L. and Triticum spelta L. Cereal Res. Comm., 51, pp. 627-638. https://doi.org/10.1007/s42976-022-00332-8

22. Kosakivska I.V., Vasyuk, V.A., Voytenko, L.V., Shcherbatiuk, M.M., Babenko, L.M. & Romanenko, K.O. (2022). Effects of exogenous bacterial quorum-sensing signal molecule/messenger N-hexanoyl-L-homoserine lactone (C-HSL) on acorn germination and plant growth of Quercus robur and Q. rubra (Fagaceae). Ukr. Bot. J., 79(5), pp. 329-338 [in Ukrainian]. https://doi.org/10.15407/ukrbotj79.05.329

23. Kosakivska, I.V., Vasyuk, V.A., Shcherbatiuk, M.M., Voytenko, L.V. & Romanenko, K.O. (2024). Impact of exogenous zeatin on the growth, pigment complex and capacity of sporophytes of Salvinia natans (Salviniaceae) for biological extraction of zinc from the water. Ukr. Bot. J., 81(6), pp. 406-416. https://doi.org/10.15407/ukrbotj81.06.443

24. Kosakivska, I.V., Vedenicheva, N.P., Babenko, L.M., Voytenko, L.V., Romanenko, K.O. & Vasyuk, V.A. (2022). Exogenous phytohormones in the regulation of growth and development of cereals under abiotic stresses. Mol. Biol. Reports, 49(1), pp. 617-628. https://doi.org/10.1007/s11033-021-06802-2

25. Kosakivska, I.V., Vedenicheva, N.P., Shcherbatiuk, M.M., Voytenko, L.V. & Vasyuk, V.A. (2022). Water ferns in phytoremediation and phytoindication: current state and suitability for use. Biotechnol. Acta, 15(3), pp. 5-23. https://doi.org/10.15407/biotech15.05.005

26. Kosakivska, I.V., Vedenicheva, N.P., Shcherbatiuk, M.M., Voytenko, L.V. & Vasyuk, V.A. (2023). Phytohormones in the regulation of growth and development of water ferns of Salviniaceae family: mini review. Studio Biol., 17(3), pp. 189-210. https://doi.org/10.30970/sbi.1703.721

27. Kosakivska, I.V., Voytenko, L.V., Vasyuk, V.A. & Shcherbatiuk, M.M. (2022). Effect of pre-sowing priming of seeds with exogenous abscisic acid on endogenous hormonal balance of spelt wheat under heat stress. Zemdirbyste-Agricult., 109(1), pp. 21-26. https://doi.10.13080/z-a.2022.109.003 https://doi.org/10.13080/z-a.2022.109.003

28. Kosakivska, I.V., Voytenko, L.V., Vasyuk, V.A. & Shcherbatiuk, M.M. (2022). Effect of priming with gibberellic acid on acorn germination and growth of plants of Quercus robur and Q. rubra (Fagaceae). Ukr. Bot. J., 79(4), pp. 254-266 [in Ukrainian]. https://doi.org/10.15407/ukrbotj79.04.254

29. Kosakivska, I.V., Voytenko, L.V., Vasyuk, V.A. & Shcherbatiuk, M.M. (2023). Abscisic acid-induced response of Triticum aestivum and T. spelta phytohormonal system to moderate soil drought. Zemdirbyste-Agricult., 110(2), pp. 111-120. https://doi.org/10.13080/z-a.2023.110.014

30. Kosakivska, I.V., Voytenko, L.V., Vasyuk, V.A. & Shcherbatiuk, M.M. (2023). Morphological, physiological, and molecular components of the adaptive response to drought in the genus Quercus (Fagaceae). Ukr. Bot. J., 80(3), pp. 251-266 [in Ukrainian]. https://doi.org/10.15407/ukrbotj80.03.251

31. Kosakivska, I.V., Voytenko, L.V., Vasyuk, V.A. & Shcherbatiuk, M.M. (2024). ABA-induced alterations in cytokinin homeostasis of Triticum aestivum and Triticum spelta under heat stress. Plant Stress, 11, 100353. https://doi.org/10.1016/j.stress.2024.100353

32. Kosakivska, I.V., Voytenko, L.V., Vedenicheva, N.P., Vasyuk, V.A., Shcherbatiuk, M.M. & Romanenko, K.O. (2024). The influence of exogenous phytohormones and zinc sulfate on the morphophysiological characteristics of Salvinia natans (Salviniaceae). Ukr. Bot. J., 81(2), pp. 167-180. https://doi.org/10.15407/ukrbotj81.02.167

33. Kosakivska, I.V., Voytenko, L.V., Shcherbatiuk, M.M. & Vasjuk, V.A. (2020). Abscisic and indol-3-acetic acids in Triticum spelta L. after heat stress and during recovery period. Visn. Hark. nac. agrar. univ., Ser. Biol., 2(50), pp. 83-92 [in Ukrainian]. https://doi.org/10.35550/vbio2020.02.083

34. Kosakivska, I.V., Voytenko, L.V., Shcherbatiuk, M.M. & Vasyuk, V.A. (2020). Dynamics and distribution of absisic and indol-3-acetic acids in Triticum aestivum organs after short-term hyperthermia and during restoration. Visn. Hark. nac. agrar. univ., Ser. Biol., 1(49), pp. 62-71 [in Ukrainian]. https://doi.org/10.35550/vbio2020.01.062

35. Kosakivska, I.V., Shcherbatiuk, M.M. & Voytenko, L.V. (2020). Profiling of hormones in plant tissues: history, modern approaches, use in biotechnology. Biotechnol. Acta, 13 (4), pp. 14-25. https://doi.org/10.15407/biotech13.04.014

36. Kosakivska, I.V., Shcherbatiuk, M.M., Vasyuk, V.A. & Voytenko, L.V. (2024). Phytohormones in growth regulation and the formation of stress resistance in cultivated cereals. Fiziol. rast. genet., 56(2), pp. 130-150 [in Ukrainian]. https://doi.org/10.15407/frg2024.02.130

37. Lialko, V.I., Zholobak, H.M., Duhin, S.S., Sybirtseva, O.M., Holubov, S.I., Dorofei, Ye.M. & Polishchuk, O.V. (2020). Experimental research of the carbon circle features in «atmosphere - vegetation» system over the wetland area within the forest - steep zone in Ukraine using remote spectro- and gasometry under the global climate changes. Ukr. J. Rem. Sensin., 24, pp. 15-23 [in Ukrainian]. http://jnas.nbuv.gov.ua/article/UJRN-0001108456 https://doi.org/10.36023/ujrs.2020.24.166

38. Mokrosnop, V.M. & Zolotareva, E.K. (2021). Accumulation of a-tocopherol in microalgae cells. Microbiol. Biotechnol., 2, pp. 6-26 [in Ukrainian]. https://doi.org/10.18524/2307-4663.2021.2(52).223991

39. Mokrosnop, V.M. & Zolotareva, E.K. (2021). Strategies for increasing alphatocopherol content in plants. Fiziol. rast. genet., 53(6), pp. 484-500 [in Ukrainian]. https://doi.org/10.15407/frg2021.06.484

40. Mokrosnop, V.M. & Zolotariova, Y.K. (2020). Polysaccharides of seaweeds' cell walls: structure and features (a review). Hydrobiol. J., 56(5), pp. 41-50. https://doi.org/10.1615/HydrobJ.v56.i5.50

41. Nedukha, O., Zolotareva, O. & Netsvetov, M. (2023). Phenotypic variability of epidermis structure and silicon inclusions in the leaves of Quercus robur in the Feofaniya Park. Plant Introduct., 97/98, pp. 18-32. https://doi.org/10.46341/PI2023001

42. Nezbrytska, I., Bilous, O., Sereda, T., Ivanova, N., Pohorielova, M., Shevchenko, T., Dubniak, S., Lietytska, O., Zhezherya, V., Polishchuk, O., Kazantsev, T., Prychepa, M., Kovalenko, Y. & Afanasyev, S. (2024). Effects of war-related human activities on microalgae and macrophytes in freshwater ecosystems: a case study of the Irpin river basin, Ukraine. Water, 16(24), 3604. https://doi.org/10.3390/w16243604

43. Onoiko, O.B. & Zolotareva, O.K. (2024). Bioactive compounds and pharmacognostic potential of Tetragonia tetragonioides. Biotechnol. Acta, 17(1), pp. 29-42. https://doi.org/10.15407/biotech17.01.029

44. Ostapchenko, D., Vedenicheva, N. & Garmanchuk, L. (2022). Cytokinin fraction of the Hericium coralloides increases oxidative metabolism of murine peritoneal macrophages. Biotechnol. Acta, 15(4), pp. 27-29. https://doi.org/10.15407/biotech15.04.027

45. Polishchuk, O.V. (2021). Stress-related changes in the expression and activity of plant carbonic anhydrases. Planta, 253(2), 58. https://doi.org/10.1007/s00425-020-03553-5

46. Polishchuk, O.V. (2021). The roles of carbonic anhydrases in carbon concentrating mechanisms of aquatic photoautotrophs. Algology, 31(4), pp. 337-352 [in Ukrainian]. http://jnas.nbuv.gov.ua/article/UJRN-0001296427

47. Polishchuk, O., Kazantsev, T., Bilous, O., Nezbrytska, I., Burova, O., Stepanov, S. & Zolotareva, O. (2024). Application of satellite remote sensing for surface water quality assessment in Ukraine; integrating supervised learning and a spectro-temporal convolutional neural network. In: Space research in Ukraine. 2022-2024. O. Fedorov. (Ed.). Kyiv: Akademperiodyka, pp. 107-114. https://doi.org/10.15407/akademperiodyka

48. Polishchuk, A.V., Podorvanov, V.V. & Zolotareva, E.K. (2020). Electron and proton transport in chloroplasts of pea plants after night exposures to chilling temperatures. Fiziol. rast. genet., 52(4), pp. 295-305. https://doi.org/10.15407/frg2020.04.295

49. Romanenko, K.O., Babenko, L.M. & Kosakivska, I.V. (2024). Amino acids in regulation of abiotic stress tolerance in cereal crops: a review. Cereal Res. Comm., 52, pp. 333-356. https://doi.org/10.1007/s42976-023-00418-x

50. Romanenko, K.O., Babenko, L.M. & Kosakivska, I.V. (2022). The role of amino acids in the regulation of stress resistance of the cereal crops. Fiziol. rast. genet., 54(3), pp. 251-269 [in Ukrainian]. https://doi.org/10.15407/frg2022.03.251

51. Romanenko, K., Babenko, L., Smirnov, O. & Kosakivska, I. (2022). Antioxidant protection system and photosynthetic pigment composition in Secale cereale subjected to short-term temperature stresses. Open Agricult. J., 16 (Suppl-1, M3), e187433152206273. https://doi.org/10.2174/18743315-v16-e2206273

52. Shcherbatiuk, M.M., Voytenko, L.V., Kharkhota, M.A. & Kosakivska, I.V. (2021). Profiling of cytokinins in plant tissues: sampling, qualitative and quantitative analysis. Fiziol. rast. genet., 53(4), pp. 346-368 [in Ukrainian]. https://doi.org/10.15407/frg2021.04.346

53. Shcherbatiuk, M.M., Voytenko, L.V., Vasyuk, V.A. & Kosakivska, I.V. (2020). Method for quantitative determination of phytohormones in plant tissues. Studia Biologica, 14 (2), pp. 117-136 [in Ukrainian]. https://doi.org/10.30970/sbi.1402.624

54. Stepanov, S.S. & Mokrosnop, V.M. (2021). Meтaвolic processes and valuable substances of algae C.C. Scientific book (young sientists). Kyiv: Naukova dumka [in Ukrainian]. https://botany.kiev.ua/doc/stepanov_2021.pdf

55. Stepanov, S.S., Polishchuk, O.V. & Zolotareva, E.K. (2021). Using of preservatives (methanol, isoascorbate) in order to increase the photoproduction of H2 by Chlamydomonas reinhardtii. Visn. Hark. nac. agrar. univ., Ser. Biol., 3(54), pp. 49-55 [in Ukrainian]. https://doi.org/10.35550/vbio2021.03.049

56. Stepanov, S.S., Zolotareva, E K. & Belyavskaya, N.A. (2020). The role of catalase in assimilation of exogenous methanol by Chlamydomonas reinhardtii cells. J. Appl. Phycol., 32, pp. 1053-1062. https://doi.org/10.1007/s10811-019-01962-y

57. Topchiy, N.M., Dadyka, V.V., Chornoshtan, O.A. & Sytnik, S.K. (2021). Biochemical mechanisms and physiological consequences of the toxic effect of silver and mercury ions on higher plants. Visn. Hark. nac. agrar. univ., Ser. Biol., 3(54), pp. 21-36 [in Ukrainian]. https://doi.org/10.35550/vbio2021.03.021

58. Topchiy, N.M., Mykhaylenko, N.F., Onoiko, O.B. & Syvash, O.O. (2020). The features of forest plant photosynthetic apparatus functioning under the different light supply. Ukr. Bot. J., 77(4), pp. 314-323 [in Ukrainian]. https://doi.org/10.15407/ukrbotj77.04.314

59. Topchiy, N.M., Dadyka, V.V. & Zolotareva, O.K. (2023). The influence of root hypoxia on the photosynthetic apparatus of spinach during hydroponic cultivation. Fiziol. rast. genet., 55 (2), pp. 150-162 [in Ukrainian]. https://doi.org/10.15407/frg2023.02.150

60. Vedenicheva, N.P., Al-Maali, G.A., Bisko, N.A., Kosakivska, I.V., Ostrovska, G.V., Khranovska, N.M., Horbach, O.I., Garmanchuk, L.V. & Ostapchenko, L.I. (2021). Effect of cytokinin-containing extracts from some medicinal mushrooms mycelia on HepG2 cells in vitro. Int. J. Med. Mushr., 23(3), pp. 15-28. https://doi.org/10.1615/IntJMedMushrooms.2021037656

61. Vedenicheva, N., Futorna, O., Shcherbatyuk, M. & Kosakivska, I. (2022). Effect of seed priming with zeatin on Secale cereale L. growth and cytokinins homeostasis under hyperthermia. J. Crop Improvem., 36(5), pp. 656-674. https://doi.org/10.1080/15427528.2021.2000909

62. Vedenicheva, N.P. & Kosakivska, I.V. (2020). Cytokinins in cereals ontogenesis and adaptation. Fiziol. rast. genet., 52(1), pp. 3-30 [in Ukrainian]. https://doi.org/10.15407/frg2020.01.003

63. Vedenicheva, N. & Kosakivska, I. (2023). In search of the phytohormone functions in Fungi: Cytokinins. Fungal Biol. Rev., 45, 100309. https://doi.org/10.1016/j.fbr.2023.100309

64. Vedenicheva, N. & Kosakivska, I. (2024). Chapter 3 The regulatory role of cytokinins in adaptive responses of cereal plants. In book: Regulation of adaptive responses in plants. Yastreb T.O., Kolupaev Y.E., Yemets A.I., Blume Y.B. (Eds.). Nova Science Publication, Inc. New York, pp. 83-110. https://doi.org/10.52305/TXQB2084

65. Vedenicheva, N.P., Shcherbatyuk, M.M. & Kosakivska, I.V. (2021). Endogenous cytokinins of Secale cereale L. under high temperature impact: dynamics and localization in the alarm, acclimation and recovery phase. Fiziol. rast. genet., 53(4), pp. 292-306 [in Ukrainian]. https://doi.org/10.15407/frg2021.04.292

66. Vedenicheva, N., Shcherbatyuk, M. & Kosakivska, I. (2022). Effect of low-temperature stress on the growth of plants of Secale cereale (Poaceae) and endogenous cytokinin content in roots and shoots. Ukr. Bot. J., 79(3), pp. 184-192. https://doi.org/10.15407/ukrbotj79.03.184

67. Vedenicheva, N., Shcherbatyuk, M. & Kosakivska, I. (2023). Cytokinin localization and dynamics in rye plants under chilling and kernel priming with zeatin. Fiziol. rast. genet., 55(1), pp. 74-89 [in Ukrainian]. https://doi.org/10.15407/frg2023.01.074

68. Vedenicheva, N., Shcherbatyuk, M. & Kosakivska, I. (2024). Endogenous cytokinins in plants of Secale cereale (Poaceae) under the effects of soil drought. Ukr. Bot. J., 81 (3), pp. 242-250 [in Ukrainian]. https://doi.org/10.15407/ukrbotj81.03.242

69. Voytenko, L., Vasyuk, V., Babenko, L., Shcherbatiuk, M., Romanenko, K. & Kosakivska, I. (2024). Pre-sowing treatment of acorns with gibberellic acid and N-hexanoyl-L-homoserine lactone induced changes in growth and hormonal balance of Quercus robur L. seedlings. Forestry Studies, 80, pp. 127-141. https://doi.org/10.2478/fsmu-2024-0008

70. Voytenko, L.V., Vasyuk, V.A., Shcherbatiuk, M.M. & Kosakivska, I.V. (2024). Impact of chilling on growth and hormonal homeostasis of Triticum aestivum and Triticum spelta during initial stage of vegetation and after recovery. Agricult. Forest., 70(1), pp. 239-256. https://doi.org/10.17707/AgricultForest.70.1.17

71. Voytenko, L.V., Shcherbatiuk, M.M., Vasyuk, V.A. & Kosakivska, I.V. (2024). Role of cytokinins in the regulation the chilling stress response in Triticum aestivum and Triticum spelta. Dopov. Nac. akad. nauk Ukr., No. 3, pp. 69-76. https://doi.org/10.15407/dopovidi2024.03.069

72. Zolotareva, E.K., Khomochkin, A.P. & Onoiko, O.B. (2020). Sulfonamides influence on the activity of thylakoid ATPase isolated from spinach chloroplasts. Ukr. Biochem. J., 92 (4), pp. 96-102. https://doi.org/10.15407/ubj92.04.096

73. Zolotareva, E.K. & Polishchuk, O.V. (2022). Chlororespiration as a protective stress-inducible electron transport pathway in chloroplasts. Open Agricult. J., 16(1), e187433152208151. https://doi.org/10.2174/18743315-v16-e2208151

74. Zolotareva, O.K., Topchiy, N.M. & Fediuk, O.M. (2023). Biocatalytic carbon dioxide capture promoted by carbonic anhydrase. Biotechnol. Acta, 16(5), pp. 5-21. https://doi.org/10.15407/biotech16.05.005

75. Zolotareva, O.K., Topchiy, N.M. & Fedyuk, O.M. (2023). Biochemical and pysiological features of new zeland spinach (Tetragonia tetragonioides) as a new crop for saline soils. Fiziol. rast. genet., 55(6), pp. 506-518 [in Ukrainian]. https://doi.org/10.15407/frg2023.06.506